REFERENCES

Ajamal, M., Rao, R.A.K., and Anwar, R. (2003) Adsorption studies on rice husk : removal and recovery of Cd(II) from wastewater. <u>Bioresource Technology</u>, 86, 147-149.

Altin, O., Ozbelge, O., and Dogu, T. (1999) Effect of pH in an aqueous medium on the sreface area, pore size distribution, density, and porosity of montmorillonite. Journal of Colloid and Interface Science, 217, 19-27.

Banat, F.A., Al-Bashir, B., Al-Asheh, S., and Hayajneh, O. (2000) Adsorption of phenol by bentonite. <u>Environmental Pollution</u>, 107, 391-398.

Bayat, B. (2002) Comparatived study of adsorption properties of Turkish fly ashes:
I. The case of nickel(II), copper(II), and zinc(II). Journal of Hazardous Materials,
95, 251-273.

Beck; S.J., Vartulli, C.J., Roth, J.W., Leonowicz, E.M., Kresge, T.C., Schmitt, D.K., Ch, C.T-E., Olson H.D., Sheppard W.E., McCullen B.S., Higgins B.J., and Schlenker L.J. (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of American Chemical Society, 114, 10834–10843.

Benjelloun, M., Cool, P., Linssen, T., and Vansant, E.F. (2001) Acidic porous clay heterostructures: study of their cationic exchange capacity. <u>Microporous</u> <u>Mesoporous Materials</u>, 49, 83-94.

Benjelloun, M., Cool, P., Van Der Voort, P. and Vansant, F.E. (2002) Template extraction from porous clay heterostructures: Influence on the porosity and the hydrothermal stability of the materials <u>Phys. Chem. Chem. Phy.</u>, 4, 2818-2823. Bois, L., Bonhomme, A., Ribes, A., Pais, B., Raffin, G. and Tessier, F. (2003) Functionalized silica for heavy metal ions adsorption. <u>Colloids and Surfaces A</u>, 221, 221-230.

Figueiredoa, S.A., Loureirob, J.M., Boaventurab, R.A. (2005) Natural waste materials containing chitin as adsorbents for textile dyestuffs: Batch and continuous studies. Water Research, 39, 4142-4152.

Galarneau, A., Barodawalla, A., and Pinnavaia, T.J. (1995) Porous clay heterostructures formed by gallery-templated synthesis. <u>Nature</u>, 374, 529-531.

Goel, J., Kadirvelu, K., Rajagopal, C., and Garg, V.K. (2005) Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials B, 125, 211–220.

Ishii, R., Nakatsuji, M., and Ooi, K. (2005) Preparation of highly porous silica nanocomposites from clay mineral: a new approach using pillaring method combined with selective leaching. <u>Microporous Mesoporous Materials</u>, 79,111-119.
Lee, B., Kim, Y., Lee, H., and Yi, J. (2001) Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. <u>Microporous Mesoporous Mesoporous Mesoporous Mesoporous Materials</u>, 50, 77-90.

Liu, M.A., Hidajat, K., Kawi, S., and Zhao Y.D. (2000) A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. <u>Chemical Communication</u>, 230, 1145-1146.

Lv, L., Wang, K., Zhao, X.S. (2007) Effect of operating conditions on the removal of Pb²⁺ by microporous titanosilicate ETS-10 in a fixed-bed column. <u>Journal of Colloid and Interface Science</u>, 305, 218-225.

Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., and Chung ,T.C. (2001) Polypropylene/montmorillonite nanocomposites: review of the synthetic routes and materials properties. <u>Chemical Materials</u>, 13, 3516-3523.

Mercier, L., and Pinnavaia, T.J. (1998) A functionalized posous clay heterostructures for Hg²⁺ heavy metal ion trapping. <u>Microporous. Mesoporous. Materials.</u>, 20 ,101-106.

Nakatsuji, M., Ishii, R., Wang, M.Z., and Ooi, K. (2004) Preparation of porous clay minerals with organic-inorganic hybrid pillars using solvent-extraction route.

Journal of Colloid and Interface Science, 2721, 158-166.

Newalkar, B.L., Choudary, N.V., Turaga, U.T., Vijayalakshmi, R.P., Kumar, P., Komarneni, S., and Bhat, T.S.G. (2003) Adsorption of light hydrocarbons on HMS type mesoporous silica. <u>Microporous Mesoporous Materials</u>, 65, 267-276. .

•

Pires, J., Araujo, A.C., Carvalho, A.P., Pinto, M.L., Gonzalez-Calbet, J.M., and Ramirez-Castellanos, J. (2004) Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. <u>Microporous</u> <u>Mesoporous Materials</u>, 73, 175-180.

