
C H A P T E R  I V

E L E C T R O N  E D M  I N  T H E  M S S M

The M SSM  Lagrangians constructed in the previous chapter have intro

duced a number of parameters more than those in the SM Lagrangian. As some 

of such parameters may be complex, they provide additional sources of C P  viola

tion which result in the prediction of fermion EDM s different from those obtained 

from the Standard Model. In the first section of this chapter, we w ill see that 

at G U T  scale these parameters are severely constrained in the context of the 

gravity-mediated supersymmetry breaking model. By doing field redefinitions, 

the number of independent parameters are finally reduced to only six. Among 

them, there are two CP-violating phases. In the subsequent section, the one-loop 

Feynman diagrams contributing to the electric dipole moment of the electron due 

to chargino and neutralino exchanges will be evaluated.

4 . 1  C P - v i o l a t i n g  p h a s e s  o f  t h e  M S S M

In the Standard Model, the only source of CP  violation is the C K M  phase in the 

quark mixing matrix. Supersymmetric models, however, can have more complex 

parameters leading to more violation of CP invariance. Of particular interests, 

the MSSM  Lagrangian contains over 40 new complex phases [36] resulting in two 

sources of C P  violation: the SUSY preserving fj, parameter and the soft SUSY 

breaking terms. The additional CP-violating phases are listed as the following:

• from the n parameter in the superpotential.

• (fib from the soft breaking parameter b involving two Higgs doublets.

• and </?3 from the corresponding complex gaugino masses Ml, M2, and 

M 3.
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• Phases originating in the flavor sector of the Lagrangian, in either the scalar 

soft mass matrices m2 or the trilinear matrices a.

Note that the mass squared matrices m 2 are Hermitian so that only off-diagonal 

terms can be complex, but since the trilinear matrices are general 3x3  matrices 

then their diagonal elements can also be complex.

In this thesis, for sake of simplicity, the electron ED M  w ill be calculated 

in the framework of the gravity-mediated supersymmetry breaking model also 

known as the constrained MSSM  (CMSSM), or minimal supergravity (mSUGRA). 

In this model, the soft ร บ ร Y-breaking parameters are “universal” at the grand 

unification (GUT) scale. This means that the complex parameters are constrained 

as follows:

• Gaugino mass universality:

M\ = M 2 — Mj, — 777.1/2- (4.1)

• Scalar mass unification (flavor-blind):

m q L = m uR = m L  = m LL = m L  = ™ ol

mHu = ™Hd = ml- (4.2)

• Trilinear scalar coupling unification:

aน =  4>yu; ad =  Aoyd; ae =ะ Aoye. (4.3)

• Proportionality of the soft breaking parameter b to the เ1  parameter:

b -  /7ร0- (4.4)
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These constraints reduce the number of CP-violating phases, in addition to the 

C K M  phase which is already encoded in the Yukawa couplings, to four: ip i/ 2  

(phase of r r ii/ 2 ), <Pa 0 (phase of .Ao), ipb, and vv However, not all of these phases 

are physical. It is possible to redefine fields and perform the so-called R  trans

formation in such a way that there are only 2 physical phases left [34], First, 

consider the bilinear term of the Higgs scalars, bHuHd, in the soft supersymme

try breaking Lagrangian. The phase (Pb can be absorbed by redefining both Higgs 

multiplets with the same phase according to

H u -» e & H u, H d -» e f r 'H i.  (4.5)

Then after transfering the phase to the Higgs fields, the b parameter becomes real 

so that the phases of [ 1 and Bo are constrained such that

nBo G R. (4.6)

For the superpotential, and of course the action, to be form-invariant under this 

phase shift, the // parameter and all Yukawa couplings must be transformed as

fj, —* fj! = e~llpbfi (4.7)

y -*■ y' = e“ 2w y. (4.8)

Since we demand that the condition (4.6) always hold, from (4.7), Bo has to 

change as

Bo -  B'o = ๙™Bo. (4.9)

Now consider the effect of field redefinitions on the trilinear coupling terms in the 

soft breaking Lagrangian. From Eq. (4.3), since the additional phases of Higgs 

superfields in Eq. (4.5) and that of Yukawa couplings in Eq. (4.8) cancel each 

other in the soft supersymmetry breaking Lagrangian, then the trilinear scalar 

coupling Ao remains the same, i.e.,

Ao —■* A'o -= Ao. (4.10)
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A ll other terms in the Lagrangian are still unaffected. So now the phase ipb has 

been completely removed from the Lagrangian.

