การระบุเครื่องหมายสนิปที่เกี่ยวข้องกับการเดิบโตในกุ้งกุลาดำ Penaeus monodon

นางสาวศิริธร จานพูม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2555 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IDENTIFICATION OF GROWTH-RELATED SNP MARKERS IN THE GIANT TIGER SHRIMP Penaeus monodon

Miss Sirithorn Janpoom

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biotechnology Faculty of Science Chulalongkorn University Academic Year 2012 Copyright of Chulalongkorn University

550818

Thesis Title	IDENTIFICATION OF GROWTH-RELATED SNP MARKERS IN THE GIANT TIGER SHRIMP <i>Penaeus monodon</i>
Ву	Miss Sirithorn Janpoom
Field of Study	Biotechnology
Thesis Advisor	Professor Piamsak Menasveta, Ph.D.
Thesis Co-advisor	Bavornlak Khamnamtong, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

2

(Associate Professor Thaithaworn Lirdwitayaprasit, Ph.D.)

tunth

(Professor Piamsak Menasveta, Ph.D.)

B. Khamnamtong, Thesis Co-advisor (Bavornlak Khamnamtong, Ph.D.)

(Associate Professor Chanpen Chanchao, Ph.D.)

(Amont p Many prop) External Examiner (Amorntip Muangprom, Ph.D.)

์ศิริธร จานพูม : การระบุเครื่องหมายสนิปที่เกี่ยวข้องกับการเดิบโตในกุ้งกุลาดำ Penaeus monodon.

(IDENTIFICATION OF GROWTH-RELATED SNP MARKERS IN THE GLANT TIGER SHRIMP Penaeus monodon)

. อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ศ.คร. เปี่ยมศักดิ์ เมนะเศวต, อ. ที่ปรึกษาวิทยานิพนธ์ร่วม : คร. บวรลักษณ์ คำน้ำทอง, 140 หน้า.

ตรวจสอบภาวะพหุสัณฐานของจีนที่มีหน้าที่เกี่ยวข้องกับการเดิบโตของกุ้งกุลาดำ ประกอบด้วย calponin1 (PmCnn1) cyclin C (PmCyC) และ cdc25 (PmCdc25) ในกุ้งวัยรุ่นอายุสามเดือน (BUM03 และ SNP3A) และอายุ 5 เดือน (PM05) ด้วยวิธี PCR-SSCP พบความสัมพันธ์ระหว่างรูปแบบ SSCP ของจีน PmCnn1, PmCyC และ PmCdc25 กับบึจจัยการเดิบโดของกุ้งกุลาดำ (น้ำหนักดัว, ความยาว, น้ำหนักดับ และค่าดัชนีของคับ) ในกลุ่มดัวอย่าง SNP3A อย่างมีนัยสำคัญทางสถิติ โดยกุ้งวัยรุ่นที่มีรูปแบบ SSCP แบบที่ 1 และ II ของจีน PmCnn1₃₀ มีน้ำหนักดัวและความยาวเฉลี่ยมากกว่ากุ้งรูปแบบที่ III (N = 156, P < 0.05) สำหรับจีน PmCyC พบ รูปแบบ SSCP จำนวนสามรูปแบบ โดยกุ้งวัยรุ่นซึ่งมี SSCP รูปแบบที่ II พบว่ามีน้ำหนักดัวและน้ำหนักดับเฉลี่ยมากกว่ากุ้ง ที่มีรูปแบบ SSCP แบบที่ 1 และ III อย่างมีนัยสำคัญทางสถิติ (N = 145, P < 0.05) นอกจากนั้นยังพบว่ากุ้ง SNP3A ที่มีรูปแบบ SSCP แบบที่ 1 ของจีน PmCdc25 มีน้ำหนักดัว ความยาว และน้ำหนักดับเฉลี่ยมากกว่า กุ้งที่มี SSCP รูปแบบที่ II (N = 144, P < 0.05) นอกจากนี้ยังพบ ความสัมพันธ์ระหว่างรูปแบบ SSCP ของจีน PmCnn1₂₀กับ น้ำหนักด้วและความยาวเฉลี่ยของกุ้ง BUM03

