ผลของไคเอทิลีนไกลคอล และ โพลีเอทิลีนไกลคอล น้ำหนักโมเลกุล 600 ในการสังเคราะห์ผงนาโนไททาเนียมไดออกไซด์ และการประยุกต์ใช้ในการกำจัดโครเมียม

นางสาวจิรภัทร์ อนันต์ภัทรชัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN : 974-53-2877-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECT OF DIETHYLENE GLYCOL AND POLYETHYLENE GLYCOL (M.W. 600) ON SYNTHESIS OF TiO₂ NANOPOWDER AND ITS APPLICATION FOR CHROMIUM (VI) REMOVAL

Miss Jirapat Ananpattarachai

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Environmental Management (Inter-Department) Graduate School Chulalongkorn University Academic Year 2005 ISBN 974-53-2877-4 Copyright of Chulalongkorn University

Thesis Title	EFFECT OF DIETHYLENE GLYCOL AND POLYETHYLENE GLYCOL 600 ON SYSTHENESIS OF TiO ₂ NANOPOWDER AND ITS APPLICATION FOR CHROMIUM (VI) REMOVAL
Ву	Miss Jirapat Ananpattarachai
Field of Study	Environmental Management
Thesis Advisor	Assistant Professor Puangrat Kajitvichyanukul, Ph.D.
Thesis Co-Advisor	Professor Supapan Seraphin, Ph. D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Graduate School (Assistant Professor M.R. Kalaya Tingsabadh, Ph.D.)

THESIS COMMITTEE

Ch C Tony y Chairman

(Chantra Tongcumpou, Ph. D.)

Upvorgrat Thesis Advisor

(Assistant Professor Puangrat Kajitvichyanukul, Ph.D.)

Supapan Scraphin Thesis Co-Advisor

(Professor Supapan Seraphin, Ph.D.)

Tabaundl Member

(Assistant Professor Jarurat Voranisarakul)

 $\mathcal{D}_{\mathcal{T}} = \mathcal{W}$ Member

(Punjaporn Weschayanwiwat, Ph.D.)

จิรภัทร์ อนันต์ภัทรชัย : ผลของไดเอทิลีนไกลคอล และ โพลีเอทิลีนไกลคอล น้ำหนักโมเลกุล 600 ในการสังเคราะห์ผงนาโนไททาเนียมไดออกไซด์ และการประยุกต์ใช้ในการกำจัดโครเมียม. (EFFECT OF DIETHYLENE GLYCOL AND POLYETHYLENE GLYCOL (M.W. 600) ON SYNTHESIS OF TIO₂ NANOPOWDER AND ITS APPLICATION FOR CHROMIUM (VI) REMOVAL) อ. ที่ปรึกษา : ผศ.คร.พวงรัตน์ ขจิตวิชยานุกูล, อ.ที่ปรึกษาร่วม: Prof.SUPAPAN SERAPHIN จำนวน 113 หน้า ISBN 974-53-2877-4

