Catalytic Extrusion of Polylactide/Ethylene Vinyl Alcohol Bioplastic Film

Patcharakamon Nooeaid

. . .

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2008

512028

Thesis Title:	Catalytic Extrusion of Polylactide/Ethylene Vinyl Alcohol
	Bioplastic Film
By:	Patcharakamon Nooeaid
Program:	Polymer Science
Thesis Advisor:	Assoc. Prof. Rathanawan Magaraphan

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantays Junumit College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

12. Many

(Assoc. Prof. Rathanawan Magaraphan)

Hathailian M.

(Asst. Prof. Hathaikarn Manuspiya)

(Prof. Dr. Narongrit Sombatsompop)

ABSTRACT

4972030063: Polymer Science Program
Patcharakamon Nooeaid: Catalytic Extrusion of Polylactide/Ethylene
Vinyl Alcohol Bioplastic Film.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan 107 pp.
Keywords: reactive extrusion, polylactide, ring-opening polymerization

The ring-opening polymerization of lactide was generated by a continuous single-step reactive extrusion process in the presence of 2-ethylhexanoic acid tin(II) salt, Sn(Oct)₂, as a catalyst to obtain high molecular weight polylactide (PLA). For good practical applications of PLA, the softness of the PLA was modified via the graft copolymerization from poly(ethylene-co-vinyl alcohol) EVOH, which is a biocompatible, flexible and soft random copolymer. To investigate the chemical structure of the graft copolymer, the products were characterized by FTIR. The results show that the strong absorption emerged at 1740 cm⁻¹ in the spectra of EVOH-g-PLA and pure PLA was identical, which assigned to carbonyl (C=O) in PLA. Therefore, these results could be confirmed that the ring-opening polymerization of lactide with EVOH by using catalytic extrusion was carried out successfully. Furthermore, the EVOH-g-PLA copolymers gave the number average molecular weight (M_w) ranging from 24.5×10^4 to 36.6×10^4 g/mol. The amount of graft copolymer and the grafting degree showed a maximum at catalyst content around 0.5 wt%. The optimized LA/EVOH content and the screw speed were 50/50 wt% and 40 rpm, respectively. Furthermore, the EVOH-g-PLA copolymers were fabricated into bioplastic films by compression moulding technique for morphological study by SEM and mechanical testing. The elongation of grafted PLA were improved significantly compared to pure PLA. The tradeoff included the reduction of tensile strength.

. .

บทคัดย่อ

พัชรกมน หนูเอียด : ฟิล์มธรรมชาติ โพลีแลคไทค์/เอทธิลึนไวนิลแอลกอฮอล์ สังเคราะห์ โดยเทกนิคแกททาไลติก เอกทรูชั่น (Catalytic Extrusion of Polylactide/Ethylene Vinyl Alcohol Bioplastic Film) อ. ที่ปรึกษา : รศ. ดร. รัตนวรรณ มกรพันธุ์ 107 หน้า