เมื่อนำตัวแทนของแต่ละรูปแบบ SSCP ของทั้งสามจีนดังกล่าวในกุ้งวัยรุ่นSNP3A มาหาลำดับนิวคลีโอไทด์ ผลการวิเคราะห์ ลำดับนิวคลีโอไทด์พบสนิปจำนวน 6 ดำแหน่งที่บริเวณ intron ในจีน $PmCnnI_{530}$ มีความสัมพันธ์กับปัจจัยการเดิบ โดของกุ้งวัยรุ่นอย่างมี นัยสำคัญทางสถิติ โดยผลการวิเคราะห์ความสัมพันธ์ระหว่างสนิปของจีนดังกล่าวกับลักษณะการเดิบ โดของกุ้งพบว่าสนิป $G/G_{209}T/T_{210}$ -/- $_{212}$ -/- $_{211}C/C_{218}G/G_{240}$ และสนิป $G/A_{209}T/A_{210}$ -/ G_{212} -/ $T_{213}C/T_{218}G/A_{240}$ ซึ่งพบในกุ้งที่มี SSCP รูปแบบที่ 1 และ 11 จะพบว่ามีน้ำหนักด้ว ความยาวและน้ำหนักดับเฉลี่ยมากกว่ากุ้งที่มีสนิปเป็น $A/A_{210}G/G_{212}T/T_{213}T/T_{313}T/T_{318}A/A_{240}$ ซึ่งพบในกุ้งที่มี SSCP รูปแบบที่ 1 และ 11 จะพบว่ามีน้ำหนักด้ว ความยาวและน้ำหนักดับเฉลี่ยมากกว่ากุ้งที่มีสนิปเป็น $A/A_{210}G/G_{212}T/T_{213}T/T_{318}A/A_{240}$ ซึ่งพบในกุ้งที่มี SSCP รูปแบบที่ 111 สำหรีบจีน PmCyC พบสนิปทั้งหมดจำนวนท้าดำแหน่ง โดยสามดำแหน่ง ($A/G_{310}G/A_{339}$, G/A_{339} , Matultating the formation formation for the formation formation for the formation formation for the formation formation for the formation for the formation formation formation for the formation formation formation for the formation formation formation formation formation formation for the formation formation

เมื่อครวจสอบระดับการแสดงออกของจีน *PmCnn1* และ *PmCdc25* mRNA ในตับของกุ้งวัยรุ่น SNP3A ด้วยวิธี quantitative real-time PCR พบว่าระดับการแสดงออกของจีน *PmCnn1* ของกุ้งที่มีรูปแบบ SSCP แบบที่ III มีระดับการแสดงออกของจีนสูงกว่ากุ้งที่มี รูปแบบ SSCP แบบที่ Iและ II อย่างมีนัยสำคัญทางสถิติ (*P* < 0.05) สำหรับระดับการแสดงออกของจีน *PmCdc25* นั้นพบว่ากุ้งที่มี รูปแบบ SSCP แบบที่ I นั้นมีระดับการแสดงออกของจีนสูงกว่ากุ้งที่มีรูปแบบ SSCP แบบที่ II อย่างมีนัยสำคัญทางสถิติ (*P* < 0.05)

หาลำดับนิวคลี โอไทด์ที่สมบูรณ์ของจีน *PmCyC* พบว่ามีความยาว 1443 bp มี ORF ยาว 804 bp สามารถแปลรหัสเป็นโปรตีน ที่มี 267 กรดอะมิโน นอกจากนี้สร้างโปรตีนลูกผสมของ PmCnn1 และผลิตพอลิโคลนอลแอนติบอตีของ rPmCnn1 ดังกล่าว

สาขาวิชาเทคโนโลยีชีวภาพ	ลายมือชื่อนิสิต หรือร จานกาม
ปีการศึกษา	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม มาเด็กษณ์ ดานี้เพศ

5372473723 : MAJOR BIOTECHNOLOGY KEYWORDS : *Penaeus monodon /* SNP / PCR-SSCP / POLYMORPHISM

SIRITHORN JANPOOM: IDENTIFICATION OF GROWTH-RELATED SNP MARKERS IN THE GIANT TIGER SHRIMP *Penaeus monodon*. ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D. CO-ADVISOR: BAVORNLAK KHAMNAMTONG, Ph.D., 140 pp.

