PRODUCTION OF SINGLE-WALLED CARBON NANOTUBES BY DECOMPOSITION OF CARBON-CONTAINING GASES OVER HETEROGENEOUS CATALYSTS AND THEIR PURIFICATION BY USING FROTH FLOTATION

3

Mr. Pisan Chungchamroenkit

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2007

502080

Thesis Title:	Production of Single-Walled Carbon Nanotubes by
	Decomposition of Carbon-Containing Gases over
	Heterogeneous Catalysts and Their Purification by Using
	Froth Flotation
By:	Mr. Pisan Chungchamroenkit
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Sumaeth Chavadej
	Asst. Prof. Boonyarach Kitiyanan
	Prof. Daniel E. Resasco

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nanty- Januart College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

-

(Prof. Somchai Osuwan)

(Prof. Daniel E. Resasco)

Pramark B

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Sumaeth Chavadej)

Boonyarach Kitiyaman

(Asst. Prof. Boonyarach Kitiyanan)

MR

(Prof. Damrong Khummongkol)

ABSTRACT

4391005063: PETROCHEMICAL TECHNOLOGY PROGRAM

Pisan Chungchamroenkit: Production of Single-Walled Carbon
Nanotubes by Decomposition of Carbon-Containing Gases over
Heterogeneous Catalysts and Their Purification by Using Froth
Flotation

Thesis Advisors: Assoc. Prof. Sumaeth Chavadej, Asst. Prof. Boonyarach Kitiyanan, and Prof. Daniel E. Resasco, 142 pp.

Keywords: Single-Walled Carbon Nanotubes / Heterogeneous Catalyst / Froth Flotation

In this study, the effects of catalyst formulation, carbon-containing gases, type of catalyst metals, and type of catalyst supports on the synthesis of singlewalled carbon nanotube (SWNT) were investigated. It was found that disproportionation of carbon monoxide (CO) over Co-Mo(1:2)/SiO₂ provides a maximum selectivity towards SWNTs. However, when using the Co-Re/SiO₂ catalysts with CO gas, the maximum of both yield and selectivity toward SWNTs were obtained on a Co:Re ratio of 1:4, a pre-reduction temperature of 800°C, and a reaction temperature of 850°C. Furthermore, the catalyst characterization suggests different growth mechanisms of SWNTs on the Co-Re/SiO₂ catalyst.

To study the purification of the as-prepared SWNTs, carbon black was first used as a representative of SWNTs and tested for separation from SiO_2 by using froth flotation. The maximum carbon black recovery of 70% with an enrichment ratio of 3.5 was achieved with an initial surfactant concentration of 75% of the critical micelle concentration (CMC), a feed solid concentration of 0.02 %w/v, an air flow rate of 200 mL/min, an initial foam height of 50 cm, and no use of an electrolyte. Subsequently, the as-prepared SWNTs were experimentally purified by the NaOH leaching and then froth flotation. From the results, the maximum carbon content of 78%, with a 71% selectivity of SWNTs, was achieved at a surfactant concentration of 75% of the CMC, a solid loading of 1.0 mg/mL, an air flow rate of

บทคัดย่อ

พิศาล จึงจำเริญกิจ : การสังเคราะห์การ์บอนนาโนทิวบ์แบบผนังเดี่ยวโดยวิธีการ สลายตัวของแก๊สที่มีการ์บอนเป็นองค์ประกอบบนตัวเร่งปฏิกิริยา และการทำให้บริสุทธิ์โดยใช้ กระบวนการทำให้ลอย (Production of Single-Walled Carbon Nanotubes by Decomposition of Carbon-Containing Gases over Heterogeneous Catalysts and Their Purification by Using Froth Flotation) อ. ที่ปรึกษา: รศ. คร. สุเมธ ชวเคช ผศ. คร. บุนยรัชต์ กิติยานันท์ และ ศ. คร. แคเนียล รีซาส โก 142 หน้า