ในงานวิจัยนี้ทำการเตรียมนาโนไททาเนียมไดออกไซด์ด้วยวิธีโซลเจล โดยทำการเติมสารอินทรีย์ ้สองชนิค คือ ใคเอทิลีนไกลคอล และ โพลิเอทิลีนไกลคอลที่มีน้ำหนักโมเลกุล 600 ลงในสารละลายเริ่มต้น เพื่อศึกษาคุณลักษณะของไททาเนียมไดออกไซด์ และประสิทธิภาพในการกำจัดโครเมียมที่มีประจุบวก 6 ้ออกจากน้ำเสีย ผลการศึกษาพบว่าการเติมสารอินทรีย์ทั้งสองชนิคลงไปนั้นทำให้การเปลี่ยนแปลง โครงสร้างผลึกของอนาเทสไปเป็นรูไทล์ช้าลง และสารอินทรีย์ที่มีโครงสร้างเป็นเส้นสายที่ยาวกว่ามี ้ประสิทธิภาพในการทำให้ผลึกนาโนไททาเนียมไดออกไซด์จับเป็นกลุ่มเป็นก้อนได้คึกว่า ดังนั้นโพลิ-เอทิลีน ใกลคอลที่มีน้ำหนัก โมเลกุล 600 จึงทำให้ผลึกของอนาเทสมีปริมาณมาก และเปลี่ยนแปลงไปเป็น ้ผลึกของ รูไทล์ที่อุณหภูมิต่ำ (500°C) เมื่อเปรียบเทียบกับไคเอทิลีนไกลคอล(600°C) โคยสารอินทรีย์ทั้ง ้สองชนิคนั้นต่างก็ช่วยในการลคขนาคของนาโนคริสตัล และช่วยเพิ่มพื้นที่ผิวของไททาเนียมไคออกไซด์ได้ ้โคยที่ขนาดของผลึกไททาเนียมไดออกไซด์มีแนวโน้มที่จะลดลงเมื่อทำการเพิ่มน้ำหนักโมเลกุลของโพลิ-เอทิถีนไกลคอล เช่น โพลิเอทิลีนไกลคอลที่มีน้ำหนักโมเลกุล 600 ส่งผลให้ผลึกของไททาเนียมไคออกไซด์ มีขนาคเป็น 18.84 นาโนเมตร เมื่อเปรียบเทียบกับไคเอทิลีนไกลคอล ซึ่งผลึกของไททาเนียมไคออกไซค์มี ้งนาดเป็น 19.54 นาโนเมตร คุณสมบัติในการดูคซับของไททาเนียมไดออกไซด์ที่มีการเติมสารอินทรีย์ ้สองชนิด คือ ใดเอทิลีนใกลคอล และ โพลิเอทิลีนใกลคอลที่มีน้ำหนักโมเลกุล 600 ลงไปนั้น สามารถ ้อธิบายได้ตัวยสมการการดูคซับของแลงเมียร์ สำหรับกระบวนการโฟโตคะตะไลซิส หากความเข้มข้นเริ่ม ้ต้นของเฮกซะวาเลนซ์ โครเมียมต่ำกว่า 50 มิลลิกรัมต่อลิตร ปฏิกิริยาจะเป็นไปตามปฏิกิริยาลำคับศูนย์ เมื่อ ้ความเข้มข้นเริ่มต้นของเฮกซะวาเลนซ์โครเมียมสูงขึ้นปฏิกิริยาจะเปลี่ยนแปลงไปเป็นปฏิกิริยาลำคับหนึ่ง ซึ่งค่าความสามารถในการทำปฏิกิริยาของไททาเนียมไคออกไซด์ที่เติมไคเอทิลีนไกลคอล และโพลิเอทิลีน-ใกลคอลที่มีน้ำหนักโมเลกุล 600 ลงไปนั้น มีค่าคงที่ในการคูคซับ (K_{cr}) เป็น 0.287 และ 0.480 ลิตรต่อ มิลลิกรัม ตามลำคับ และมีค่าคงที่ของปฏิกิริยาลำคับสอง (k) เป็น 0.168 และ 0.220 มิลลิกรัมต่อลิตรต่อ นาที่ตามลำดับ

สาขาวิชา การจัคการสิ่งแวคล้อม (สหสาขาวิชา) ลายมือชื่อนิสิต <u>) rep</u>at ปีการศึกษา <u>2548</u> ลายมือชื่ออาจารย์ที่ปรึกษา <u>KRomgrat</u> ลายมือชื่ออาจารย์ที่ปรึกษาร่วม <u>S. Seraplui</u>

4789469220 : MAJOR ENVIRONMENTAL MANAGEMENT KEY WORDS: TiO₂ / PHOTOREDUCTION / DEG/ PEG 600 / SOL-GEL JIRAPAT ANANPATTARACHAI: EFFECT OF DIETHYLENE GLYCOL AND POLYETHYLENE GLYCOL 600 ON SYSTHENESIS OF TiO₂ NANOPOWDER AND ITS APPLICATION FOR CHROMIUM (VI) REMOVAL. THESIS ADVISOR: ASST. PROF. PUANGRAT KAJITVICHYANUKUL, Ph.D., THESIS CO-ADVISOR: PROF. SUPAPAN SERAPHIN, 113 pp. ISBN 974-53-2877-4