Polverejan, M., Pauly, T.R., and Pinnavaia, T.J. (2000) Acidic porous clay heterostructures (PCH): intragallery assembly of mesoporous silica in synthetic saponite clay. <u>Chemical Materials</u>, 12, 2698-2704.

Polverejan, M., Liu, Y. and Pinnavaia, T.J. (2002) Aluminated derivatives of porous clay heterostructures (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts. <u>Chemical Materials</u>, 14, 2283-2288.

Prakobna, K., and Manusiya, H., (2006) Modification of Hybrid Organic-Inorganic Porous Clay Heterostructures for the Application in Entrapping System. <u>M.S. Thesis.</u> The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.

Quintanilla, P.D., Hierro, D.I., Fajardo, M., and Sierra, I. (2006) Mesoporous silica functionalized with 2-mercaptopyridine: Synthesis, characterization and employment for Hg(II) adsorption. <u>Microporous Mesoporous Materials</u>, 89, 58-68.

Sayari, A. and, Hamoudi, S. (2001) Periodic mesoporous silica-based organicinorganic nanocomposite materials. <u>Chemical Materials</u>, 13, 3151-3168.

Sayari, A., Hamoudi, S., and Yang Y. (2005) Application of pore-expanded mesoporous Silica. 1. removal of heavy metal cations and organic pollutants from wastewater. <u>Chemical Materials</u>, 17, 212-216.

Shirai, M., Iwasa, N., Bando, K.K., and Kubota, T. (2003) In situ XAFS analysis of catalytically active cobalt species in porous clays for deep hydrodesul furization. <u>Catalysis Today</u>, 87, 117–121.

Sinha Ray, S., and Okamoto, M. (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. <u>Prog. Polym. Sci.</u>, 28, 1539-1641.

Stein, A., Melde, J.B., and Schroden, C.R. (2000) Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. <u>Advance Materials</u>, 12, 1403-1419. Tanoglu, M., and Ergun, Y. (2007) Porous nanocomposites prepared from layered clay and PMMA [poly(methyl methacrylate)]. <u>Composites</u>, 38, 318–322.

Tchinda, J.A., Ngameni, E., and Walcarius, A. (2007) Thiol-functionalized porous clay heterostructures (PCHs) deposited as thin films on carbon electrode: Towards mercury(II) sensing. <u>Sensors and Actuators</u>, 121, 113-123.

Vijayaraghavan, K., and Prabu, D. (2007) Potential of *Sargassum wightii* biomass for copper(II) removal from aqueous solutions: Application of different mathematical models to batch and continuous biosorption data. <u>Journal of Hazardous Materials B</u>, 137, 558-564.

Wei, L., Tang, T., and Huang, B. (2004) Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. <u>Microporous and Meso-porous</u> Material., 67, 175–179.

APPENDICES

Appendix A Adsorption Capacity of MP-PCH

The adsorption capacity of MP-PCH were obtained from ICP-OES data. The 0.05 g of the adsorbent was srirred in the 100 mL of standard heavy metal solution at room temperature which varied pH of standard solution and contact time. The initial and final concentration of the standard heavy metal solution was measured by using ICP-OES. The adsorption capacity of each element was calculated from this equation.

Adsorption Capacity (q)

$$q = \frac{(Ci - Ce)V}{W}$$

where:

- C_i = initial concentration of standard heavy metal solution
- C_e = final or equilibrium concentration of standard heavy metal solution
- V = volumn of solution
- W = weight of the adsorbent

Flomonts	Adsorption Capacity of MP-PCH(mmol/g)						
Elements	1 st time	2 nd time	3 rd time	Average	SD		
Mn	0.079	0.077	0.075	0.075	0.002		
Ni	0.068	0.062	0.065	0.065	0.003		
Cu	0.026	0.038	0.032	0.032	0.006		
Cd	0.032	0.037	0.035	0.035	0.0025		
Pb	0.011	0.016	0.015	0.014	0.0026		

 Table A1
 Adsorption Capacities of MP-PCH for heavy metal at pH 3

Table A2Adsorption Capacities of MP-PCH for heavy metal at pH 5

	Adsorption Capacity of MP-PCH(mmol/g).						
Elements	1 st time	2 nd time	3 rd time	Average	SD		
Mn	0.340	0.332	0.331	0.334	0.005		
Ni	0.282	0.279	0.285	0.282	0.003		
Cu	0.185	0.189	0.189	0.188	0.002		
Cd	0.125	0.125	0.125	0.125	0		
Pb	0.059	0.061	0.059	0.060	0.001		