Next, consider the gaugino mass terms in the £^ !SM. The phase ipi/ 2  of 

the gaugino mass parameter can be absorbed by redefining all gauginos with the

same phase, i.e.,

g —> e ^ l/2g, พ -^  e ^ l '2W , B  -* e (4.11)

Such phase shifts clearly affect the interaction terms in Tint which couple gauginos 

to chiral superfields. For T in t  to be invariant under the field redefinitions (4.11), 

we now make a transformation on the component fields of the chiral supermulti

plets,

(f) $  = 4> (4.12)

Ip' = e~2ipi/2'ip. (4.13)

The transformations in Eqs. (4.11)-(4.13) constitute the so-called R-transformation 

which is conveniently described in the superspace formulation of supersymmetry 

as follows. In the superspace formalism, we enlarge the spacetime by including 

the fermionic coordinates 9a transforming as a Weyl spinor and their hermitian 

conjugates 9à to form a superspace.1 Then the fields in a chiral or vector super

multiplet become the coefficients of some power of 9 and 6 in a “superfield.” For 

a chiral supermultiplet, a “chiral superfield” takes the form <f> = (p + 6ip -I- ..., 

while for a vector supermultiplet the associated “vector superfield” takes the form 

V  — 9a)X9All+629X+ ... (valid up to some normalization of the component fields). 

The Lagrangian Cw  which involves a superpotential พ  ((f)) comes from an inte

gration over the anticommuting coordinates of the superpotential with (j> being 

replaced by $, i.e., Cw  = f  d29W ($). The R-transformation relevant to this the

sis is defined by <p —> cp, Ip —> eiaไp, A 11 —> An, X —> e~iax, and 9 9' = e~ia9 (so

'in this formalism, it is customary to use a bar instead of a dagger for a left-handed spinor.
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that d26 = e~2iacPQ') for some a, so as to make both chiral and vector superfields 

invariant. Amazingly enough, such an R-transformation results in the same form 

of the Lagrangian except that the superpotential changes by a phase rotation, 

VF _+ e~2iaพ .

In our case, the R-transformation changes the superpotential by a phase

shift,

พ  -+ ๙*'เ*พ. (4.14)

This extra phase of the superpotential must be absorbed into:

1. the Higgs bilinear term - the n parameter gets an extra phase /X —*• e*Vl/2 n 

which results in the transformation B 0 —> e~iVlt2B 0 to preserve the condi

tion that fj,Bo be real; this leads US to identify a physical phase

Physical phase = Arg(Bo77ii/2) = A rg{ *̂bm*1!2) (4.15)

which cannot be removed by any phase transformation of the fields;

2. the Yukawa coupling terms - the Yukawa couplings also get an extra phase

y  —> which causes the trilinear coupling Ao to change by A 0 —*

e-*¥’i/2J40 upon using the condition (4.3) and demanding that the trilinear 

scalar couplings a, be invariant; thus we obtain another physical phase

Physical phase = Arg(A0m i/2). (4.16)

From the above discussion, we see that there are only two physical phases which, 

if non-zero, cannot be removed by any phase transformation of the fields. In 

practice, however, we usually treat ip 11 and ipA0 as physical phases due to their 

appearance in the calculations, and all other parameters as real numbers.