TiO₂ nanoparticles with different types of additive are prepared from alkoxide solutions via sol-gel method. The effects of diethylene glycol (DEG) and polyethylene glycol with molecular weight 600 (PEG 600) addition to the precursor solution on the TiO₂ properties and photocatalytic activity in chromium (VI) removal were studied. Results show that DEG and PEG 600 delayed the phase transformation from anatase to rutile phase. It was found that the long chain of PEG 600 can agglomerate the nanocrystal TiO₂ better than the short chain of DEG. Consequently, PEG 600 can accumulate the anatase and transform from the anatase to rutile phase in the lower temperature (500°C) comparing to DEG (600°C). Both DEG and PEG 600 also exerted the pronounced effect on reducing of nanocrystal size and increasing surface area of TiO₂. The crystallite size of TiO₂ tends to increase with increasing of molecular weight of PEG as the PEG 600 can enhance the smaller size of TiO₂ as 18.84 nm comparing to 19.54 nm obtained from DEG. Adsorption characteristics for both of TiO2 from DEG and PEG 600 are well described by Langmuir adsorption isotherm. For photocatalytic process, with initial concentration of chromium (VI) less than 50 mg/L, the kinetic pattern for both types of TiO2 was followed zero order pattern. As the initial concentration of chromium (VI) was leveled up, the kinetic pattern was changed to be pseudo first order pattern. The intrinsic kinetic values of TiO2 with DEG and PEG 600 were calculated with the value of the adsorption equilibrium constant (K_{Cr}) was found to be 0.287 and 0.480 l/mg, respectively and the second-order rate constant (k_c) were obtained as 0.168 and 0.220 mg/l min, respectively.

Field of study	Environmental Management (I	nter-Department) Studer	it's signature
Academic year	2005	Advisor's signature	Kprangrat
		Co-advisor's signature	S. Seraphi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis advisor, Asst. Prof. Dr. Puangrat Kajitvichyanukul for her encouragement, invaluable support, and kind guidance throughout my work. I gratefully appreciate Prof. Dr. Supapan Seraphin, my co-advisor, for her invaluable and inspiring advice and guidance. Comments and suggestions from both advisors not only provide me with profound knowledge but also broaden my perspectives in practical applications. I would like to gratefully thank Prof. Dr. Bernard Seraphin for his supervision and helpful suggestions in all aspects. Also, I gratefully acknowledge Dr. Chantra Tongcumpou, Chairman of the committee, Asst. Prof. Jarurat Voranisarakul, Dr. Punjaporn Weschayanwiwat thesis committee for the fruitful comments and advice.

Special gratitude goes to the National Research Center for Environmental Hazardous and Waste Management, Chulalongkorn University (NRC-EHWM), all personnel, and students in the National Research Center for Environmental and Hazardous Waste Management (NRC-EHWM) Program. Furthermore, I would like to thank all members of Environmental Nanomaterial Research and Development Unit (NANOMAT), Department of Environmental Engineering, King Mongkut's University of Technology Thonburi, and the Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona, USA. for supporting lab instruments. My grateful appreciation goes to Marguerite Ione Ellis, the Department of Materials Science and Engineering, The University of Arizona for her generous help in scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM).

Most of all, I would like to extend my special appreciation to my parents for their understanding, inspiration and encouragement throughout this successful research. Finally, special thanks for my brothers, Narong and Silp, for their supports, encouragement and entertainment without them it will not be possible for me to complete my work.

vi

CONTENTS

Pages

ABSTRACT IN THAI	,	iv
ABSTRACT IN ENGLISH		v
ACKNOWLEDGEMENTS		vi
CONTENTS		vii
LIST OF TABLES		x
LIST OF FIGURES		xiii

.