ปฏิกิริยาพอลิเมอร์ไรเซชั่นแบบเปิควงของแลกไทค์เกิดขึ้นโคยใช้เทคนิครีแอกทีพเอกท รูชั่นซึ่งสามารถทำปฏิกิริยาในขั้นตอนเดียว โดยใช้กรดเกลือของธาตุสแตนนัสเป็นตัวเร่งปฏิกิริยา เพื่อทำการสังเคราะห์โพลีแลกไทด์ที่มีน้ำหนักโมเลกุลสูง แต่เนื่องด้วยความเปราะของโพลีแลก ้ไทค์ซึ่งเป็นข้อจำกัดในการใช้งานหลายประเภท โพลีแลกไทค์จึงจำเป็นอย่างยิ่งต่อการปรับปรุง ้สมบัติทางด้านความอ่อนนุ่มด้วยวิธีการพอลิเมอร์ไรเซชั่นแบบกราฟ โคยเลือกใช้เอทธีลีนไวนิล แอลกอฮอล์ โคพอลิเมอร์ เป็นสายโซ่หลัก เนื่องจากเอทธีลืนไวนิลแอลกอฮอล์ โคพอลิเมอร์ มี ้สมบัติทางด้านความยุืดหยุ่นและเข้ากับวัสดุธรรมชาติด้วยกัน ได้ดี เพื่อศึกษาโครงสร้างทางเคมีของ กราฟโคพอลิเมอร์ที่ได้ เครื่องฟรูเรียทรานสฟอร์มสเปกโทรสโคปีถูกใช้ในการวิเคราะห์ พบว่าการ ปรากฏของพืกที่ 1740 cm⁻¹ แสดงถึงหมู่การ์บอนิลในโพลีแลกไทด์ซึ่งเป็นสายโซ่กิ่งในกราฟโค พอลิเมอร์ ซึ่งสามารถยืนยันได้ว่าปฏิกิริยาพอลิเมอรไรเซชั่นแบบเปิดวงของแลกไทด์โดยใช้หมู่ไฮ ครอกซิลในเอทธีลืนไวนิลแอลกอฮอล์ โคพอลิเมอร์เป็นส่วนที่ทำให้เกิดปฏิกิริยาสามารถประสบ ้ความสำเร็จได้ด้วยเทคนิคแคททาไลติกเอกทรูชั่น ซึ่งกราฟโคพอลิเมอร์ที่สังเคราะห์ได้มีน้ำหนัก โมเลกุลเฉลี่ยโดยน้ำหนักประมาณ 24.5x10⁴ ถึง 36.6x10⁴ กรัม/โมล นอกจากนี้ ยังมีการศึกษา ถึงผลกระทบของอัตราส่วนระหว่างแลกไทด์และเอทธีลีนไวนิลแอลกอฮอล์ โคพอลิเมอร์ ความเร็วรอบหมุนของสกรู และความเข้มข้นของตัวเร่งปฏิกิริยา พบว่าปริมาณของกราฟโคพอลิ เมอร์และประสิทธิภาพในการกราฟให้ค่าสูงสุด เมื่อใช้อัตราส่วนของแลคไทค์ต่อเอทธีลีนไวนิล แอลกอฮอล์ประมาณ 50/50 เปอร์เซ็นน้ำหนัก ความเร็วรอบหมุนเท่ากับ 40 รอบต่อนาที และ ความเข้มข้นของตัวเร่งปฏิกิริยาประมาณ 0.1 เปอร์เซ็นน้ำหนัก และคุณสมบัติเชิงกลของกราฟโค พอลิเมอร์ได้ทำการศึกษาโดยการทคสอบด้วยเครื่องดึงยืด พบว่าสมบัติการยืดออกเพิ่มขึ้น แลกกับ การลดลงของความแข็งแรง

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals.

First of all, the author would like to give special thanks to her advisors, Assoc. Prof. Rathanawan Magaraphan for her intensive suggestions, valuable guidance and vital help throughout this research. In addition, the author deeply thanks to Asst. Prof. Hathaikarn Manuspiya and Prof. Dr. Narongrit Sombatsompop for serving on her thesis committee.

The author is grateful for the partial scholarship and partial funding of the thesis work provided by the Postgraduate Education and Research Programs in The National Excellent Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand, National Research Council of Thailand (NRCT), and Polymer Processing and Polymer Nanomaterial Research Units.

Special thanks go to all of the Petroleum and Petrochemical College's faculties who have tendered invaluable knowledge and to the college staff who willingly gave supports and encouragements.

Finally, the author would like to take this opportunity to thank PPC Ph.D. students and all her PPC friends for their assistance, cheerfulness, creative suggestions, and encouragement. Also, the author is greatly indebted to her parents and her family for their support, love and understanding.

ต้นฉบับ หน้าขาดหาย

LIST OF TABLES

TABLE

2.1	Comparison of two types of poly-L-lactide polymerized in	
	glass ampoule bulk batch polymerization technology and	
	using a single stage reactive extrusion polymerization proc-	
	ess, both catalyzed with equimolar $Sn(Oct)_2 \cdot P(\phi)_3$ complex	
	with an initial monomer to tin molar ratio of 5000 at 180 °C	6
2.2	Influence of different processing parameters during reactive	
	extrusion polymerization on the resulting molecular polymer	
	parameters	7
2.3	Tensile modulus, strength and elongation at break and crys-	
	tallinity as a function of formulation and molding tempera-	
	ture	14
2.4	Comparion between PLAs as produced in bulk either in tra-	
	ditional batch processing or in REX polymerization in a co-	
	rotating closely intermeshing twin-screw extruder, both pro-	
	moted by an equimolar $Sn(Oct)_2 \cdot P(C_6H_5)_3$ complex with a	
	[L-LA] ₀ /[Sn] ratio of 5000, at 180 °C (extrusion throughput	
	~1 kg/h) M_w/M_n Polymer conversion %. Maleation reaction	
	or REX-PLA via a free-radical process	19
2.5	The lactide grafted onto chitosan copolymer in toluene at	
	70 °C with Et ₃ Al as catalyst	28
2.6	Tensile properties of PLLA/EVOH blends	30
4.1	The amount of graft copolymer and homopolymer of PLA	
	after extraction crude graft copolymer with chloroform	53
4.2	% yield of reacted EVOH after extraction the crude sample	
	with isopropyl alcohol	55