Polymorphism of growth-related genes; *calponin1* (*PmCnn1*), *cyclin C* (*PmCyC*) and *cdc25* (*PmCdc25*) in 3- (BUM03 and SNP3A) and 5-month-old (PM05) juveniles of the giant tiger shrimp (*Penaeus monodon*) were identified by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis. Relationships between SSCP patterns and growth parameters (average body weight, BW; total length, TL; hepatopancreatic weight, HPW and/or hepatosomatic index, HSI) of the examined shrimp were examined. In the SNP3A sample, shrimp carrying SSCP patterns I and II of *PmCnn1*₅₃₀ (primers Cnn1-F/R) had a greater average BW and TL than those exhibiting pattern III (N = 156, P < 0.05). Likewise, juveniles shrimp carrying SSCP patterns I and III of *PmCdc25*, the BW, TL and HPW tof shrimp carrying patterns I and III (N = 145, P < 0.05). For *PmCdc25*, the BW, TL and HPW of shrimp carrying SSCP pattern I was significantly greater than those of shrimp carrying SSCP patterns I and III (N = 144, P < 0.05). Moreover, significant relationships between SSCP patterns of *PmCnn1*₄₂₅ and average BW and TL were found in the BUM03 sample (P < 0.05).

Nucleotide sequences of cloned PmCnn1530, PmCyC and PmCdc25 gene segments of representative individuals carrying each SSCP genotype were determined. Six intronic SNPs of $PmCnn1_{530}$ were significantly related with growth parameters. Of these, shrimp with each of $G/G_{209}T/T_{210}-/-212-/ _{213}C/C_{218}G/G_{240}$ (SSCP pattern I) and each of $(G/A)_{209}(T/A)_{210}(-/G)_{212}(-/T)_{213}(C/T)_{218}(G/A)_{240}$ (SSCP pattern II) had a greater average BW, TL and HPW than those with each of A/A₂₀₉A/A₂₁₀G/G₂₁₂T/T₂₁₃T/T₂₁₈A/T₂₄₀ (SSCP pattern III). For *PmCyC*, three exonic (A/G₃₁, G/A₃₇₉, and T/C₃₈₂) and two intronic (T/C₁₃₄ and T/C₁₈₈) SNPs corresponding to SSCP pattern I, II and III were observed, respectively. Each SNP of shrimp with SSCP pattern II: G/G₃₁C/T₁₃₄C/C₁₈₈A/A₃₇₉C/C₃₈₂ had a significantly greater average growth parameters (except those with each SNP of shrimp found in SSCP pattern HSI) than - E A/A₃₁C/C₁₃₄T/T₁₈₈G/G₃₇₉T/T₃₈₂ and III: A/G₃₁C/T₁₃₄T/C₁₈₈G/A₃₇₉T/C₃₈₂. Only one SNP (A/C₂₄₃) was found in PmCdc25 for which shrimp exhibiting A/C243 had a significantly greater average BW, TL and HPW (P < 0.05) than those carrying C/C₂₄₃. Simplification of SNP detection of *PmCnn1*₅₃₀ and *PmCdc25* gene segments was successfully developed based on PCR-RFLP.

The relative expression level of *PmCnn1* and *PmCdc25* in hepatopancreas of juvenile shrimp (SNP3A) carrying different SSCP pattern were significantly different (P < 0.05). The expression level of *PmCnn1* in shrimp exhibiting SSCP pattern III was significantly greater than those exhibiting pattern I and II (P < 0.05) while the expression level of *PmCdc25* in shrimp exhibiting SSCP pattern I was significantly greater than those exhibiting genotypes II (P < 0.05).

The full-length cDNA of *PmCyC* was successfully characterized. It was 1443 bp in length containing and ORF of 804 bp corresponding to a polypeptide of 267 amino acids. Moreover, recombinant PmCnn1 protein was successfully expressed as the soluble protein in *E.coli*. The polyclonal antibody against rPmCnn1 was successfully produced in rabbit.

Field of Study : Biotechnology	Student's Signature. Sin thorn Janpoom
Academic Year :2012	Advisor's Signature
	Co-advisor's Signature. B. Khammantarg

ACKNOWLEDGMENTS

I would like to express my deepest sense of gratitude to my advisor Professor Dr. Piamsak Menasveta and my co-advisors, Dr. Bavornlak Khamnamtong for their great help, guidance, encouragement, valuable suggestion and supports throughout my study.

My gratitude is also extended to Associate Professor Dr. Thaithaworn Lirdwitayaprasit, Associate Professor Dr. Chanpen Chanchao and Dr. Amorntip Muangprom who serve as thesis committees for their recommendations and useful suggestions.