CHAPTER I INTRODUCTION	1
1.1 Motivation	1
1.2 Objectives	2
1.3 Hypotheses	3
1.4 Scopes of the Study	3
1.5 Expected Outcome	3

CHAPTER II BACKGROUND AND LITERATURE REVIEW 4 2.1 Photocatalysis theory 4 2.1.1 Kinetic considerations in heterogeneous photocatalysis 6 8 2.2 Titanium dioxide 12 2.3 Sol-gel process 16 2.4 Chromium 2.4.1 Sources and Properties 16 2.4.2 Toxicology Data 17 2.4.2.1 Exposure pathway of chromium 17 2.4.2.2 Acute effect of chromium 17 2.4.2.3 Chronic effect of chromium 18 2.5 Chromium removal by the photocatalysis process 19

	e
VIII	L

APTER III METHODOLOGY	••••••
3.1 Materials	•••••
3.1.1 Chemicals	•••••
3.1.2 Photochemical reactor	••••••
3.2 Methodology	•••••••
3.2.1 Part I – Synthesis of TiO ₂ nanoparticles	
3.2.2 Part II – Characterization synthesized nanopowder	s TiO ₂
3.2.3 Part III - Treating of chromium (VI) using synthesi	zed
TiO ₂ nanoparticles Industrial wastewate	er
APTER IV RESULTS AND DISCUSSION	
4.1 Effect of DEG stabilizing agent	
4.1.1 Formation of crystal with DEG	
4.1.1.1 Formation of crystal with different molar r	atios of
DEG	
4.1.1.2 Photocatalytic activity of nanocrystal TiO ₂	with
different mole ratios of DEG	
4.1.2 Crystal growth of TiO ₂ with DEG	
4.1.2.1 Effect of calcination temperatures on nano	crystal
TiO ₂ prepared with DEG additive	
4.1.2.2 Photocatalytic activity of nanocrystal TiO_2	
prepared with DEG at different calcination	n
temperatures	
4.1.3 Determination of adsorption isotherm of TiO_2 with	h DEG
as additive	
4.1.4 Determination of kinetic values following Langmu	uir-
Hinshelwood Model for TiO ₂ with DEG	as
stabilizing agent	
4.2 Effect of PEG stabilizing agent	
4.2.1 Formation of crystal with PEG	
4.2.1.1 Formation of crystal with different molar	ratios of

э,

	Pages
4.2.1.2 Photocatalytic activity of nanocrystal TiO_2 with	
different amounts of PEG	62
4.2.2 Crystal growth of TiO ₂ with PEG	65
4.2.2.1 Effect of calcination temperatures on nanocrystal	
TiO ₂ with PEG	65
4.2.2.2 Photocatalytic activity of nanocrystal TiO_2	
prepared with DEG at different calcination	
temperatures	70
4.2.3 Determination of adsorption isotherm of TiO_2 with PEG	
as additive	73
4.2.4 Determination of kinetic values following Langmuir-	
Hinshelwood Model for TiO ₂ with PEG stabilizing	77
agent	
4.3 Roles of DEG and PEG 600 on TiO_2 Properties and	
Photocatalytic Activity	82
4.3.1 Roles of DEG and PEG 600 on the formation of	82
nanocrystal TiO ₂	
4.3.2 Role of DEG and PEG 600 on photocatalytic activity	88
4.3.3 Role of DEG and PEG 600 on kinetic study of	
photocatalytic activity	91
	0.4
	94
5.1 Nanocrystal HO_2 with DEG	94
5.2 Nanocrystal 110_2 with PEG 600	95
5.3 Kole of DEG and PEG 600 on nanocrystal 110_2	90
5.4 Outcomes from this research	96
5.5 Further research suggestions	97
REFERENCES	98
APPENDICES	104
BIOGRAPHY	113