งานวิจัยนี้ได้ทำการศึกษาผลของชนิดของตัวเร่งปฏิกิริยา ชนิดของก๊าซที่มีการ์บอนเป็น องก์ประกอบ ชนิดของโลหะในตัวเร่งปฏิกิริยา และชนิดของวัสดุที่ใช้เป็นตัวรองรับตัวเร่ง ปฏิกิริยา ต่อการสังเคราะห์การ์บอนนาโนทิวบ์แบบผนังเดี่ยวพบว่า กระบวนการสลายตัวของก๊าซ การ์บอนมอนอกไซด์บนตัวเร่งปฏิกิริยาโกบอลต์-โมลิบดินัม ที่มีอัตราส่วนโดยโมล 1 ต่อ 2 บน ตัวรองรับซิลิกา (Co-Mo(1:2)/SiO₂) ให้ผลิตภัณฑ์ที่มีสัดส่วนของการ์บอนนาโนทิวบ์แบบผนัง เดี่ยวสูงสุด อย่างไรก็ตามเมื่อทดลองใช้การสลายตัวของก๊าซการ์บอนมอนอกไซด์บนตัวเร่ง ปฏิกิริยาโกบอลต์-รีเนียมบนตัวรองรับซิลิกา (Co-Re/SiO₂) พบว่าผลิตภัณฑ์ที่ได้มีปริมาณ การ์บอนและสัคส่วนของการ์บอนนาโนทิวบ์แบบผนังเดี่ยวสูงสุด เมื่อใช้อัตราส่วนโดยโมลของ โกบอลต์ค่อรีเนียมเป็น 1 ต่อ 4 อุณหภูมิในการรีดิวซ์ที่ 800 องศาเซลเซียส อุณหภูมิในการทำ ปฏิกิริยาที่ 850 องศาเซลเซียส นอกจากนี้ จากการวิเคราะห์กุณสมบัติของตัวเร่งปฏิกิริยาโดบอลต์-รีเนียม

บนตัวรองรับซิลิกานั้น ต่างจากการใช้ตัวเร่งปฏิกิริยาโคบอลต์-โมลิบดินัมบนตัวรองรับซิลิกา สำหรับการศึกษาการทำให้ผลิตภัณฑ์ที่สังเคราะห์มีความบริสุทธิ์สูงขึ้น โดยใช้กระบวน การทำให้ลอย (Froth flotation) นั้น ได้เริ่มด้นโดยทำการแยกอนุภาคการ์บอนแบล็คที่ผสมกับ อนุภาคซิลิกา กระบวนการนี้สามารถนำอนุภาคการ์บอนแบล็คกลับคืนมาได้ถึงร้อยละ 70 รวมถึง สัดส่วนการ์บอนแบล็คต่อซิลิกาที่ได้เท่ากับ 3.5 เท่าของสัดส่วนการ์บอนแบล็คต่อซิลิกาเริ่มค้น เมื่อใช้ความเข้มข้นเริ่มต้นของสารลดแรงตึงผิวร้อยละ 75 ของความเข้มข้นวิกฤต (CMC) ปริมาณ ของแข็งในสารละลายเริ่มด้นร้อยละ 0.02 โดยมวลต่อปริมาตร อัตราการไหลของอากาศ 200 มิลลิลิตรต่อนาที ความสูงเริ่มต้นของชั้นฟอง 50 เซนติเมตร และไม่เติมอิเล็กโทรไลต์ จากนั้นได้

ทำการทคลองการทำให้การ์บอนนาโนทิวบ์แบบผนังเคี่ยวที่สังเคราะห์ได้มีความบริสุทธิ์สูงขึ้น โดยใช้การชะด้วยโซเดียมไฮครอกไซด์ร่วมกับกระบวนการทำให้ลอย จากผลการทคลองพบว่า ปริมาณการ์บอนในผลิตภัณฑ์ที่ทำให้บริสุทธิ์สูงถึงร้อยละ 78 และสัคส่วนของการ์บอนนาโนทิวบ์ แบบผนังเดี่ยวร้อยละ 71 ได้จากการใช้ความเข้มข้นเริ่มต้นของสารลคแรงตึงผิวร้อยละ 75 ของ ความเข้มข้นวิกฤต ปริมาณของอนุภาค 1.0 มิลลิกรัมต่อมิลลิลิตร อัตราการไหลของอากาศ 100 มิลลิลิตรต่อนาที ความสูงเริ่มต้นของชั้นฟอง 22 เซนติเมตร จากการวิเคราะห์สมบัติทั้งก่อนและ หลังจากกระบวนการทำให้บริสุทธิ์ พบว่ากระบวนการนี้ไม่ทำให้โครงสร้างของคาร์บอนนาโน ทิวบ์แบบผนังเดี่ยวได้รับความเสียหาย

ACKNOWLEDGEMENTS

This work cannot be successful without the participation of the following individuals and organizations.

