CHAPTER Il

Related Works

In data grid environments, there are many servers which are different in
network connectivity, storage system architectures, and system load. When a client
wants to use data which is not located in the local server, the system locates the
requested data on other servers and replicates the data to the client. However, the data
used in data grids is massive. To transfer or replicate the data from one server to
another can take a long time. Moreover, some applications have time constraint to
finish. Improvement of download speed can make applications processed sooner. Data
replication, replica selection and co-allocation strategies are used to improve
download speed.

This chapter describes strategies for data replication, replica selection and co-
allocation in Section 2.1, 2.2, and 2.3 respectively. Then, the concept of fragmented
replica, which is used to reduce the storage requirement, is described in Section 2.4,

2.1 Data replication strategies

A data replication strategy, or replica management [11], is a process to
replicate an original dataset from one server to other servers or to delete a replica
from a server [7]. To create a replica, a grid has to select an appropriate location to
store the replica. Sometimes a dataset is required for a server, but there is insufficient
storage for the dataset in the server. The replica manager needs to delete some
existing replicas to make space for the new dataset. The replica manager must also
maintain a replica catalog containing the information required for mapping a logical
collection to a particular physical instance of that collection [12].

6

Data replication can increase the system reliability and can reduce data access
time. When a client wants to access a dataset, it can choose from any one of the
replicas of the dataset. Sometimes the server, which stores the original copy of the
dataset, is not available because of broken connection. The system can use any
replicas of the dataset, and thus increases system reliability. Furthermore, a client can
choose to access a replica of a dataset in order to reduce data access time [11].

There is a research proposing a data replication strategy which combines data
replication algorithm with job scheduling policy [13]. When a client requests for
remote data, the replica manager fragments the data into small pieces. Then, it selects
the best replica of each piece, based on some criteria, e.g., neighborhood, network
bandwidth, and availability. Pieces of data are replicated from those sources and are
assembled together into the original data. This strategy allows the system to fully
utilize network bandwidith due to multiple-source replication. In addition, this strategy
improves system efficiency and reliability.

2.2 Replica selection strategies

When a client requests a dataset that is not located in the local server, a grid
system can transfer the dataset from any server storing the replica of the dataset.
Normally, a grid system selects a server located near the client to reduce data transfer
time [14]). However, it can take a long time to transfer data if the server is slow, or
has slow connection. Replica selection is proposed to choose an appropriate replica
for each situation. A replica selection strategy chooses a replica, among all available
replicas that will provide an application with data access characteristics that optimize
a desired performance criterion such as speed, cost, or security [15]. One of common
criteria for replica selection is replica access time, which is contributed from many
factors, e.g., disk access time, network traffic and the workload of the replica host [8].
The replica manager must maintain this information for replica selection.

!

A high-level replica selection service which considers the replica location and

user preferences to select replica is proposed in [7], The replica selection uses

decentralized storage broker in each client, instead of a centralized manager and uses

the statistical information from an information service such as the Network Weather

Service [16] to perform predictive analysis of the behavior and choose the appropriate
replica.

Another replica selection using probabilistic technique is proposed in [8]. The
ant algorithm [17] is a technique for solving combinatorial optimization problems.
This algorithm imitates the behavior of ants in finding paths from their colony to
food. This replica selection algorithm uses ant algorithm with the access time
information, such as disk I/o transfer, network status, and replica host load, to select
the replica. From the experiment, it shows that, compared to SimpleOptimiser
algorithm [18], replica selection using ant algorithm performs better, in term of
average access time, when there are many replicas in the grid. Moreover, this strategy
consumes less network bandwidth and creates less storage site load.

2.3 Co-allocation strategies

Replica selection strategy selects one site with the best expected performance
to transfer the data to the client based on the selection strategy. Only one selected site
IS responsible for the whole dataset transmission. The problem raised from this
strategy is transfer reliability. If the selected site is down or the performance is
dropped during transmission, the expected time to complete may change. Then the
overall completion time might be high. Moreover, when several available replicas
have almost the same network and disk throughput, choosing a slightly better replica
while discarding all others is unreasonable [19].

To improve transfer reliability and transfer completion time, co-allocation
concept is proposed to utilize the bandwidth from all servers to transfer replicas from
different servers in parallel. Many workload allocation algorithms used in co-

8
allocation strategies try to equalize data transfer time among servers by assigning
larger portions of data to faster servers and smaller portions to slower servers [10].
Others aim to use bandwidth of all servers to transfer data concurrently.

Workload allocation can be classified based on two criteria - adaptability and
the use of history. Based on adaptability, workload allocation can be either static - the
workload is allocated among servers only once before data transmission - or dynamic
- workload assignment is dynamically adjusted during the transmission. Based on the
use of history, some strategies use past performance to determine the workload
allocation while others disregard the performance history. From the criteria stated,
workload allocation can be categorized as follows.