 Table A3
 Adsorption Capacities of MP-PCH for heavy metal at pH 7

	Adsorption Capacity of MP-PCH(mmol/g)						
Elements	1 st time	2 nd time	3 rd time	Average	SD		
Mn	0.372	0.370	0.370	0.371	0.001		
Ni	0.352	0.352	0.351	0.352	0.0006		
Cu	0.188	0.188	0.189	0.188	0.0006		
Cd	0.171	0.171	0.171	0.171	0		
Pb	0.099	0.098	0.098	0.098	0.0006		

Flomonto	Adsorption Capacity of MP-PCH(mmol/g)							
Elements	1 st time	2 nd time	Adsorption Capacity of MP-PCH(mmol/g)2 nd time3 rd timeAverage0.3150.3150.3160.3530.3530.3530.1380.1390.1390.1660.1760.174	SD				
Mn	0.317	0.315	0.315	0.316	0.001			
Ni	0.353	0.353	0.353	0.353	0			
Cu	0.139	0.138	0.139	0.139	0.001			
Cd	0.178	0.166	0.176	0.174	0.006			
Pb	0.100	0.098	0.098	0.099	0.001			

Table A4 Adsorption Capacities of MP-PCH for heavy metal at pH 9

Table A5 Adsorption Capacities of MP-PCH for heavy metal at pH 7 and usingcontact time 4 hr

					•
Elements		Adsorption C	apacity of MP-P	CH(mmöl/g)	
Liements	1 st time	2 nd time	3 rd time	Average	SD
Mn	0.137	0.141	0.141	0.140	0.002
Ni	0.132	0.141	0.143	0.139	0.006
Cu	0.077	0.083	0.082	0.081	0.003
Cd	0.074	0.072	0.069	0.072	0.003
Pb	0.039	0.029	0.032	0.033	0.005

Table A6 Adsorption Capacities of MP-PCH for heavy metal at pH 7 and usingcontact time 12 hr

Flomente	Adsorption Capacity of MP-PCH(mmol/g)							
Liements	1 st time	2 nd time	3 rd time	Average	SD			
Mn	0.328	0.327	0.328	0.328	0.0006			
Ni	0.353	0.359	0.360	0.357	0.004			
Cu	0.243	0.240	0.240	0.241	0.002			
Cd	0.173	0.173	0.171	0.172	0.001			
Pb	0.100	0.100	0.101	0.100	0.0006			

Elements	Adsorption Capacity of MP-PCH(mmol/g)						
	1 st time	2 nd time	3 rd time	Average	SD		
Mn	0.328	0.327	0.328	0.328	0.0006		
Ni	0.353	0.359	0.360	0.357	0.004		
Cu	0.243	0.240	0.240	0.241	0.002		
Cd	0.173	0.173	0.171	0.172	0.001		
Pb	0.100	0.100	0.101	0.100	0.0006		

Table A7 Adsorption Capacities of MP-PCH for heavy metal at pH 7 and usingcontact time 12 hr

Table A8 Adsorption Capacities of MP-PCH for heavy metal at pH 7 and usingcontact time 24 hr

are a

	Adsorption Capacity of MP-PCH(mmol/g)							
Elements	1 st time	2 nd time	3 rd time	Average	SD			
Mn	0.506	0.506	0.506	0.506	0			
Ni	0.483	0.483	0.482	0.483	0.001			
Cu	0.239	0.234	0.239	0.237	0.003			
Cd	0.224	0.224	0.223	0.224	0.001			
Pb	0.116	0.116	0.116	0.116	0			

Floments	Adsorption Capacity of MP-PCH(mmol/g)						
Liements	1 st time	2 nd time	3 rd time	Average	SD		
Mn	0.498	0.503	0.504	0.502	0.003		
Ni	0.484	0.484	0.484	0.484	0		
Cu	0.237	0.237	0.236	0.237	0.001		
Cd	0.219	0.223	0.223	0.222	0.002		
Pb	0.110	0.115	0.113	0.113	0.003		

•

·. ·

+

Table A9 Adsorption Capacities of MP-PCH for heavy metal at pH 7 and usingcontact time 48 hr

÷.

Appendix B Adsorption Capacity of DM-PCH

High Performance Liquid Chromatography (HPLC) with UV-Visible detector was utilized to investigate adsorption capacity of DM-PCH. The adsorbent was stirred with organics solution which varied concentration and contact time and then the concentration of organic solution was measured by HPLC. The adsorption capacities of DM-PCH was calculated by taking the same equation with MP-PCH.