I would like to express my deepest appreciation to my thesis advisors, Associate Professor Sumaeth Chavadej, Assistant Professor Boonyarach Kitiyanan, and Professor Daniel E. Resasco, for all of their assistance, encouragement, and valuable guidance while I was doing my research. Associate Professor Sumaeth Chavadej has taught me a lot about the way to be an effective and reliable person and how to write professional manuscripts, with patient and full of kindness. Assistant Professor Boonyarach Kitiyanan always gives his valuable advice on solving the problems that occurred during the experiment. Besides the research, he also gives many excellent advices. I would like to thank Professor Daniel E. Resasco, who is an outstanding advisor. He always teaches me not only the theoretical knowledge but also the way to think. My thinking process improves a lot with his guidance.

A great thankfulness is forward to Professor John F. Scamehorn for his guidance and comments on the concepts and operation of froth flotation. Moreover, I would like to acknowledge Dr. Jose E. Herrera for his valuable discussion on the synthesis of carbon nanotubes.

I would like to give special thanks to Professor Somchai Osuwan for his kindness being as a chairman of thesis committee. I also would like to thank Associate Professor Pramoch Rangsunvigit and Professor Damrong Khummongkol for being as my thesis committees and giving me the valuable comments and suggestions.

I would like to thank Mr. Robert J. Wright for his valuable suggestion to improve my English writing.

I would like to acknowledge the Thailand Research Fund for supporting this research work and awarding me a Royal Golden Jubilee (RGJ) Ph.D. scholarship.

I would like to give my deep thankfulness to Dr. Ummarawadee Yanatatsaneejit for her discussion, very great ideas, and willpower. Special thanks are forwarded to my friends, Ms. Supapak Xuto, Mr. Teerakun Boonphayoong, Ms. Kavalin Kiatsoongchart, Ms. Sunisa Chuaybumrung, Mr. Nattapong Lertrojanachusit, Ms. Anuradee Wittayapanyanon, Dr. Chantra Tongcumpou, Dr. Raweewan Klaewkla, Dr. Korada Supat, and other PPC and OU friends, for being my good friends and giving me a very great time during doing my research.

I would like to express my deepest appreciation to my family. Without their love and support, I would not be able to succeed my Ph.D.

Finally, special thanks are expressed to the faculty members and staff of the Petroleum and Petrochemical College at Chulalongkorn University, the National Excellence Center for Petroleum, Petrochemicals and Advanced Materials under the Ministry of Education, and the School of Chemical, Biological, and Materials Engineering at the University of Oklahoma for providing all facilities needed for this research work.

TABLE OF CONTENTS

PA	GE
----	----

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	ix
List of Tables	xv
List of Figures	xvii

CHAPTER

I	INTRODUCTION	1	
II	LITERATURE REVIEW	3	
	2.1 Introduction to Carbon Nanotubes	3	
	2.2 Structures of Carbon Nanotubes	4	
	2.3 Properties and Applications of Carbon Nanotubes	6	
	2.4 Production of Carbon Nanotubes	8	
	2.4.1 Growth Mechanisms	9	
	2.4.2 Arc Discharge	10	
	2.4.3 Laser Ablation	11	
	2.4.4 Chemical Vapor Deposition (CVD)	12	
	2.5 Purification of Carbon Nanotubes	15	
	2.5.1 Oxidation	16	
	2.5.2 Acid Treatment	16	
	2.5.3 Annealing	17	
	2.5.4 Ultrasonication	17	
	2.5.5 Magnetic Purification	17	
	2.5.6 Micro Filtration	18	
	2.5.7 Cutting	18	
	2.5.8 Functionalization	19	