A t the G U T  scale, therefore, the minimal supergravity model with C P  

violation is completely parameterized by six real parameters: 7ท!/2, mo, |Ao|, b 

and two physical phases above. The values of these parameters at the electroweak 

scale are determined by using renormalization group equations.
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4 . 2  O n e - l o o p  c o n t r i b u t i o n s  t o  t h e  e l e c t r o n  E D M

As mentioned in Chapter 2, in renormalizable theories the effective electric dipole 

interaction (2.62) is induced at the loop level. For a theory of a fermion Tpf 

interacting with other massive fermions ใเ)i and massive scalars 4>j, the general 

form of interactions that contains C P  violation is given by

■ Cint =  — [ipf ( r LijPh + r RijPR) + h.c., (4.17)
บ่

where P l ,r  = (1 T  75)/2, the usual left- and right-handed projection opera

tors. r Lij 1 r Rij are complex couplings. Here, all fields are assumed to be mass 

eigenstates at the tree level. For an electron, the ED M  w ill receive one-loop 

contributions from the neutralino and chargino exchange diagrams.

Before calculating the ED M , it should be reminded that the E D M  oper

ator must flip the chirality of the external electron. In the MSSM  Lagrangian, 

the gauginos couple an external electron to a slepton of the same chirality via the 

gauge interactions, while the Higgsinos couple an electron to a slepton with the 

opposite chirality via the Yukawa interactions. Therefore, in one-loop diagrams 

there are two possible ways that the chirality flip can happen:

1. Both two vertices that couple to the external electron are due to either gauge 

interactions or Yukawa interactions, and the exchanged slepton changes 

its chirality via the left-right mixing terms of the slepton mass squared 

matrices.

2. One vertex is due to Yukawa interactions and the other is due to gauge 

interactions. In this case, the gauginos and the Higgsinos are mixed while 

the chirality of the exchanged slepton is preserved.

Since the neutralinos are mixtures of neutral Higgsinos and both บ ( 1 )  and ร บ ( 2 )  

gauginos, the neutralino exchange diagrams therefore include both types of chi

rality flip processes. On the other hand, the chargino contribution to the electron
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ED M  contains only the second process because the ร บ (2) gaugino components 

of the charginos only couple to the left-handed fields.

4 .2 .1  O n e - lo o p  c a lc u la t io n s

In this section the one-loop calculations contributed to the ED M  of the electron 

w ill be performed. There are two types of diagrams [37]. The first one is shown 

in Fig. 4.1 where the photon line is attached to the slepton. The second one is 

shown in Fig. 4.2 where the photon line is attached to the exchanged fermion. 

By convention, the mass of the slepton (selectron or sneutrino) is denoted by ทท1  

while the mass of the exchanged fermion (gauginos or higgsinos) is m x. Similarly, 

charges of the electron, slepton, and exchanged fermion in the diagrams are de

noted in the unit of the positron electric charge by Qe, Qi, and Q x respectively. 

W ith  the conservation of charge at each vertex, the relation Qe = Q j + Q x is 

satisfied. Now let US start the calculations.

(a)

_____ ะ_________ )______e
พ

Figure 4.1: Loop diagrams with a photon line attached to the slepton: (a) the diagram with 
particle labels; and (b) the same diagram with momentum labels.

• The contribution from the loop diagram in Fig. 4.1:

^ พ ^ )  = /  ( 0  *พ  nN - / N  r è f +

i . i(,Y(Pv -  M  + mx)v  (1 -  75) / X 
k2 — 7ท| + i t  (p — k)2 — m2, + i t  L 2 ^

Since {7 ,̂ 75} = 0 and (1— 75) ( l+ 75) = 0, then the nonzero terms must consist of 

even number of 7 .̂ Moreover, from the definition of the electric dipole moment,

(b) น ,
k „ - c , k'= k + q

f  \

p - k  p '= p + q
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(2.60) and (2.61), we are interested only in terms containing 75. Therefore 

นั(p')5r^u(p) oc ~ Q ie { rRTL) J  ~ ^ u (p ')m x(2k + q)‘̂ 5u{p)

k'2 — mj + ie k2 mj  +  ie [(p -  k)2 - m j  + ie]
(4.18)