I would like to acknowledge to Aquatic Molecular Genetics and Biotechnology Laboratory (AAMG) and National Center for Genetic Engineering and Biotechnology (BIOTEC) for providing facilities, Thailand Graduate institute of Science and Technology (TGIST) for my studentship.

I would like to thank, particularly to Drs. Sirawut Klinbunga and Sittiruk Roytrakul for valuable suggestions and encouragements and many thank to my beloved friends in the laboratory; Mr. Sayan Prakobpetch, Miss Pacharaporn Angthong, Miss Natechanok Thamniemdee, Miss Sasithorn Petkon, Miss Kanchana Sittikhankeaw, Miss Witchulada Talakhun. Miss Mahattanee Phinyo, Miss Sirikan Prasertluk, Miss Parichart Chumtong and Miss Patchari Yocawibun for their help during my study. I would also like to thank all my friends at Medical Science of Naresuan University and program in Biotechnology, Chulalongkorn University for friendships.

Finally, I would like to express my deepest gratitude to my parents and members of my family for their love, understanding and encouragement extended throughout my study.

CONTENTS

ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
ACKNOWLEDGMENTS	vi
CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xx
CHAPTER I INTRODUCTION	1
1.1 General information	1
1.2 Objectives of this thesis	4
1.3 Biology of the black tiger shrimp (P. monodon)	4
1.3.1 Taxonomy	4
1.3.2 Morphology	5
1.4 Domestication and genetic improvement of aquatic animals	6
1.4.1 Domestication and selective breeding program of	
P. monodon	7
1.5 Molecular markers and their used for genetic improvement of	
aquatic species	8
1.5.1 Single Nucleotide Polymorphisms (SNPs)	9
1.5.1.1 Classification of SNP	11
1.5.1.2 SNP discovery	11
1.6 Molecular technique used for studies for SNP in this thesis	12
1.6.1 Polymerase Chain Reaction (PCR)	12
1.6.2 Single Stranded Conformational Polymorphism Analysis	13
1.6.3 DNA sequencing	16
1.6.4 Restriction Fragment Length Polymorphism (RFLP)	18

viii

1.7 SNP studies in functionally important genes of various organisms	20
CHAPTER II MATERIALS AND METHODS	27
2.1 Experimental animals and tissue collection	27
2.2 Nucleic acid extraction	27
2.2.1 Genomic DNA extraction	27
2.2.2 RNA extraction	28
2.2.3 DNase I treatment of the extracted RNA	29
2.3 Measurement of nucleic acids concentrations using	
spectrophotometry and electrophoresis	29
2.3.1 Estimation of DNA and RNA concentrations using	
spectrophotometry	29
2.3.2 Estimation of the amount DNA using electrophoresis	30
2.4 Identification of SNPs in the growth-related genes of P. monodon	
using polymerase chain reaction-single strand conformational	
polymorphism (PCR-SSCP)	30
2.4.1 Design of primers from EST of <i>P. monodon</i>	31
2.4.2 Polymerase chain reaction (PCR)	31
2.4.3 Agarose gel electrophoresis	32
2.4.4 SSCP analysis	32
2.4.4.1 Preparation of glass plates	32
2.4.4.2 Preparation of non-denaturing polyacrylamide gels	33
2.4.4.3 Preparation of samples	33
2.4.4.4 Silver staining	33
2.5 Relationships between SSCP patterns and growth parameters	
of P. monodon	34
2.6 Identification of SNPs of the cloned PCR products by	
DNA sequencing	34
2.6.1 PCR and electrophoresis	34
2.6.2 Elution of DNA from agarose gel	35
2.6.3 Ligation of eluted DNA to pGEM [®] -T EasyVector	35