III

2.5.9 Chromatography	19
2.6 Characterization of Carbon Nanotubes	19
2.6.1 Electron Microscopy	20
2.6.2 Raman Spectroscopy	20
2.6.3 Temperature-Programmed Analysis	22
2.7 Froth Flotation Technique	23
2.7.1 Wettability	25
2.7.2 Collectors	26
2.7.3 Frothers	28
2.7.4 Modifiers	30
2.8 Nature of Surfactants	31
EXPERIMENTAL	34
3.1 Materials	34
3.1.1 Chemicals	34
3.1.2 Gases	35
3.2 Methodology	35
3.2.1 Catalyst Preparation and Pretreatment	35
3.2.2 Single-Walled Carbon Nanotube Synthesis	36
3.2.3 Characterization of Fresh Catalysts and	36
Single-Walled Carbon Nanotubes	
3.2.4 Measurement of Point of Zero Charge (PZC)	37
and Contact Angle	
3.2.5 Surfactant Adsorption Experiment and CMC	37
Determination	
3.2.6 Silica Dissolution Experiments	38
3.2.7 Froth Flotation Experiments	38
3.2.8 Foam Characteristic Experiments	39

- <u>+</u> -

•

IV	COMPARISON OF SINGLE-WALLED CARBON	40
	NANOTUBES PRODUCED BY USING	
	DIFFERENT CATALYSTS	
	4.1 Abstract	40
	4.2 Introduction	40
	4.3 Experimental Section	41
	4.3.1 Materials	41
	4.3.1.1 Metal Precursors and Catalyst	41
	Supports	
	4.3.1.2 Gases	42
	4.3.2 Methodology	42
	4.3.2.1 Catalyst Preparation	42
	4.3.2.2 Synthesis of Carbon Nanotubes	43
	4.3.2.3 Temperature-Programmed	43
	Oxidation (TPO)	
	4.3.2.4 Raman Spectroscopy	44
	4.3.2.5 Transmission Electron Microscopy	45
	(TEM)	
	4.4 Results and Discussion	45
	4.4.1 Characterization of Deposited Carbon by	45
	TPO and Raman Spectroscopy	
	4.4.2 Comparison of the Deposited Carbons on	47
	SiO ₂ -Supported Catalysts	
	4.4.3 Comparison of the Deposited Carbons on	53
	MgO-Supported Catalysts	
	4.4.4 Comparison of the Deposited Carbons on	58
	Al ₂ O ₃ -Supported Catalysts	
	4.5 Conclusions	63
	4.6 Acknowledgements	64
	4.7 REFERENCES	64

.

....

V

PAGE

68

83

	NANOTUBES BY DISPROPORTIONATION OF		
	CO OVER Co-Re/SiO2 CATALYSTS		
	5.1 Abstract	68	
	5.2 Introduction	68	
	5.3 Experimental Section	69	
	5.3.1 Materials	69	
	5.3.1.1 Metal Precursors and Catalyst	69	
	Support		
	5.3.1.2 Gases	70	
	5.3.2 Methodology	70	
	5.3.2.1 Catalyst Synthesis Procedure	70	
	5.3.2.2 Catalyst Characterization	70	
	5.3.2.3 Reaction Experiments	71	
	5.4 Results and Discussion	73	
	5.4.1 Effect of Reduction Temperature	73	
	5.4.2 Effect of Reaction Temperature	76	
	5.4.3 Effect of Co:Re Ratio	77	
	5.5 Conclusions	79	
	5.6 Acknowledgements	80	
	5.7 REFERENCES	80	
VI	SEPARATION OF CARBON BLACK FROM	82	
	SILICA BY FROTH FLOTATION		
	6.1 Abstract	82	
	6.2 Introduction	82	
	6.3 Experimental Section	83	

GROWTH OF SINGLE-WALLED CARBON

6.3.1 Materials

. .

VII

PAGE

6.3.2 Methodology	84
6.3.2.1 Measurement of Point of Zero	84
Charge (PZC) and Contact Angle	
6.3.2.2 Surfactant Adsorption Experiment	84
and CMC Determination	
6.3.2.3 Froth Flotation Experiments	85
6.3.2.4 Foam Characteristics	86
6.4 Results and Discussion	86
6.4.1 Point of Zero Charge (PZC) and Contact	87
Angle	
6.4.2 Surfactant Adsorption Isotherms and CMC	89
6.4.3 Effect of Surfactant Concentration	90
6.4.4 Effect of Solid Mixture Loading	92
6.4.5 Effect of Air Flow Rate	94
6.4.6 Effect of Initial Foam Height	96
6.4.7 Effect of NaCl Concentration	97
6.5 Conclusions	99
6.6 Acknowledgements	100
6.7 REFERENCES	100
RESIDUE CATALYST SUPPORT REMOVAL	103
AND PURIFICATION OF CARBON	
NANOTUBES BY NaOH LEACHING AND	
FROTH FLOTATION	
7.1 Abstract	103
7.2 Introduction	103
7.3 Experimental Section	105
7.3.1 Materials	105
7.3.1.1 Metal Precursors and Catalyst	105
Support	