2.3.1 Static allocation

For static allocation, workload is allocated only once before the data
transmission begins, and then each server is assigned a portion of cata to be
transferred. Then, all servers transfer the assigned block simultaneously. Thus, the
overhead in the transmission of each block can be minimized. The performance of
this type of strategies depends on how balanced the workload is distributed. There are
two variations of static allocation.

2.3.1.1 Historyless static co-allocation

For historyless static co-allocation strategy, each available server is assigned
one block of the same size. This strategy is called brute-force co-allocation. The stuay
in [19, 20, 21] uses uniform co-allocation as a baseline for their study. The algorithm
divides the file size equally among the available servers. For example, if a file size is

,andthere are available servers. A data block of size ~ is assigned to each server.

S0, this strategy utilizes the bandwidth from all servers. Flowever, it ignores the
difference of bandwidth among all available connections.

2.3.1.2 History-based static co-allocation

Normally, history-based static co-allocation strategy aims to distribute the
workload so that all servers take the same period of time for data transmission. As a
result, servers with better transmission time are assigned more data while those with
worse transmission time are assigned less data. For history-based static co-allocation
strategies in [19, 20], the history of transfer rate is used to predict the present transfer
rate, and data is assigned to each server proportional to the predicted transfer rate.
The transfer rate prediction is done based on previous history of data transfers. The
history-based static co-allocation strategy in [19] uses Network Weather Service [16]
which is a distributed system to forecast short-term performance deliverable at the
application level based on historical performance to predict the network throughput
for each server. The strategy in [20] predicts transfer rate based on a previous history
of GridFTP transfer [22], GridFTP, part of the Globus Toolkit™, is widely used as a
secure, high-performance data transfer protocol in Grids. For example, a file is
divided into disjoint blocks, corresponding to ~ servers. Each server, , 1<i< ,hasa

predicted transfer rate of Bi to client. So, total available transfer rate is 1Bl The

block size for each server Si is -*—\F\, where |H is the size of file. The

performance of this strategy depends on how good the prediction is. Since the
variance of transfer rate also indicates the reliability of the resources, tuned
conservative scheduling technique [23] uses both predicted means and variances of
network performance to determine the volume of data assigned to each server. In one
by one co-allocation [24], data is divided into blocks of equal size, and each block is
assigned to a server as awhole. In other words, the atomic unit of data is a block, not
abyte. One hy one co-allocation assigns a block of data to a server ane by one so that
the predicted completion time is minimal. An advantage of this approach is that faster
servers need not wait for slower servers to finish their assigned transmission because
the slower ones may get no assignment. The workload allocation is also based on the
predicted transfer rate.

10

Since the network behavior cannot be precisely predicted, static workload

allocation may not yield optimized performance [19]. If the transfer rate from a

server is actually better than the predicted rate, this server is underutilized, i, it

finishes the transmission before other servers. On the other hand, if the transfer rate

from a server is worse than the predicted rate, this server is stuck, 1.6, it still has data
to be transmitted while some other servers are done,

2.3.2 Dynamic allocation

In dynamic allocation, data is divided into blocks and incrementally assigned
to each server, and the workload allocation can be adjusted during the data
transmission. This adjustment is usually based on the data transfer speed. However,
some dynamic allocation strategies are historyless, and some are history-based.

2.3.2.1 Historyless dynamic co-allocation

Similar historyless dynamic co-allocation is presented in [19, 20, 21]. This co-
allocation strategy divides a dataset into disjoint and equal-sized blocks. Each server
Is assigned to transfer data one block at a time. When it finishes the transmission of a
block, it requests another assignment. This is repeated until the whole dataset is
transferred. Consequently, the faster servers deliver more blocks than the slower ones.
The advantage of this approach is that the finish time among all servers is roughly
equalized because the loading for each server is adjusted automatically without the
explicit knowledge of the transmission rate. However, in contrast to the algorithm in
[24], faster servers may have to wait for slower servers to transfer the final block.

To reduce this waiting period, the algorithm in [10] improves the co-allocation
scheme by assigning the same block to other idle faster servers. Therefore, there may
be duplication of blocks being transferred among servers. This can reduce the
completion time of data transmission. In addition, this duplication transmission
technique can protect the disruption of data transmission process when some network
links are broken. Another approach using variable block size to reduce the waiting

1
period is to start by sending larger blocks and then gradually decrease the block size
[25]. This reduces the total number of blocks to be transferred, and thus reduces the
waiting time before transmission of the next block begin. In addition, the waiting time
to wait for last block transmission is also reduced.