In order to evaluate the integral, we have to combine the three denominator 

factors above into the form (complete square in A;)3 so that we can perform 

integration in the spherical coordinate system without difficulty. Applying the 

identity

— 7------- — = [  dx idx2 ••- dxnô(T,Xi — 1)7— 7------ 7— — ----------ไ—ะ— (4.19)A\A2 ■■■An Jo 1 2 nV ) [x1A 1+ x2A2 +■ ■ ■ xnAn]n K 1

known as the method of Feynman parameters to the denominator of (4.18), we

get
fl 2Denominator = / dxdydz 5[x + y + z — 1)-^- (4.20)

Jo D
where

D  = x(k '2 -  m~) + y(k2 -  mj) + z[{p -  k)2 — mj,] + ie.

Substitute the momentum conservation condition k' = k + q into the above equa

tion:

D  = k2 + 2k ■ (xq — zp) + xq2 + zp2 — (1 — z)m2 — zmj. + ie.

To complete the square, we change the variable k to l = k + xq — zp,

D  = l2 — (xq — zp)2 + xq2 + zp2 — (1 — z)m j — zmj, + ie

— I2 + x ( l — x)q2 + z{ 1 — z)p2 + 2 xzpq — (1 — z)m j — zmj. + ie.

The momentum relation p'2 — (p + q)2 = p2 + 2p-q + q2 together with the on-shell 

constraints of both external electron lines p'2 — p2 = m2e imply 2p ■ q — —q2. 

Substituting this into D, then

D  = l2 + a:(l — 2  — x)q2 + z( 1 — z)m2e — (1 — z)m j — zm2x + ie

l 2 -  A  -Me (4.21)
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where A  = —xyq2 — z( 1 — z)m2e + (1 — z)m2 + zm ,̂ and X + y + z = 1.

Now consider the numerator of (4.18). It can be rewritten in terms of the 

variable / as

Numerator = นิ {p')mx(2l  ̂+ (1 — 2x)q^ + 2zpP)Ÿu{jp).

Notice that D  depends only on the magnitude of l. This implies that

/  พ  = °- <4-22>

The most general form of the vertex function T'2 is a linear combination of all 

Lorentz vectors involved in the Feynman diagram: 7 ,̂ pP, and For conve

nience, it is written as

Y  -A  + (p' + p Y ' B  + q ^ C .  (4.23)

Rearranging the numerator into this form:

Numerator = น ิ(p')mx(z(p' + p Y  + (1 — 2x — z)qtl)Ÿu(p).

= ü{p')mx(z{p' + p Y  + {y -  x)<Y)Ÿu(p).

It can be seen that the denominator is symmetric under the interchange X y, 

while the coefficient of is antisymmetric, hence vanishes after integrating over

X and y. Now consider

นิ{p)ๆ11 Yu{p) = u(p') 7m75 ---- - น{โ)) — ----—นิip ')^ ๆ1'ๆ5 น (p)Pu7716 Tïle

= ~~Yeü(p) Q iV M '" }  + 2['^»^]) 75«(p K

= (pO + ^ [ f ,  7*1  ̂7M p K

= นิ {p)(p^ -  P 1,)ๆ5น{p), (4.24)

and sim ilarly

นิ{p’) Y  7 5u(p) = -^-น ิ( p ' ) Y Y Y น (p)p'u771 e

= ^  นิ(p Y p '*1 + พ ่^ p lh 5u{p)- (4.25)
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Subtracting (4.25) from (4.24) gives an identity

นิ (p'){p + p Y v ‘น(p) = นิ (p O ( -พ ่^ 1'^ )75 u (p)- (4.26)

By using this identity, the numerator becomes

Numerator = นิ (p')2memxz lO ^ k. 1 ..5 
2 mp 7 u(p)-

Therefore <5r̂  gets a contribution

f f l V c e - i o r f l V  ท  ช ุ^ [  dxdydz 5(x + y + z — 1)2
Jo

/ d4l 2 memxz 
(2n)4 (l2 — A  + ie)3 (4.27)

Only remaining work is to perform the momentum integration in (4.27) and 

extract the ED M  term. To do so, we use a mathematical trick known as a W ick 

rotation by changing the integration variables l to the Euclidean 4-momentum 

variables lE defined by

= l = lE .