19

VIII

7.3.1.2 Gases	106
7.3.2 Methodology	106
7.3.2.1 Synthesis of SWNTs	106
7.3.2.2 Silica Dissolution Experiments	107
7.3.2.3 Froth Flotation Experiments	107
7.3.2.4 Foam Characteristic Experiments	108
7.4 Results and Discussion	109
7.4.1 Effect of Sonication Time	110
7.4.2 Effect of Initial Surfactant Concentration	111
7.4.3 Effect of Solid Loading	113
7.4.4 Effect of Air Flow Rate	115
7.4.5 Effect of Initial Foam Height	117
7.4.6 Raman Spectra, TPO Results, and SEM	118
Images of the Sample	
7.5 Conclusions	125
7.6 Acknowledgements	125
7.7 REFERENCES	126
CONCLUSIONS AND RECOMMENDATIONS	130
8.1 Conclusions	130
8.2 Recommendations	132
REFERENCES	133

CURRICULUM VITAE 140

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	Contact angles for various solids and collectors	27
2.2	Examples of frothers	29

CHAPTER V

- 4.1 Selectivity, total carbon yield, TPO quantity parameter, Raman 50 quality parameter, and the presence of RBM signal of spent SiO₂-supported catalysts after the disproportionation of CO
- 4.2 Selectivity, total carbon yield, TPO quantity parameter, Raman 51 quality parameter, and the presence of RBM signal of spent SiO₂-supported catalysts after the decomposition of CH₄
- 4.3 Selectivity, total carbon yield, TPO quantity parameter, Raman 56 quality parameter, and the presence of RBM signal of spent
 MgO-supported catalysts after the disproportionation of CO
- 4.4 Selectivity, total carbon yield, TPO quantity parameter, Raman 57 quality parameter, and the presence of RBM signal of spent
 MgO-supported catalysts after the decomposition of CH₄
- 4.5 Selectivity, total carbon yield, TPO quantity parameter, Raman 61 quality parameter, and the presence of RBM signal of spent Al₂O₃-supported catalysts after the disproportionation of CO
- 4.6 Selectivity, total carbon yield, TPO quantity parameter, Raman 62 quality parameter, and the presence of RBM signal of spent Al₂O₃-supported catalysts after the decomposition of CH₄

....

CHAPTER VII

·

7.1 Carbon composition and total carbon content as calculated from 122 the TPO data of the as-prepared SWNT sample, the SWNT sample after 3 hours of silica dissolution by NaOH, and the SWNT sample after silica dissolution and froth flotation (3 h sonication in the silica dissolution step, 0.75 CMC initial smurfactant concentration, 1.0 mg/ml sample loading, 100 ml/min air flow rate, and 22 cm initial foam height)

PAGE

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Carbon nanostructures (a) a fullerene (b) a carbon nanotube	3
2.2	Models of different single-walled carbon nanotubes	5
2.3	Unit vector a_1 and a_2 of the two dimensional lattice graphene	6
	sheet	
2.4	Visualisation of a possible carbon nanotubes growth	9
	mechanism	
2.5	A carbon arc discharge apparatus	10
2.6	Laser vaporization apparatus	11
2.7	A typical reactor set up for catalytic vapor phase deposition of	13
	carbon nanotubes	
2.8	Raman spectrum showing the most characteristic features of	21
	carbon nanotubes: radial breathing mode (RBM), the D band,	
	G band and G band. Second order modes are also observed.	
	Spectrum obtained from SWNTs sample (diameter of about	
	1.07 nm) mixed with KBr using a Elaser = 1.16 eV (λ = 1064.5	
	nm) excitation	
2.9	Sub-Aerated Mechanical Froth Flotation Apparatus	25
2.10	The concept of contact angle with a captive bubble in an	26
	aqueous medium, adhering to a hydrophobic solid: P is the	
	three-phase contact point. Here, the vector γ_{lg} passes through P	
	and forms a tangent to the curved surface of the air bubble. The	
	contact angle θ is drawn into the liquid	
2.11	Schematic diagram of monomer, micelles and micellization	32
2.12	Schematic diagram of normal micelles and reverse micelles	32