PAGE

PAGE

4.3	Lactide conversions synthesized by using a catalytic extru-	
	sion polymerization process, catalyzed with 0.1 wt%	
	Sn(Oct) ₂ and stabilized with 5 wt% Zn/Ca stearate	59
4.4	Grafting degree of extracted EVOH-g-PLA synthesized by	
	using a catalytic extrusion polymerization process	64
4.5	Molecular weight and molecular weight distribution of iso-	
	propyl alcohol extracted EVOH-g-PLA synthesized by using	
	a catalytic extrusion polymerization process	67
4.6	Thermal properties of crude EVOH-g-PLA synthesized by	
	using a catalytic extrusion polymerization process	79
4.7	Tensile strength of clude graft copolymers	91
4.8	Elongation at break of clude graft copolymers	92
4.9	Young's modulus of clude graft copolymers	93

LIST OF FIGURES

FIGURE

2.1	Effect of stannous octoate concentration o the viscosity av-	
	erage molecular weight of poly(L-lactide) and monomer	
	conversion for bulk polymerization of L-lactide at 130 °C	
	for 72 h. o:molecular weight, •:conversion	5
2.2	Tensile strength as a function of reached degree of conver-	
	sion for poly-l-lactide produced in reactive extrusion polym-	
	erization	7
2.3	Cyclic monomers or dimers to be used for ring opening po-	
	lymerization using reactive extrusion technology	. 8
2.4	Reaction scheme for blockcopolymerisation using pre-	.:
	oligomerised blocks of one monomer (o-caprolactone) and a	
	second monomer (lactide)	9
2.5	Effect of plasticizer content on crystallinity developed at 30	
	and 80 °C mold temperatures	12
2.6	Schematic illustrations of in-situ cross-linking of hyper-	
	branched polymer (HBP) in the PLA melt with the help of a	
	polyanhydride (PA)	15
2.7	Temperature dependence of the loss modulus $(E \notin \phi)$ of (A)	
	neat PLA, (B) PLA/HBP (92/08) blend, and (C)	
	PLA/HBP/PA (92/5.4/2.6) blend. The shift in the glass tran-	
	sition temperature (Tg) of HBP from -40 °C to -31 °C indi-	
	cated the occurrence of cross-linking of the HBP	16
2.8	Stress-strain curves obtained at a cross-head speed of 15.4	
	mm/min: (A) neat PLA; (B) PLA/HBP (92/08); (C)	
	PLA/HBP/PA (92/5.4/2.6)	17

PAGE

1

2.9	Scanning electron micrographs of tensile fracture surfaces:		
	A: Neat PLA; B: PLA/HBP (92/08); C: PLA/HBP/PA		
	(92/5.4/2.6)	18	
2.10	The grafting reaction of maleic anhydride (MA) onto the		
	PLA backbone had been performed through a free-radical		
	process again conducted by REX	20	
2.11	Grafting degree as a function of the screw-speed for LDPE-		
	g-DEM materials	23	
2.12	¹ H NMR spectra of PLA-g-dextran before (lower) and after		
	(upper) deprotection of trimethylsilyl groups in methanol	25	
2.13	FTIR spectra of (a) EVA and (b) EVA-g-MAH	26	
2.14	FTIR spectra of (a) EVAL and (b) EVAL-g-MAH	27	·
2.15	WAXS patterns of chitosan and its graft copolymer: (a) chi-		
	tosan, (b) 2:1, (c) 5:1, (d) 10:1, (e) 20:1, (f) 40:1	29	
2.16	The second scan DSC thermograms of EVOH-g-PLLA and	31	
	EVOH/PLLA blend		
4.3.1	The polystyrene calibration for the calculation of molecular		
	weight	44	
4.3.2	The calibration curve for the calculation of lactide conver-	45	
	sion		
4.3.3	The calibration curve for the calculation of lactide conver-	46	
	sion		
4.1	FTIR spectra of EVOH and EVOH-g-PLA (50/50 wt %) ob-		
	tained from solution polymerization	47	
4.2	Fusion behavior of crude EVOH-g-PLA (50/50 wt%) in the		
	presence of 0.1 wt% $Sn(Oct)_2$ catalyst and 5 wt% Zn/Ca		
	stearate stabilizer operated at 185 °C of chamber tempera-		
	ture and the rotor speed at (a) 40 rpm and (b) 60 rpm	49	