The second integral in (4.27) becomes

. .X f  dAlE 2mem yz
( - ฯ (4.28)

In Section 3.1, we have used the momentum cutoff technique in evaluating the 

momentum integral. In this chapter, however, we w ill use a more standard tech

nique called the dimensional regularization method,2 originated b y ’t Hooft and 

Veltman [38]. This method provides the integration formula

[jgfc 1 .... = ■ ‘  r t"  - ร) f i r 1 (4 29)
J  (2 ir)J (1% +  A)" (4jt)j/j r(n) \ A  J ■ '

2Actually, the technique we use is known as “dimensional reduction,” in which the algebras
of gamma matrices are first performed in four dimensions, and then the momentum integrals
are evaluated in d dimensions.
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Hence (4.28) reads

dAlE 2memxz

(2ir)4 We + A)3
—z r ( l)  ^2memxz \  

พ ิr ( 3 ) \  4  j
—z memxz 

(47โ)2 A (4.30)

From (4.28) and (4.30), Eq. (4.27) becomes

ar*1 = i ( r * RrL)?^^ J 1 dxdydzô(x + y + z-l)
memxz

—xyq2 — z( 1 — 2)m  ̂+ (1 — z)m~ + 2ะ7ท2 '

By comparing the one-loop correction to the vertex function above with Eq. 

(2.60), we obtain the coefficient F 3(q2) which is related to the electric dipole 

moment of the electron by de = —F 3(q2 = 0)/2me, see Eq. (2.61). Thus the first 

loop diagram contributes to the electron ED M  as

~e~ = T e ^ Im (r*r L ) 2พิ^ l  d z l  d y - z ( l  -  z)m l + {1 -  z)m} + zm 2x 

= 2 l J ^ Im (r^ )m* l  ^ T - z  + r z - s z ( l - z )

= 2 16^™? m*Im (r*r  Lพ (r ’ (4-31)

where r — mx/m 2, ร = m2e/m -, and

/  (r, ร) = f ' d z - -------- TI71------------ V  (4.32)
Jo l - z  + r z - s z ( l - z )  v ;

Figure 4.2: Loop diagrams with a photon line attached to the chargino: (a) the diagram with 
particle labels; and (b) the same diagram with momentum labels.
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• The contribution from the loop diagram in Fig. 4.2:

นิ(p')8Y^u(p) =

' ( p - k f  - m ?  + reF ^  2

i ( Y k p + mx) 
fc2 — m2 + ie

(4.33)

Again we are interested in terms containing 75 and even number of ๆ1\  i.e.,

Observe that the denominator of this loop integral is similar to that of the first 

diagram except the interchange ทเ1  <-> mx. Hence it can be arranged into the 

form (4.20) where

D  = l 2 — A  + ie; A  = -x y q 2 — z{ 1 — z)m\ + (1 — z)m 2x + zm j. (4.35)

Consider the numerator written in terms of the variable /,

Numerator = นิ{p')mx [ Y Y ( l  1y + (1 -  x)qv + zpv) + Y Y ( l  1, -  xqv + zpv)\Yu{p).

We have to rearrange this numerator into the form (4.23). To do so, substitute 

q = p' -  p into the equation above and use the Dirac equations นิ(p ')Yp 'v = 

meu(p') and 7vpuu{p) = meน(p), together with Eq. (4.22), we get

Numerator = นิ(p')mx [(1 — x)meY  + (—1 + X + z)2pM

-x{2 !p'M -  meY )  -  meY ]  7 5̂ (p)

= นิ (p')mx[—2yp  ̂— 2xp' ]̂-y5 น (p)

= ü{p')rnx [ - (x + y){p + p Y  + (x -  y)q^]Yu{jp).