CHAPTER III

3.1	Schematic of the froth flotation apparatus	39
-----	--	----

PAGE

CHAPTER IV

4.1	Normalized TPO profiles of spent Co-Mo 1:2/SiO ₂ catalysts	46
	after decomposition of CO and CH ₄	
4.2	Raman spectra of spent Co-Mo 1:2/SiO ₂ catalysts after	46
	decomposition of different gases at 750°C	
4.3	Carbon yield (bar), Selectivity towards SWNTs (circle), TPO	49
	quantity parameter (star), Raman quality parameter (diamond),	
	and the presence of SWNTs (solid diamond = RBM signal	
	exist, hollow diamond = no RBM signal) of spent SiO ₂ -	
	supported catalysts after (a) the disproportionation of CO and	
	(b) the decomposition of CH ₄	
4.4	TEM image of spent Co-Mo 1:2/SiO ₂ after disproportionation	52
	of CO at 750°C	
4.5	TEM image of spent Ni-Mo 2:1/SiO ₂ after disproportionation	53
	of CO at 750°C	
4.6	Carbon yield (bar), Selectivity towards SWNTs (circle), TPO	55
	quantity parameter (star), Raman quality parameter (diamond),	
	and the presence of SWNTs (solid diamond = RBM signal	
	exist, hollow diamond = no RBM signal) of spent MgO-	
	supported catalysts after (a) the disproportionation of CO and	
	(b) the decomposition of CH ₄	
4.7	TEM image of spent Co /MgO after decomposotion of CH_4 at	58
	750°C	
4.8	Carbon yield (bar), Selectivity towards SWNTs (circle), TPO	60
	quantity parameter (star), Raman quality parameter (diamond),	
	and the presence of SWNTs (solid diamond = RBM signal	
	exist, hollow diamond = no RBM signal) of spent Al_2O_3 -	
	supported catalysts after (a) the disproportionation of CO and	
	(b) the decomposition of CH ₄	

4.9 TEM image of spent Co-Mo 1:1/Al₂O₃ after disproportionation 63 of CO at 750°C

CHAPTER V

Experimental set-up of the catalytic reactor system for	72
synthesizing single-walled carbon nanotubes (SWNTs)	
Photo of the reactor system for synthesizing single-walled	73
carbon nanotubes (SWNTs)	
Temperature-programmed oxidation (TPO) of the carbon	74
deposit obtained from by CO disproportionation at 850°C over	
Co-Re(1:4)/SiO ₂ catalyst with pre-reduction at different	
temperatures	
Raman spectra of the carbon deposits obtained from the CO	75
disproportionation at 850°C over the Co-Re(1:4)/SiO ₂ catalyst	
with different pre-reduction temperatures	
Temperature-programmed reduction (TPR) of the	76
monometallic and bimetallic cobalt/rhenium catalysts having	
different molar ratio of Co to Re	
Temperature-programmed oxidation (TPO) of the carbon	77
deposits obtained from the CO disproportionation at different	
reaction temperatures over Co-Re(1:4)/SiO ₂ catalyst	
Temperature-programmed oxidation (TPO) of the carbon	78
deposits obtained from the CO disproportionation at 850°C	
over different bimetallic Co-Re/SiO ₂ catalysts	
TEM image showing SWNTs produced by CO	79
disproportionation at 850°C over Co-Re(1:4)/SiO ₂ catalyst	
	Experimental set-up of the catalytic reactor system for synthesizing single-walled carbon nanotubes (SWNTs) Photo of the reactor system for synthesizing single-walled carbon nanotubes (SWNTs) Temperature-programmed oxidation (TPO) of the carbon deposit obtained from by CO disproportionation at 850°C over Co-Re(1:4)/SiO ₂ catalyst with pre-reduction at different temperatures Raman spectra of the carbon deposits obtained from the CO disproportionation at 850°C over the Co-Re(1:4)/SiO ₂ catalyst with different pre-reduction temperatures Temperature-programmed reduction (TPR) of the monometallic and bimetallic cobalt/rhenium catalysts having different molar ratio of Co to Re Temperature-programmed oxidation (TPO) of the carbon deposits obtained from the CO disproportionation at different reaction temperatures over Co-Re(1:4)/SiO ₂ catalyst Temperature-programmed oxidation (TPO) of the carbon deposits obtained from the CO disproportionation at different reaction temperatures over Co-Re(1:4)/SiO ₂ catalyst Temperature-programmed oxidation (TPO) of the carbon deposits obtained from the CO disproportionation at 850°C over different bimetallic Co-Re/SiO ₂ catalysts TEM image showing SWNTs produced by CO disproportionation at 850°C over Co-Re(1:4)/SiO ₂ catalyst