4.3	Fusion behavior of crude EVOH-g-PLA (50/50 wt%) in the	
	presence of 0.1 wt% Sn(Oct) ₂ catalyst and 5 wt% Zn/Ca	
	stearate stabilizer operated at 195 °C of chamber tempera-	
	ture and the rotor speed at (a) 40 rpm and (b) 60 rpm	50
4.4	Fusion behavior of crude EVOH-g-PLA (50/50 wt%) in the	
	presence of 0.1 wt% Sn(Oct) ₂ catalyst and 5 wt% Zn/Ca	
	stearate stabilizer operated at 205 °C of chamber tempera-	
	ture and the rotor speed at (a) 40 rpm and (b) 60 rpm	51
4.5	The appearance of crude EVOH-g-PLA synthesized by using	
	a brabender mixer with 50/50 LA/EVOH content (wt%),	
	catalyzed with 0.1 wt% $Sn(Oct)_2$ and stabilized with 5 wt%	
	Zn/Ca stearate at 40 rpm rotor speed (a) 185 °C, (b) 195 °C,	· · ·
	and (c) 205 °C rotor temperature and 60 rpm rotor speed (d)	
	185 °C, (e) 195 °C, and (f) 205 °C	52
4.6	FTIR spectra of EVOH and crude EVOH-g-PLA (50/50	
	wt%) obtained from brabender mixer at 40 rpm rotor speed	53
4.7	FTIR spectra of soluble part after extraction crude graft co-	
	polymers with isopropyl alcohol	57
4.8	FTIR spectra of EVOH, lactide, and isopropyl alcohol ex-	
	tracted EVOH-g-PLA (50/50 wt%) obtained from twin-	
	screw extruder at 40 rpm screw speed with 0.1 wt% catalyst	
	content	58
4.9	¹ H NMR spectra of the isopropyl alcohol extracted EVOH-	
	g-PLA synthesized from 50/50 LA/EVOH content (wt%),	
	catalyzed with 0.1 wt% $Sn(Oct)_2$ and stabilized with 5 wt%	
	Zn/Ca stearate by using the catalytic extrusion at 40 rpm	59

.

PAGE

..

х

12

. .

•

xi

4.10	Lactide conversion as the function of (a) LA/EVOH content	
	(wt%), (b) screw speed (rpm), and (c) catalyst content (wt%)	
		61
4.11	FTIR spectra of EVOH and isopropyl alcohol extracted	
	EVOH-g-PLA with varied (a) LA/EVOH content (wt%), (b)	
	screw speed (rpm), (c) catalyst content (wt%) synthesized by	
	using a catalytic extrusion polymerization process	63
4.12	GPC curve for isopropyl alcohol extracted EVOH-g-PLA	
	with 70/30 wt% LA/EVOH content, 0.1 wt% Sn(Oct) ₂ , 5	
	wt% Zn/Ca stearate, and 30 rpm screw speed	67
4.13	Molecular parameters of isopropyl alcohol extracted EVOH-	
	g-PLA received in reactive extrusion polymerization with	
	60/40 wt% LA/EVOH, 0.1 wt% Sn(Oct)2, and 5 wt% Zn/Ca	
	stearate in dependence of LA/EVOH content at (a) 40 rpm	
	and (b) 30 rpm screw speed	70
4.14	Molecular parameters of isopropyl alcohol extracted EVOH-	
	g-PLA received in reactive extrusion polymerization with	
	60/40 wt% LA/EVOH, 0.1 wt% Sn(Oct) ₂ , and 5 wt% Zn/Ca	
	stearate in dependence of the screw speed	72
4.15	Molecular parameters of extracted EVOH-g-PLA received in	
	reactive extrusion polymerization with 60/40 wt%	
	LA/EVOH, 30 rpm screw speed, and 5 wt% Zn/Ca stearate	
	in dependence of the catalyst content	72
4.16	DSC-measurement of crude EVOH-g-PLA produced in reac-	
	tive extrusion polymerization with 0.1 wt% Sn(Oct) ₂ , 5 wt%	
	Zn/Ca stearate, and 40 rpm screw speed in dependence of	
	LA/EVOH content. First heating and cooling at 10 K/min	
	heating rates	73