ix

2.6.4 Transformation of ligation products into <i>E. coli</i> JM109	36
2.6.4.1 Preparation of competent cells	36
2.6. 4.2 Transformation of the ligation product to	
E. coli host cell	36
2.6.4.3 Detection of recombinant clone by colony PCR	37
2.6.4.4 Isolation and digestion of recombinant	
plasmid DNA	37
2.6.4.5 DNA sequencing	38
2.7 Isolation and characterization of the full-length cDNA of	
P. monodon cyclin C (PmCyC) using Rapid Amplification of	
cDNA Ends Polymerase Chain Reaction (RACE-	
PCR)	38
2.7.1 First strand cDNA synthesis	38
2.7.2 RACE-PCR	39
2.7.2.1 Pimer design for 3' RACE-PCR	39
2.8 Development of PCR-RFLP for detection of SNP in Calponin1	
and Cyclin C of the giant tiger shrimp Penaeus monodon	40
2.8.1 PCR-RFLP	40
2.9 Examination of expression levels of <i>PmCnn1</i> and <i>PmCdc25</i> in	
hepatopancreases of <i>P. monodon</i> by quantitative real-time PCR	40
2.9.1 Primer design	40
2.9.2 Construction of the standard curves	41
2.9.3 Quantitative real-time PCR analysis	41
2.9.4 Statistical analysis	42
2.10 In vitro expression of recombinant protein using a bacterial	
expression system	42
2.10.1 Primer design	42
2.10.2 Construction of recombinant plasmid in cloning and	
expression vectors	42

х

2.10.3 Expression of recombinant proteins	43
2.10.4 Detection of recombinant PmCnn1 proteins	44
2.10.5 Purification of recombinant proteins	44
2.10.6 Polyclonal antibody production and western blot analysis	45
CHAPTER III RESULTS	46
3.1 DNA extraction	46
3.2 Amplification of the genomic gene segmens of various	
growth-related genes by PCR	46
3.2.1 <i>PmCnn1</i>	47
3.2.2 <i>PmCyC</i>	48
3.2.3 <i>PmCdc25</i>	51
3.3 Identification of polymorphic SSCP patterns of PmCnn1, PmCyC	
and <i>PmCdc25</i> and their relationships with growth parameters	
of P. monodon	52
3.3.1 <i>PmCnn1</i>	52
3.3.2 <i>PmCyC</i>	59
3.3.3 <i>PmCdc25</i>	62
3.4 Identification and characterization of SNP in <i>PmCnn1</i> , <i>PmCyC</i> and	
<i>PmCdc25</i> genes segment by DNA sequencing	64
3.4.1 SNP in the <i>PmCnn1</i> gene segment	64
3.4.1.1 <i>PmCnn1</i> ₅₃₀ generated from Cnn1-F/R	64
3.4.1.2 <i>PmCnn1</i> ₄₂₅ generated from primer Cnn1-F3/R3	71
3.4.2 SNP in the <i>PmCyC</i> gene segment	77
3.4.3 SNP in the <i>PmCdc25</i> gene segment	82
3.5 Development of PCR-RFLP for detection of SNP in Calponinl	
and Cyclin C of the giant tiger shrimp Penaeus monodon	85

Pa	ag	ge
----	----	----

3.6 Isolation and characterization of the full-length cDNA of	
P. monodon cyclin C (PmCyC) using Rapid Amplification of	
cDNA Ends-Polymerase Chain Reaction (RACE-PCR)	89
3.6.1 RNA extraction and first strand synthesis	89
3.6.2 Isolation of the full-length cDNA of <i>PmCyC</i>	89
3.7 Expression levels of <i>PmCnn1</i> and <i>PmCdc25</i> transcripts in	
hepatopancreas of P. monodon juveniles (SNP3A) carrying	
different SSCP patterns by quantitative real-time PCR	94
3.7.1 <i>PmCnn1</i>	94
3.7.2 <i>PmCdc25</i>	95
3.8 In vitro expression of recombinant PmCnn1 proteins in a	
bacterial expression system	97
3.8.1 Construction of recombinant plasmid	97
3.8.2 <i>In vitro</i> expression of recombinant proteins	101
3.8.3 Purification of recombinant proteins	103
3.8.4 The production of polyclonal antibodies against	
recombinant PmCnn1	104
CHAPTER IV DISCUSSION	107
CHAPTER V CONCLUSIONS	115
REFERENCES	118
APPENDEX	129
APPENDIX A	130
BIOGRAPHY	140