CHAPTER VI

6.1	Schematic of the froth flotation apparatus	86
-----	--	----

6.2	Determination of point of zero charge (PZC) for carbon black	88
	and silica gel at solid loading of 5 wt%	
6.3	pH changes upon the addition of carbon black or silica gel into	88
	water with initial pH of 6.2	
6.4	Adsorption isotherms of surfactant on carbon black and silica	90
	gel	
6.5	Effects of surfactant concentration on foamability and foam	91
	stability	
6.6	Effects of initial surfactant concentration on recovery and	92
	enrichment ratio of carbon black	
6.7	Effects of solid mixture loading on foamability and foam	93
	stability	
6.8	Effects of solid mixture loading on recovery and enrichment	94
	ratio of carbon black	
6.9	Effects of air flow rate on foamability and foam stability	95
6.10	Effects of air flow rate on recovery and enrichment ratio of	96
	carbon black	
6.11	Effects of initial foam height on recovery and enrichment ratio	97
	of carbon black	
6.12	Effects of NaCl concentration on foamability and foam stability	98
6.13	Effects of NaCl concentration on recovery and enrichment ratio	99
	of carbon black	

CHAPTER VII

		
7.1	Schematic of the froth flotation apparatus	108
7.2	Effects of sonication time in the silica dissolution step on	111
	carbon content and cumulative enrichment ratio of the SWNT	
	sample in the froth flotation step	

7.3	Effects of initial surfactant concentration on (a) foamability and	112
	foam stability, and (b) carbon content and cumulative	
	enrichment ratio of the SWNT sample in the froth flotation step	
7.4	Effects of solid loading on (a) foamability and foam stability,	114
	and (b) carbon content and cumulative enrichment ratio of the	
	SWNT sample in the froth flotation step	
7.5	Effects of air flow rate on (a) foamability and foam stability,	116
	and (b) carbon content and cumulative enrichment ratio of the	
	SWNT sample in the froth flotation step	
7.6	Effects of initial foam height on carbon content and cumulative	117
	enrichment ratio of the SWNT sample in the froth flotation step	
7.7	Raman spectra for the as-prepared SWNT sample, the SWNT	120
	sample after 3 hours of silica dissolution by NaOH, and the	
	SWNT sample after silica dissolution and froth flotation (3 h	
	sonication in the silica dissolution step, 0.75 CMC initial	
	surfactant concentration, 1.0 mg/ml sample loading, 100	
	ml/min air flow rate, and 22 cm initial foam height)	
7.8	Temperature programmed oxidation (TPO) profiles with the	121
	peaks fitted by gaussian-lorentzian mixtures for the as-prepared	
	SWNT sample, the SWNT sample after 3 hours of silica	
	dissolution by NaOH, and the SWNT sample after silica	
	dissolution and froth flotation (3 h sonication in the silica	
	dissolution step, 0.75 CMC initial surfactant concentration, 1.0	
	mg/ml sample loading, 100 ml/min air flow rate, and 22 cm	
	initial foam height)	

7.9 SEM images of (a) as-prepared SWNTs, (b) SWNT sample after 3 hours of silica dissolution by NaOH, and (c) SWNT sample after silica dissolution and froth flotation (3 h sonication in the silica dissolution step, 0.75 CMC initial surfactant concentration, 1.0 mg/ml sample loading, 100 ml/min air flow rate, and 22 cm initial foam height)

. .

xxii

124