ix

LIST OF TABLES

Table 2.1 Comparison of rutile and anatase
Table 3.1 Experimental conditions to study effect of stabilizing agent on
photocatalytic activity of nanopowder TiO ₂
Table 3.2 Experimental conditions to study effect of calcination
temperatures on photocatalytic activity of nanopowder TiO ₂
Fable 3.3 Properties study to compare of properties and photocatalytic
ability of synthesized nanopowder TiO ₂
Fable 4.1 Percentage of anatase and rutile phases in samples obtained with
different mole ratios of TTiP:DEG
Fable 4.2 Porosity of the synthesized TiO_2 with different mole ratios of DEG
Fable 4.3 Value of k_{obs} and chromium removal efficiencies of TiO ₂ prepared
from different mole ratios of TTiP:DEG
Table 4.4 Percentages of anatase and rutile phases in samples obtained from
different calcination temperatures
Fable 4.5 Sizes of anatase and rutile of TiO_2 in samples prepared at different
calcination temperatures
Fable 4.6 Surface area and pore diameter of TiO_2 at different calcination
temperatures
Fable 4.7 R _L Value and Isotherms
Fable 4.8 Value of R_L for Langmuir adsorption isotherm for TiO ₂ with DEG.
Table 4.9 Values of k_{obs} from zero-order equation for photocatalytic process
using TiO ₂ with DEG for chromium (VI) removal
Table 4.10 Values of k_{obs} from pseudo-first order equation for photocatalytic
process using TiO ₂ with DEG for chromium (VI) removal
Table 4.11 Values of k_{obs} used in Langmuir-Hinshelwood model for
photocatalytic process using TiO ₂ with DEG for chromium (VI)
, removal
Table 4.12 Percentage of anatase and rutile phases in samples obtained with
different mole ratios of TTiP:PEG

~

Л

	Pages
Table 4.13 Porosity of the synthesized TiO_2 with different mole ratios of	
PEG	62
Table 4.14 Value of k_{obs} and chromium removal efficiencies of TiO ₂	
prepared from different mole ratios of TTiP:PEG	65
Table 4.15 Percentages of anatase and rutile phases in samples obtained	
from different calcination temperatures	67
Table 4.16 Size of anatase and rutile TiO_2 in samples prepared at different	
calcination temperatures	69
Table 4.17 Surface area and pore diameter of TiO_2 prepared with and	
without PEG at different calcination temperatures	70
Table 4.18 Value of R_L for Langmuir adsorption isotherm for TiO ₂ with PEG	76
Table 4.19 Values of k_{obs} from zero-order equation for photocatalytic	
process using TiO ₂ with PEG for chromium (VI) removal	78
Table 4.20 Values of k_{obs} from pseudo-first order equation for photocatalytic	
process using TiO ₂ with PEG for chromium (VI) removal	79
Table 4.21 Values of k_{obs} used in Langmuir-Hinshelwood model for	
photocatalytic process using TiO_2 with DEG for chromium (VI)	
removal	80
Table 4.22 Properties of as-synthesized TiO2 at various calcined temperature	86
Table 4.23 Comparison of k_c and K_{cr} for three types of TiO ₂	93
Table A.1 Adsorption of chromium (VI) on the surface of TiO_2 in different	
mole ratios of Ti:DEG	105
Table A.2 Photocatalytic reduction of chromium (VI) using different mole	
ratios of Ti:DEG	105
Table A.3 Adsorption of chromium (VI) on the surface of TiO_2 in different	
calcination temperatures using TiO ₂ with DEG 1.0	106
Table A.4 Photocatalytic reduction of chromium (VI) in different calcination	
temperature using TiO ₂ with DEG 1.0	106
Table A.5 Adsorption of chromium (VI) on the surface of TiO_2 in different	
initial concentration of chromium (VI) using TiO ₂ with DEG	
1.0 and calcined at 600°C	107