LIST OF TABLES

		Page
Table 1.1	The exportation of the giant tiger shrimps from Thailand	
	during 2005-2010	2
Table 1.2	The production of <i>P. monodon</i> and <i>L. vannamei</i> since January	
	to October in 2012 in Thailand	3
Table 1.3	Types of DNA markers, their characteristics, and potential	
	applications	10
Table 1.4	A comparison of selected mutation screening methods	12
Table 2.1	Mean and standard deviations of population used in this	
	thesis	27
Table 2.2	Primer names, the expected size, PCR profiles and recipes for	
	amplification of genomic DNA of <i>P. monodon</i>	31
Table 2.3	Primer sequences for the first strand cDNA synthesis and	
	RACE-PCR	39
Table 2.4	Composition of 3 ' RACE-PCR	40
Table 2.5	Nucleotide sequences of primers overhang used for in vitro	
	expression of <i>calponin1</i> of <i>P. monodon</i>	42
Table 3.1	A summary of PCR-SSCP of PmCnn1, PmCyC and PmCdc25	
	gene segments of <i>P. monodon</i> in this study	54
Table 3.2	Relationships between SSCP patterns of PmCnn1530 and	
	growth parameters of 3-month old juveniles (primers Cnn1-	
	F/R, SNP3A; $N = 156$)	56
Table 3.3	Relationships between SSCP patterns of PmCnn1530 and	
	growth parameters of 5-month old juveniles (primers Cnn1-	
	F/R, PM05; $N = 97$)	56
Table 3.4	Relationships between SSCP patterns of PmCnn1425 and	
	growth parameters of 3-month old juveniles (primers Cnn1-	
	F3/R3, BUM03; <i>N</i> = 79)	57

Table 3.5	Relationships between SSCP patterns of PmCnn1425 and	
	growth parameters of 3-month old juveniles (primers Cnn1-	
	F3/R3, SNP3A; $N = 151$)	58
Table 3.6	Relationships between SSCP patterns of PmCnn1425 and	
	growth parameters of 5-month old juveniles (primers Cnn1-	
	F3/R3, PM05; <i>N</i> = 69)	58
Table 3.7	Relationships between SSCP patterns of <i>PmCyC</i> and growth	
	parameters of 3-month old juveniles (BUM03, $N = 57$)	60
Table 3.8	Relationships between SSCP patterns of <i>PmCyC</i> and growth	
	parameters of 3-month old juveniles (SNP3A, $N = 145$)	61
Table 3.9	Relationships between SSCP patterns of <i>PmCyC</i> and growth	
	parameters of 5-month old juveniles (PM05, $N = 66$)	61
Table 3.10	Relationships between SSCP patterns of <i>PmCdc25</i> and growth	
	parameters of 3-month old juveniles (SNP3A, $N = 144$)	63
Table 3.11	Relationships between SSCP genotypes of PmCdc25 and	
	growth parameters of 5-month old juveniles (PM05, $N = 70$)	63
Table 3.12	Relationships between SNPs of <i>PmCnn1530</i> gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens that were sequenced $(N = 30)$	70
Table 3.13	Relationships between SNPs of <i>PmCnn1</i> 530 gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens inferred for overall specimens examined by SSCP	
	(<i>N</i> = 156)	70
Table 3.14	Relationships between SNPs of <i>PmCnn1</i> ₄₂₅ gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens that were sequenced $(N = 25)$	76
Table 3.15	Relationships between SNPs of <i>PmCnn1</i> ₄₂₅ gene segment and	
	growth parameters of the SNP3A sample inferred for 151	
	individuals (<i>N</i> = 151)	76

Table 3.16	Relationships between SNPs of PmCyC gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens that were sequenced $(N = 30)$	81
Table 3.17	Relationships between SNPs of PmCyC gene segment and	
	growth parameters of the SNP3A sample inferred for overall	
	specimens (<i>N</i> = 145)	81
Table 3.18	Relationships between SNP of PmCdc25 gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens that were sequenced $(N = 20)$	84
Table 3.19	Relationships between SNP of <i>PmCdc25</i> gene segment and	
	growth parameters of the SNP3A sample considering for	
	specimens that were sequenced inferred for overall specimens	
	(<i>N</i> = 144)	84
Table 3.20	Titers of polyclonal antibody using an indirect ELISA assay	
	(OD_{450}) after rabbits was immunized three times with	
	rPmCnn1 protein	105
	•	