-

2.0

4.17	DSC-measurement of crude EVOH-g-PLA produced in reac-	
	tive extrusion polymerization with 60/40 wt% LA/EVOH	
	content, 0.1 wt% Sn(Oct) ₂ , and 5 wt% Zn/Ca stearate in de-	
	pendence of screw speed. First heating and cooling at 10	
	K/min heating rates	74
4.18	XRD patterns of crude EVOH-g-PLA produced in reactive	
	extrusion polymerization with 0.1 wt% Sn(Oct) ₂ , 5 wt%	
· · ·	Zn/Ca stearate, and 40 rpm screw speed in dependence of	
	LA/EVOH content	75
4.19	XRD patterns of crude EVOH-g-PLA produced in reactive	
	extrusion polymerization with 60/40 wt% LA/EVOH con-	
÷	tent, 0.1 wt% Sn(Oct) ₂ , and 5 wt% Zn/Ca stearate in de-	
	pendence of screw speed	75
4.20	TG-DTA curve of crude EVOH-g-PLA synthesized by using	
1.	a catalytic extrusion polymerization process with 40 rpm	
	screw speed, catalyzed with 0.1 wt% $Sn(Oct)_2$ and stabilized	
	with 5 wt% Zn/Ca stearate, with the varied the monomer to	
	polymer ratio (a) differential weight loss curves (DTG) (b)	
	weight losses of the samples	77
4.21	TG-DTA curve of crude EVOH-g-PLA synthesized by using	
	a catalytic extrusion polymerization process with 60/40	
	LA/EVOH ratio, catalyzed with 0.1 wt% Sn(Oct) ₂ and stabi-	
	lized with 5 wt% Zn/Ca stearate, with the varied screw speed	
	(a) differential weight loss curves (DTG) (b) weight losses	
	of the samples	78

xii

ς.,

4 . . .

4.22	TG-DTA curve of crude EVOH-g-PLA synthesized by using	
	a catalytic extrusion polymerization process with 60/40	
	LA/EVOH ratio and 30 rpm screw speed, catalyzed with 0.1	
	wt% Sn(Oct) ₂ and stabilized with 5 wt% Zn/Ca stearate,	
	with the varied catalyst content (a) differential weight loss	
	curves (DTG) (b) weight losses of the samples	79
4.23	DMA results of crude EVOH-g-PLA produced in reactive	
	extrusion polymerization with 0.1 wt% Sn(Oct) ₂ , 5 wt%	
	Zn/Ca stearate, and 40 rpm screw speed in dependence of	
	LA/EVOH content (a) tan δ , (b) E', and (c) E'' as the func-	
	tion of temperature	82
4.24	DMA results of crude EVOH-g-PLA produced in reactive	
	extrusion polymerization with 60/40 wt% LA/EVOH con-	
	tent, 0.1 wt% Sn(Oct) ₂ , and 5 wt% Zn/Ca stearate in de-	
	pendence of screw speed (a) tan δ , (b) E', and (c) E'' as the	
	function of temperature	84
- 4.25	DMA results of crude EVOH-g-PLA produced in reactive	
	extrusion polymerization with 60/40 wt% LA/EVOH con-	
	tent, 5 wt% Zn/Ca stearate, and 30 rpm screw speed in de-	
	pendence of catalyst content (a) $\tan \delta$, (b) E', and (c) E'' as	
	the function of temperature	86
4.26	SEM images of fractured surface of crude EVOH-g-PLA	
	received in reactive extrusion polymerization at 40 rpm	
	screw speed in dependence of LA/EVOH content	88

PAGE

4.27	SEM images of fractured surface of crude EVOH-g-PLA	
	received in reactive extrusion polymerization with 60/40	
	wt% LA/EVOH content and 0.1 wt% catalyst content in de-	
	pendence of screw speed	89
4.28	SEM images of fractured surface of crude EVOH-g-PLA	
	received in reactive extrusion polymerization with 60/40	
	LA/EVOH (wt%) at 30 rpm screw speed in dependence of	
	catalyst content	90
4.29	Stress-strain curves of crude EVOH-g-PLA received in reac-	
	tive extrusion polymerization in dependence of (a)	
	LA/EVOH content, (b) screw speed, and (c) catalyst content	91
4.30	Tensile strength of EVOH-g-PLA received in reactive extru-	
	sion polymerization in dependence of (a) screw speed, (b)	
. *	LA/EVOH content (wt%), and (c) catalyst content (wt%)	95
4.31	Elongation at break of EVOH-g-PLA received in reactive	
40	extrusion polymerization in dependence of (a) screw speed,	
	(b) LA/EVOH content (wt%), and (c) catalyst content (wt%)	97
4.32	Young 's modulus of EVOH-g-PLA received in reactive ex-	
	trusion polymerization in dependence of (a) screw speed, (b)	
	LA/EVOH content (wt%), and (c) catalyst content (wt%)	99

ABBREVIATIONS

LA Lactide

PLA Polylactide

EVOH Ethylene vinyl alcohol copolymer

EVOH-g-PLA Ethylene vinyl alcohol copolymer graft polylactide