xi

	Pages
Table A.6 Photocatalytic reduction of chromium (VI) in different initial	
concentration of chromium (VI) using TiO_2 with DEG 1.0 and	
calcined at 600°C	107
Table A.7 Adsorption of chromium (VI) on the surface of TiO_2 in different	
mole ratios of Ti:PEG	108
Table A.8 Photocatalytic reduction of chromium (VI) using different mole	
ratios of Ti:PEG	108
Table A.9 Adsorption of chromium (VI) on the surface of TiO_2 in different	
calcination temperatures using TiO ₂ with PEG 1.0	109
Table A.10 Photocatalytic reduction of chromium (VI) in different	
calcination temperature using TiO ₂ with PEG 1.0	109
Table A.11 Adsorption of chromium (VI) on the surface of TiO_2 in different	
initial concentration of chromium (VI) using TiO_2 with PEG 1.0	
and calcined at 500°C	110
Table A.12 Photocatalytic reduction of chromium (VI) in different initial	
concentration of chromium (VI) using TiO_2 with PEG 1.0 and	
calcined at 500°C	110
Table A.13 Adsorption of chromium (VI) on the surface of TiO_2 in different	
calcination temperatures using TiO ₂ without additive	111
Table A.14 Photocatalytic reduction of chromium (VI) in different	
calcination temperature using TiO ₂ without additive	111
Table A.15 Adsorption of chromium (VI) on the surface of TiO_2 in different	
initial concentration of chromium (VI) using TiO ₂ without	
additive and calcined at 300°C	112
Table A.16 Photocatalytic reduction of chromium (VI) in different initial	
concentration of chromium (VI) using TiO ₂ without additive	
and calcined at 300°C	112

xii

1

LIST OF FIGURES

	Pages
Figure 2.1 Schematic of the photocatalytic process in a semiconductor	5
Figure 2.2 Number of publications regarding TiO ₂ /TiO ₂ -photocatalysis per	
year	9
Figure 2.3 Crystal structure of TiO ₂ : rutile and anatase	10
Figure 2.4 Forming of various types of crystals in Sol-gel processes	14
Figure 3.1 Photochemical reactor	21
Figure 3.2 The preparation procedure for nanopowders TiO ₂	22
Figure 3.3 Schematic diagram for treating of chromium (VI)	26
Figure 4.1 XRD spectrum showing crystal structures of TiO ₂ obtained from	
different mole ratio of TTiP:DEG	29
Figure 4.2 SEM images showing surface morphology of TiO ₂ nanocrystals	
obtained from different mole ratios of TTiP:DEG	30
Figure 4.3 Nanocrystal size of TiO ₂ with different mole ratios of DEG	33
Figure 4.4 Surface area of the synthesized TiO_2 with different mole ratios of	
DEG	34
Figure 4.5 Adsorption of chromium (VI) on the surface of TiO_2 prepared	
with different mole ratios of TTiP:DEG	36
Figure 4.6 Photocatalytic reduction of chromium (VI) using different mole	
ratios of TTiP:DEG	37
Figure 4.7 Comparison of photocatalytic decomposition rates using different	
mole ratios of TTiP:DEG	38
Figure 4.8 XRD patterns showing crystal structures of TiO ₂ with 1:1.0	
TTiP:DEG stabilizing agents at different calcination	
temperatures	39
Figure 4.9 SEM images showing surface morphology of TiO ₂ nanocrystal	
with DEG in different calcination temperature	41
Figure 4.10 Adsorption of chromium (VI) on the surface of TiO_2 prepared at	
different calcination temperatures as a function of time	45