LIST OF FIGURES

Figure 1.1	A diagram of production of P. monodon and L. vannamei		
	during 2001-2006 in Thailand		
Figure 1.2	Lateral view of the external morphology of <i>P. monodon</i>		
Figure 1.3	Lateral view of the internal anatomy of a female		
	<i>P. monodon</i>		
Figure 1.4	General illustration of single nucleotide polymorphism		
	(SNP)		
Figure 1.5	A schematic illustration of the polymerase chain reaction		
	(PCR) for amplifying DNA 14		
Figure 1.6	A schematic diagram of SSCP analysis for determination of		
	polymorphism of DNA 15		
Figure 1.7	Schematic representation of the sequencing an		
	oligonucleotide by Sanger method. DNA strand synthesis by		
	formation of phosphodiester bonds. The chain is terminated		
	by the use of dideoxycytidine triphosphate (ddC) in place of		
	deoxycytidine triphosphate (dCTP) 17		
Figure 1.8	An illustration of the results of automated		
	DNA sequencing		
Figure 1.9	A schematic diagram of RFLP analysis		
Figure 1.10	Pathway of <i>Cyclin C</i> gene		
Figure 1.11	Pathway of <i>Cdc25</i> gene		
Figure 3.1	A 0.8% ethidium bromide-stained agarose gel showing the		
	quality of genomic DNA extracted from a pleopod of		
	<i>P. monodon</i> 46		

Figure 3.2 A 1.5% ethidium bromide-stained agarose gel showing the amplification result of the *calponin 1* gene segment (*PmCnn1*₅₃₀) using primers Cnn1-F/R against genomic DNA of *P. monodon* of 3-month-old juveniles (BUM03 and SNP3A sample) and 5-month-old juveniles (PM05

sample).....

- Figure 3.4 A 1.5% ethidium bromide-stained agarose gel showing the amplification result of the *cyclin C* gene segment (*PmCyC*) against genomic DNA and cDNA of juvenile *P. monodon* using primers cyclin C-F/R, and nucleotide sequence of the amplified genomic segment of *PmCyC*, and pairwise alignment between nucleotide sequences from coding sequence (CDS) and genomic DNA of *cyclin C*.
- Figure 3.5 A 1.5% ethidium bromide-stained agarose gel showing the amplification result of the *PmCyC* gene segment against genomic DNA of *P. monodon* of 3-month-old juveniles (BUM03 and SNP3A sample) and 5-month-old juveniles
- Figure 3.6 A 1.5% ethidium bromide-stained agarose gel showing the amplification result of *PmCdc25* gene segment against genomic DNA of *P. monodon* of 3-month-old juveniles (BUM03 and SNP3A sample) and 5-month-old juveniles (PM05 sample).

(PM05sample).....

47

49

50

Figure 3.7	SSCP patterns of the PmCnn1 ₅₃₀ (primer Cnn1-F/R) gene	
	segment amplified from genomic DNA of the SNP3A,	
	BUM03 and PM05 samples	53
Figure 3.8	SSCP patterns of the <i>PmCnn1</i> ₄₂₅ (primer Cnn1-F3/R3) gene	
	segment amplified from genomic DNA of the SNP3A,	
	BUM03 and PM05 samples	53
Figure 3.9	SSCP patterns of the PmCyC gene segment amplified from	
	genomic DNA of the BUM03, SNP3A and PM05	
	samples	59
Figure 3.10	SSCP patterns of the PmCdc25 gene segment amplified	
	from genomic DNA of the BUM03, SNP3A and PM05	
	samples	62
Figure 3.11	Multiple sequence alignments of the PmCnn1530 gene	
	segment amplified from genomic DNA of representative	
	individuals of 3-month-old juveniles (SNP3A $N = 10$ for	
	each SSCP pattern)	65
Figure 3.12	Multiple sequence alignments of the PmCnn1 _{F3 R3} gene	
	segment amplified from genomic DNA of representative	
	individuals of 3-month-old juveniles (SNP3A, $N = 5$ for	
	each SSCP pattern)	72
Figure 3.13	Multiple sequence alignments of the <i>PmCyC</i> gene segment	
	amplified from genomic DNA of representative individuals	
	of 3-month-old juveniles (SNP3A, $N = 10$ for each SSCP	
	pattern)	77
Figure 3.14	Multiple sequence alignments of the PmCdc25 gene	
-	segment amplified from genomic DNA of representative	
	individuals of 3-month-old juveniles (SNP3A, $N = 10$ for	
	each SSCP pattern)	82
Figure 3.15	Schematic illustration of the expected RFLP profiles of	
	<i>PmCnn1_{F/R}</i> after digested with <i>Eco</i> RV	85

