
C H A P T E R I

I n t r o d u c t i o n

1.1 B a c k g r o u n d a n d M o t iv a t io n

A grid is a collaborative system built to serve the need for large amount of
resources of a big community. Applications in grids can be classified into five major
classes — distributed supercomputing, high-throughput computing, on-demand
computing, data-intensive computing, and collaborative computing [1].

First, distributed supercomputing applications use grid to aggregate
computational resources, such as CPU and memory, to solve problems that cannot be
handled by a single system. One example of distributed supercomputing applications
is distributed interactive simulation for training and planning in the military [2].
Second, high-throughput computing uses available processors on grids, such as
Condor system at University of Wisconsin [3], for massive jobs. On-demand
computing uses remote resources that are not located locally for short-term
requirements. For example, NetSolve allows users to couple remote software and
resources into desktop applications [4]. Data-intensive applications use data which
are geographically distributed on repositories, e.g., digital libraries and databases, on
grids to synthesize new information. For example, the digital sky survey uses
terabytes of astronomical photographic data which are available on network database
for astronomical research [1], Finally, collaborative-computing applications use grids
to support collaborative work between multiple participants such as NICE system,
which allows children to create and maintain the realistic virtual worlds for
entertainment and education [5]. This thesis focuses on a grid that deals with data-
intensive applications which is called a data grid.

Data grids must provide transparent access to data distributed on grids, i.e.,
users can access data located on any server in a grid as if the data is stored locally [6],
However, it usually takes longer to access a dataset which is stored on other servers
because of the transmission delay and processing delay. There are three techniques to
reduce the download time — data replication strategy, replica selection strategy and
co-allocation strategy.

Data replication strategy is a process to create or delete replicas based on the
need for the dataset [7]. If a client needs a dataset which is not stored locally, the
dataset is replicated to the local server or a server in the same area in order to reduce
the download time. Due to the limitation of disk storage, all dataset cannot be
replicated, and some replicas need to be deleted. Replica selection strategy is used to
choose, among all servers with replicas of the required dataset on a grid, the best
server to send the replica to the client. The server is chosen based on grid
characteristics such as disk access rates and network status [8]. In contrast to data
replication strategy, replica selection strategy does not create and delete replicas of
data, but selects the best replica from existing ones. However, replica selection
strategy chooses only one server to transfer the required dataset. Co-allocation
strategy allows parallel data transfer from many servers in order to utilize the
bandwidth from all servers. As a result, each server containing a replica of the
required dataset sends parts of the replica to the client in parallel. The co-allocator is
a process which manages the parallel transfer of data for each request from a client.
When the co-allocator gets a request from the client to download a dataset, it assigns
each server to send parts of requested dataset to the client. The process is completed
when the client receives the whole dataset. The co-allocation strategy is divided into
two categories, static and dynamic, based on adaptability criteria. The static co­
allocator allocates workload to each server only once before the data transmission
starts while the dynamic co-allocator adjusts the workload of each server during the
data transmission. Because the dataset is transferred from available servers in parallel,
the completion time to transfer the dataset is reduced.

2

Replicating a dataset on other servers is frequently used in practice to increase
data availability as well as download speed. When a dataset is replicated, the whole

dataset is copied to another location. However, it may not be possible to replicate the
whole dataset due to some constraints, e.g., storage limitation and data authorization.
The concept of fragment replication, which allows replication of some part of data, is
proposed [9].

For existing co-allocation strategies, it is assumed that data are completely
replicated. When fragments of data are replicated, each fragment may not be of the
same size and may not be replicated to the same number of servers. As a result,
existing co-allocation strategies do not perform well. Instead of one completed data
solved by the existing co-allocation strategies, many fragments of data are replicated
over servers in grid. The co-allocator needs to consider more on which fragment
should be assigned to reduce the completion time.

3

1 .2 C o n t r ib u t io n s

This thesis studies how to efficiently transfer a dataset whose fragments are
replicated on servers in a data grid. In this thesis, dynamic co-allocation strategy [10]
is modified by adding a strategy for choosing fragments of data for each transmission
in order to allow fragment replication. When a dataset is completely replicated,
dynamic co-allocation strategy can send any part of the dataset at any time. However,
when each server does not replicate the whole dataset, choosing which fragment to be
transmitted can affect the performance. This thesis studies five algorithms for
choosing fragments — Random, Round-robin, Random-with-weighted-probability,
Biggest-remaining-first and Fewest-replicas-first algorithms.

Random and Round-robin algorithms are used as baselines to compare the
performance of other three algorithms. Random and Round-robin algorithms choose
each fragment with a certain probability. The difference between Random algorithm
and Round-robin algorithm is the probability for choosing each fragment. Random
algorithm considers all fragments of a dataset and chooses each fragment with equal
probability. On the other hand, Round-robin algorithm considers only fragments

หอสบุลกลาง สํฒ้กงานวิทยทรัพยากร
ชุพาล ากร «J บหาาทยาลัย------------------------------------ 4

replicated in a server and chooses each local replica with the same probability. As a
result, a fragment with more replication is chosen with higher probability than one
with less replication.

Using Random and Round-robin algorithms as baselines, three other
algorithms are studied. Random-with-weighted-probability algorithm considers the
original size of fragment as a main factor to select the fragment for each server. That
is, a larger fragment is chosen more often than a smaller one. Biggest-remaining-first
algorithm chooses the fragment which has largest untransmitted data first. Finally,
Fewest-replicas-first algorithm chooses the fragment which is least replicated first. It
chooses from fragments replicated on the server which has the fewest replications
over the grid first.

The contribution of this thesis is to develop co-allocation strategies for
fragmented data. These co-allocation strategies are based on fragment selection
algorithms, and allow downloading files with fragmented replicas on data grids.

1 .3 T h e s is O r g a n iz a t io n

The rest of this thesis is organized as follows. Chapter 2 describes techniques
to improve download speed in data grids, which are data replication strategies,
replication selection strategies and co-allocation strategies. Then, in Chapter 3, grid
architecture for co-allocation is described and fragment selection algorithms to be
studied in this thesis are explained. Experiments and results obtained from the
simulation of the proposed algorithms are discussed in Chapter 4. Conclusion and
future work are presented in Chapter 5.

	Chapter I Introduction
	1.1 Background and Motivation
	1.2 Contributions
	1.3 Thesis Organization