	Pages
Figure 4.11 Photocatalytic reduction of chromium (VI) by TiO ₂ prepared at	
different calcination temperatures as a function of time	45
Figure 4.12 Comparison of photocatalytic decomposition rates using	
different calcination temperature	47
Figure 4.13 Adsorption of chromium (VI) on the surface of TiO_2 at different	
initial concentration of chromium (VI) as a function of time	48
Figure 4.14 Plot of Cr (VI) equilibrium concentration vs. chromium (VI)	
adsorbed concentration on TiO ₂ surface	48
Figure 4.15 Langmuir adsorption isotherm plots for the adsorption of	
chromium (VI) onto the TiO ₂ surface	49
Figure 4.16 Freundlich adsorption isotherm plots for the adsorption of	
chromium (VI) onto TiO ₂ surface	51
Figure 4.17 Photocatalytic reduction of chromium (VI) as a function of time	
using different initial concentration of chromium (VI)	54
Figure 4.18 Photocatalytic reduction of chromium (VI) using TiO_2 with	
DEG	57
Figure 4.19 XRD spectrum showing Crystal structures of TiO_2 obtained	
from different mole ratio of TTiP:PEG	58
Figure 4.20 SEM images showing surface morphology of TiO ₂ nanocrystals	
obtained from different mole ratios of TTiP:PEG	59
Figure 4.21 Nanocrystal size of TiO ₂ with different mole ratios of PEG	61
Figure 4.22 Surface area of the synthesized TiO_2 with different mole ratios	

0	-	
Figure 4.22	Surface area of the synthesized TiO ₂ with different mole ra	itios
	of PEG	
Figure 4.23	Adsorption of Cr (VI) on the surface of TiO_2 prepared with	1
	different mole ratios of TTiP:PEG	63
Figure 4.24	Photocatalytic reduction of chromium (VI) using different	mole
	ratios of TTiP:PEG	64
Figure 4.25	Comparison of photocatalytic decomposition rates using	
	different mole ratios of TTiP:PEG	
Figure 4.26	Crystal structures of TiO2 with PEG stabilizing agents in	
	different calcination temperatures	66

3.

xiv

xv

Pages

5.

Figure 4.27	SEM images showing surface morphology of TiO ₂ nanocrystal
	with PEG in different calcination temperatures
Figure 4.28	Adsorption of chromium (VI) on the surface of TiO ₂ prepared at
	different calcination temperatures as a function of time
Figure 4.29	Photocatalytic reduction of chromium (VI) by TiO ₂ prepared at
	different calcination temperatures as a function of time
Figure 4.30	Comparison of photocatalytic decomposition rates using
	different calcination temperatures
Figure 4.31	Adsorption of chromium (VI) on the surface of TiO_2 at different
	initial concentration of chromium (VI) as a function of time
Figure 4.32	Plot of chomium (VI) equilibrium concentration vs. chromium
	(VI) adsorbed concentration on TiO ₂ surface
Figure 4.33	Langmuir adsorption isotherm plots for the adsorption of
	chromium (VI) onto the TiO, surface
Figure 4.34	Freundlich adsorption isotherm plots for the adsorption of
0	chromium (VI) onto TiO ₂ surface
Figure 4.35	Photocatalytic reduction of chromium (VI) using different initial
	concentration of chromium (VI) as a function of time
Figure 4.36	Photocatalytic reduction of chromium (VI) using TiO ₂ with PEG
0	as a function of initial concentration of chromium (VI)
Figure 4.37	Molecular structures and formula of DEG and PEG 600
Figure 4.38	XRD patterns showing crystal structures of various nanocrystal
8	TiO ₂ after calcinated at temperature 300 - 800°C
Figure 4.39	Thermo gravimetric analysis (TGA) of various types of TiO ₂
Figure 4.40	The structure-directing process of PEG in the precursor sol
Figure 4.41	Efficiencies in chromium (VI) removal using different types of
8	TiO ₂ calcined at 300 °C
Figure 4 42	P Efficiencies in chromium (VI) removal using different types of
- 15ul U 1174	TiO ₂ calcined at 500 °C
Figure 4 43	Fificiencies in chromium (VI) removal using different types of
1 igui e 4.42	TiO_{1} colored at 600 °C

	Pages
Figure 4.44 Efficiencies in chromium (VI) removal using different types of	
TiO ₂ calcined at 800 °C	91
Figure 4.45 Efficiencies in chromium (VI) removal using different types of	
TiO_2 calcined at the best calcination temperature of each types	
of TiO ₂	92

•

. . 1 xvi