2.3.2.2 History-based dynamic co-allocation

This approach uses the transfer rate to determine the amount of data allocated
for each server so that all servers finish the data transfer at approximately the same
time. As a result, the faster the server is, the more data it gets. The transfer completion
time is improved by reducing the idle time faster servers spent waiting for the slowest
server to finish transferring the last block.

The static allocation in [19] is modified to be more adaptive by dividing the
dataset into fixed segments. Initially, every replica gets a portion of the first segment
to start. When the last portion is already assigned and replicas are ready to start the
next segment. The algorithm decidles the portion of segment to be assigned to replicas.
The proportion of workload assignment is adjusted according to the predicted transfer
rate at each point of time. Two predictions of the transfer rate - NWS and last
achieved transfer rate - are studied, and the results of this two predictions are similar.

Similar to the study in [19], recursive adjustment co-allocation [26] divides the
dataset into segments, and allocates a segment among servers in each round.
However, these segments are of different size, and a bigger segment is allocated in an
earlier round. A segment of data is defined from the percentage of the remaining data
From the experimental result in [21], it shows that the percentage should be neither
too large nor too small. So, the experiment in [26] uses 50% of the remaining data and
sets the threshold segment size in order to avoid non-stop continue adjustment. A
segment is then divided among all servers according to the predicted transmission rate
and the size of the unfinished assignment of each server. The experimental result
shows that this approach reduces the idle time spent waiting for the slowest server and
decrease data transfer completion time.

12
An improvement of its historyless dynamic co-allocation in [20] is also
presented. This strategy increases the number of data blocks assigned to a server if its
transfer rate is high, and decreases the number of data blocks if the server’s transfer
rate is low. Among all servers, the most recent highest transfer rate is maintained. If
the performance of a server exceeds the recent highest transfer rate, the server is
assigned more blocks. If the performance is much lower than the recent highest
transfer rate, the server is assigned fewer blocks. The experimental result shows that
this technique performs better than static ones especially for the larger fde sizes.
Another improvement of the historyless dynamic co-allocation in [20] is abort and
retransfer presented in [24]. This strategy aims to reduce the time faster servers spent
waiting for the slowest server to finish data transmission. When the fastest server gets
no more work, it allows a client to abort the slower server delivery and retransfer it
from faster one. The client uses predicted transmission rate to estimate the time
required for the fastest server to transfer a data block and the remaining time for the
slowest server to complete the transmission. The assignment is reallocated if it is
estimated that the faster server can finish the job earlier.

2.4 Fragmented data

In all works described earlier, a dataset is completely replicated, i.e., the whole
dataset is copied for other servers. The concept of fragmented replica is proposed in
[9]. A dataset is divided into fragments, and it is allowed to replicate some chosen
fragments to each server, depending on storage availability and data authorization.

An important factor to be considered for data replication is the disk space.
Data access can be vastly improved if all dataset are replicated on every server.
However, it is not practical because of limited storage. It can be more effective to
replicate some dlataset as described in data replication strategies. On the other hand, it
Is possible to choose to replicate parts of a dataset on different servers.

Moreover, some applications have limited authorization for the client. For
example, a publishing company stores its publications on its own servers. It may

13
allow some out-dated journals to be replicated on some library servers, but not allow
current journals to be replicated to restrict access. Another reason the client cannot
replicate some dataset is sensitivity. Some applications are not allowed to replicate the
whole data; for example, biomedical applications deal with biological objects,
medical image and medical data of patients in hospitals and medical institutions. The
data in the application is highly sensitive. So, some data does not allow replicating
due to sensitivity limitation [6].

Dynamic co-allocation algorithm proposed in [10] does not directly depend on
the network performance prediction. For this strategy, a dataset is divided into blocks
of equal size, and each server is assigned to transmit a block when it finishes the
previous transmission. Thus, this algorithm dynamically adapts the workload
assignment so that faster servers get more assignment. Recursive co-allocation is
proposed to improve data transfer performance by modifying dynamic co-allocation
[26]. This approach reduces data transfer completion time. Like dynamic co-
allocation algorithm, one by one co-allocation [24] divides data into blocks of equal
size. One by one co-allocation algorithm then assigns each block to the server that has
minimum estimated completion time based on the network prediction. In contrast to
dynamic co-allocation algorithm, one by one co-allocation relies on the network
performance prediction.

This thesis proposed fragment selection algorithms by using dynamic co-
allocation concept whose performance does not depend on the network performance
prediction. The detail and example of proposed algorithms is presented in the next
chapter.

	Chapter II Related Works
	2.1 Data replication strategies
	2.2 Replica selection strategies
	2.3 Co-allocation strategies
	2.4 Fragmented data