W ith  the same reason as before, the coefficient of rA vanishes after integrating 

over variables X and y. Now using the identity (4.26),

[fc'2 — m2 + ie] [k2 — m2 + ie] (p — k )2 — m| + ie
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This contributes to (5P1 as 

5r» oc +

= — I

I dx i y i z  S(x + y + 1)2. *>

(O p ท^p ก r 1
/ dxdydz 6(x + y + z — 1)

Jo
-• Qxe /p* p '1
16 7T2 "  L '

<7̂ T >  
2mp

memx( 1 — ะ)
—xyq2 — z( 1 — z)m 2e +  (1 — .ะ)?■ ท2 +  2m 2

In the second step, we performed a W ick rotation and used the dimensional 

regularization method. Therefore the second loop diagram contributes to the 

ED M  of the electron as

df]
-é^ lm{r̂ é : l dzl  dy

l!  d z ~ z

memx( 1 — z)
- ะ ( 1 — ะ)?ท2 +  (1 — ะ:)?ท2 +  ะ?ท2 

(1 - Z ?
-z( 1 — ะ)?ท2 +  (1 — ะ)?ท2 +  ะ?ท2

Here we have used the standard convention in replacing Q x with (Qe — Qi). 

Changing the integration variable from z to 1 — z, we obtain

p ) 1 (Ge-Q«-)T_ ,1,. 1̂ „  [ l .1
2 l & T  ๓ ( r / dz'

เ ^ !  m (H A k /

■z( 1 — ะ)?ท2 +  ะ???2 +  (1 — ะ)?ท?
■1 (Qe ~ Qi)

1 1
2 1Ô7T2???2

Z + rz  — ระ(1 — ะ)

mxlm(r*RrL)(Qe -  Q ï)J(r, ร), (4.36)

where J(r, ร) is defined by

J(r, ร) = J  dz— (4.37)ะ + rz  — ระ(1 — ะ)

with the same definitions of r  and ร.

Having found the contributions from the one-loop Feynman diagrams, we 

can now write down the total contributions to the electron ED M  due to a single 

fermion X exchange,

«Ç = 2 • (rf'1’ + r f f  ) (4.38)
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where the factor 2 came from the complex conjugates of both loop diagrams. F i

nally, as the total electron ED M  is obtained from one-loop contributions involving 

chargino and neutralino exchanges, then it can be written as

de = d f + d f . (4.39)

In the next two sections, we w ill identify the coefficient r j {r L in cases of the 

exchanged fermion being charginos and neutralinos respectively.

4 .2 .2  T h e  c h a r g in o  c o n t r ib u t io n

The chargino contribution comes from the diagram in Fig. 4.2 together w ith its 

complex conjugate. In order to specify the vertex coupling rL and rR, firstly 

we have to write down explicitly the relevant interactions of the form (4.17) in 

terms of gauge eigenstates. For the chargino contribution to the electron ED M , 

ไp f  is the external electron field, Ip i is a charged gaugino or higgsino, and 0 is a 

sneutrino. After transforming all fields into mass eigenstates, we w ill then obtain 

the wanted complex couplings.

The interactions of type (4.17) comes from two sources:

1. From the slepton-lepton-charged wino couplings in the interaction Lagrangian,

£i„t ว  -V 2 g M  [(<j>*rh/;) Aa + h.c.]

ว  -y/2g (l V l ) พ1 + (Z*t2l \ พ2 + h.c.

ว  -y /2g 

= - v 2 #

^ )  7 1 A + + ร ฯ  + ( y ^ )  7 เ  -  ร ฯ + h.c.

L72 K c lW \
+ h .c..

In terms of mass eigenstates, it can be rewritten as

înt D Cj eLV -1C + .e + h.c.. (4.40)
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2. From the superpotential

พ MSSM ว  - e y cL H  11 ว  - y eeveH d

which leads to the Lagrangian

£ พ ว  yeëùeH d + h.c. = yee]RüeH d + h.c.