Figure 3.16	PCR-RFLP of the $PmCnn1_{F/R}$ gene segment digested with	
	<i>Eco</i> RV	86
Figure 3.17	Schematic illustration of the expected RFLP profiles of	
	<i>PmCyC</i> after digested with <i>Dde</i> I	87
Figure 3.18	PCR-RFLP from digestion of the amplified PmCyC gene	
	segment with Dde I	88
Figure 3.19	A 0.8% ethidium bromide-stained agarose gel showing the	
	quality of RNA extracted from ovaries of P. monodon	
	broodstock	89
Figure 3.20	Partial cDNA sequence of PmCyC from hepatopancreas	
	cDNA library and BlastX analysis of similarity of the	
	original EST	90
Figure 3.21	A 1.5% ethidium bromide-stained agarose gel showing the	
	amplification result of a 3' RACE-PCR of <i>PmCyC</i>	91
Figure 3.22	Assembled nucleotide sequences of nucleotide sequences	
	from EST and 3' RACE-PCR (highlighted). The original	
	EST sequence is shown in boldface and the 3'CyC primer is	
	underlined	92
Figure 3.23	3' RACE of cyclin C was searched against data in the	
	GenBank using BlastX and the closest homologues was	
	g1/s-specific cyclin c of Tribolium castaneumat	93
Figure 3.24	The full-length cDNA and deduced amino acid sequences	
	of <i>PmCyC</i>	93
Figure 3.25	Diagram illustrating the full length cDNA of <i>PmCyC</i>	94
Figure 3.26	Standard amplification curves of PmCnn1, PmCdc25 and	
	<i>EF-1α</i>	95
Figure 3.27	Histograms showing relationships between the relative	
	expression level of PmCnn1 in hepatopancreas of shrimp	
	carrying different SSCP patterns (3-month-old juveniles;	
	SNP3A)	96

Figure 3.28	Histograms showing relationships between the relative	
	expression level of PmCdc25 in hepatopancreas of shrimp	
	carrying different SSCP patterns (3-month-old juveniles;	
	SNP3A)	97
Figure 3.29	The full-length cDNA and deduced amino acids of	
	PmCnn1	98
Figure 3.30	Diagram illustrating the deduced PmCnn1 protein. The	
	predicted CH and Calponin domains were found in the	
	deduced amino acid sequence of <i>PmCalponin1</i>	99
Figure 3.31	A 1.5% ethidium bromide stained agarose gel showing the	
	calponin homology domain sequence of <i>PmCnn1</i> amplified	
	by specific primer overhang with Bam HI and Xho I-6His	
	using the first strand cDNA from hepatopancrease as the	
	template	99
Figure 3.32	Nucleotide sequence of a recombinant plasmid containing	
	the calponin domain sequence of <i>PmCnn1</i> and The result of	
	similarity analysis using blastX	100
Figure 3.33	A 15% SDS-PAGE and Western blot analysis showing	
	in vitro expression of rPmCnn1 after induced with 1 mM	
	IPTG	101
Figure 3.34	15% SDS-PAGE showing the recombinant PnCnn1 protein	
	overexpressed at 0, 3 and 6 hours post induction	102
Figure 3.35	15% SDS-PAGE showing expression of rPmCnn1 in the	
	soluble and insoluble fractions, after a recombinant clone	
	was induced by IPTG 3 hours at 37°C (1 mM)	102
Figure 3.36	15% SDS-PAGE of purified recombinant PmCnn1 protein	103
Figure 3.37	15% SDS-PAGE showing the gel-eluted rPmCnn1 protein	
	used for the production of polyclonal antibody	104
Figure 3.38	15% SDS-PAGE and Western blot analysis of the extracted total protein from hepatopancreas of juvenile shrimp	106

LIST OF ABBREVIATIONS

bp	base pair
°C	degree celsius
dATP	deoxyadenosine triphosphate
dCTP	deoxycytosine triphosphate
dGTP	deoxyguanosine triphosphate
dTTP	deoxythymidine triphosphate
DNA	deoxyribonucleic acid
HCI	hydrochloric acid
IPTG	isopropyl-thiogalactoside
М	Molar
MgCl ₂	magnesium chloride
mg	milligram
ml	milliliter
mM	millimolar
ng	nanogram
OD	optical density
PCR	polymerase chain reaction
RACE	Rapid Amplification of cDNA Ends
RNA	Ribonucleic acid
RNase A	Ribonuclease A
rpm	revolutions per minute
RT	reverse transcription
SDS	sodium dodecyl sulfate
Tris	tris (hydroxyl methyl) aminomethane
μg	microgram
μΙ	microliter
μΜ	micromolar
UV	ultraviolet