Concentration		Peak area					
(mM)	1 st time	2 nd time	3 rd time	Average	SD		
0.2	116205	116211	116210	116209	3.2145		
0.4	198769	198763	198762	198765	3.7859		
0.6	298003	298001	297997	298000	3.0505		
0.8	389760	389761	389759	389760	1.0000		
- 1.0	490051	490049	490054	490051	2.5166		

 Table B1
 Relationship between concentration and peak area of 4-chloroguaiacol

Figure B1 Standard curve of 4-chloroguaiacol

Table B2 Adsorption Capacities of DM-PCH for 4-chloroguaiacol at varied concentration

Concentration	Adsorption Capacity of DM-PCH(mM/g)						
(mM)	1 st time	2 nd time	3 rd time	Average	SD		
0.20	0.201	0.201	0.200	0.201	0.0006		
0.40	2.805	2.803	2.796	2.801	0.005		
0.60*	2.511	2.510	2.510	2.510	0.0006		
0.80	1.806	1.806	1.808	1.807	0.001		

Table B3 Adsorption Capacities of DM-PCH for 4-chloroguaiacol at concentration0.4 mM and varied contact time

<u>د</u>

....

Contact time	Adsorption Capacity of DM-PCH(mM/g)					
(hr)	1 st time	2 nd time	3 rd time	Average	SD	
4 .	2.103	2.097	2.101	2.100	0.003	
12	3.216	3.219	3.216	3.217	0.002	
24	3.620	3.613	3.611	3.615	0.005	
48	3.614	3.615	3.615	3.615	0.0006	

Table B4 Relationship between concentration and peak area of 2,6-dinitrophenol

Concentration	Peak area					
(mM)	1 st time	2 nd time	3 rd time	Average	SD	
0.20	85094	85100	85100	85098	3.4641	
0.40	167656	167649	167652	167652	3.5119	
0.60	266889	266887	266886	266887	1.5275	
0.80	358649	358650	358648	358649	1.0000	
1.00	458940	458938	458942	458940	2.0000	

Figure B2 Standard curve of 2,6-dinitrophenol

 Table B5 Adsorption Capacities of DM-PCH for 2,6-dinitrophenol at varied concentration

Concentration	Adsorption Capacity of DM-PCH(mM/g)					
(mM)	1 st time	2 nd time	3 rd time	Average	SD	
0.20	0.001	0.000	0.000	0.000	0.0006	
0.40	1.319	1.309	1.311	1.314	0.005	
0.60	1.501	1.505	1.502	1.503	0.002	
0.80	1.320	1.313	1.315	1.316	0.004	

Contact time	Adsorption Capacity of DM-PCH(mM/g)					
(hr)	1 st time	2 nd time	3 rd time	Average	SD	
4	0.099	0.100	0.100	0.100	0.0006	
12	1.218	1.211	1.211	1.213	0.004	
24	1.436	1.435	1.436	1.436	0.0006	
48	1.438	1.436	1.436	1.436	0.001	

Table B6 Adsorption Capacities of DM-PCH for 2,6-dinitrophenol at concentration0.4 mM and varied contact time

. . .

CIRRICULUM VITAE

Name: Ms. Rangrong Tassanapayak

Date of Birth: February 8, 1983

Nationality: Thai

University Education:

2002-2005 Bachelor Degree of Science in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand.

Proceedings:

- Tassanapayak, R., Magaraphan, R., and Manuspiya, H. (2008, April 23) Porous Clay Heterostructures for Wastewater Treatment: A Development from Bentonite Clay in Thailand. <u>Proceedings of the 14th PPC Symposium on</u> <u>Petroleum, Petrochems, and Polymers, Bangkok, Thailand.</u>
- Tassanapayak, R., Magaraphan, R., and Manuspiya, H. (2008, April 22-25) Functionalized Porous Clay Heterostructure for Heavy Metal Removal. <u>Proceedings of Smartmat-'08 & IWOFM-2</u>, Chiang Mai, Thailand.

Presentations:

- Tassanapayak, R., Magaraphan, R., and Manuspiya, H. (2008, April 23) Porous Clay Heterostructures for Wastewater Treatment: A Development from Bentonite Clay in Thailand. Poster presented at <u>the 14th PPC Symposium on</u> <u>Petroleum, Petrochems, and Polymers, Bangkok, Thailand.</u>
- Tassanapayak, R., Magaraphan, R., and Manuspiya, H. (2008, April 22-25) Porous Clay Heterostructures for Wastewater Treatment: A Development from Bentonite Clay in Thailand. Poster presented at <u>Smartmat-'08 & IWOFM-2nd</u>, Chiangmai, Thailand.
- Tassanapayak, R., Magaraphan, R., and Manuspiya, H. (2008, June 15-19) Functionalization of Porous Clay Heterostructure for Heavy Metals Removal. Poster presented at <u>PPS-24 Polymer Processing Society</u>, Salerno, Italy.