In terms of mass eigenstates:

£ พ  3  V e ^ * 2 C £  Ve + h.c. (4.41)

Combining the results from (4.40) and (4.41), we get

I* rL = —gyeU*2V*1 — —g2Ke\]*2V*l

where

— =
ye _  me 
g y/2mw cos (3 

Moreover, the factor g2 is conventionally expressed as

47raEMg2 = sin2 8v sin2 9\

(4.42)

(4.43)

(4.44)
7\Y bill 0พ

where «EM = e2/(47r) พ 1/137 is the fine structure constant. The total chargino 

contribution to the electric dipole moment of the electron is therefore given by

d± C*EM KeQe
4tt sin2 9พ m l-  Y  mcM (บ;2 v*i) j ( —เร ่ ̂ $-) ■ t l  {<

(4.45)

4 .2 .3  T h e  n e u t r a l in o  c o n t r ib u t io n

Now we turn to consider the contribution to the electron ED M  due to neutralino 

exchange. The contributing Feynman diagrams are that in Fig. 4.1 and its com

plex conjugate. In this case, 1pf and (j) in Eq. (4.17) are again the external electron 

and a selectron respectively, while Ipi denotes a neutral gaugino or higgsino.

Sim ilar to the chargino case, the interactions of the form (4.17) come from

two sources:
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1. From the slepton-lepton-neutral wino and the slepton-lepton-bino couplings 
in (3.44),

Ant ว  -V ïg (a) [(</>*r » A a +  h.c.]
ว  -V 2g  ( z * T 3I?) พ 0 -  y/2g' ( z *YL +  ë*RY eRj  B  +  h .c ..

Since the wanted terms are those involving electron, selectron and neutral 
gauginos, then

Ant ว  - V2 ë*LeL (^g'YB + gr^W0̂ -V2g'ë*ReRY B  + h.c.
=  ë*Le L ( ta n 6 w (Q e — T3)B  +  T3พ 0 j -  \Flg t a n 6 w Q eë*Re RB  +  h .c ..

In terms of mass eigenstates,

Ant ว  - n/2 g eL (tan 6พ(Qe -  r 3)N u 4- T3N 2i) ร *1 jNië*
- g  eR (y2ta,ndwQeN uS*e2jSj  Nië* +  h .c .. (4.46)

2. From the superpotential

พ MSSM ว  - e y eZ Hd =  yeeëH°

which gives rise to the Lagrangian

C w  D —ye

= -Ve

~ëeH°d +  UÏÏ* +  h.c.
eLl ‘RH° + +  h.c.,

or, written in terms of mass eigenstates,

A v  ว  - y e eL (N 3is*2j) Nië* +  e]R (N 3iSeij) N 1ëj +  h .c .. (4.47)

The complex coupling obtained from Eqs. (4.46) and (4.47) is

( r « r i ) i j  =  92 [ - ^ 2  { ta n 6w{Qe -  r 3)N lt +  T3N 2î} ร :1;  -  KeN  31ร*e2j
V̂ 2 tan  @wQeN\i^e2j (4.48)
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Therefore, the total neutralino contribution to the electron EDM is given by

c*emdl  =e 4-7T sin2 0W ml. to I 3  (rira. ) m N 1 m 2e

m l  ’ m l (4.49)

It should be emphasized that d f  receives contributions from the loop diagram 
of Fig. 4.2-type only while d f , in contrast, receives Fig. 4.1-type contributions 
only. This is due to the fact th a t sneutrino and neutralinos have zero electric 
charges. Moreover, sources of CP non-conservation, the phases (p  11 and < P A 0 , are 
all encoded in the transformation matrices บ , V , N , and Se.

We also note th a t since the experimental lower bounds on the slepton 
masses are much larger than the electron’s mass, then ร — mj/rn'j is always 
assumed to be zero. The kinematic functions I (r, ร) and J(r, ร) evaluated at 
ร ~  0 are given by

/ (r,0) 

J(r, 0)

f d x j ^ L = 1
J  0 1 — X  +  r x  2 ( 1  — r ) 2

f ' d x  - - f  =  y 1
J q 1 — X  +  r x  2 ( 1  — r ) 2

1 +  r +

3 — r +

2r
1 — rlnr

2
1 — r

(4.50)

(4.51)
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