## CHAPTER IV RESULTS AND DISCUSSION



#### 4.1 Life Cycle Inventory

A life cycle inventory (LCI) is a process of quantifying energy and raw material requirements, atmospheric emissions, waterborne emissions, solid wastes, and other releases for the entire life cycle of a product, process, or activity (EPA 1993). In this research, LCI is performed on the production of three petrochemical products, polyurethane foam (PU), general purpose polystyrene (GPPS), and high impact polystyrene (HIPS), in the cradle-to-gate framework which covers from raw materials acquisition, transportation, production and disposal/recycle of the wastes from the production processes, packaging, and injection. This results in 3 life cycle inventories being generated for the corresponding three petrochemical products.

#### 4.1.1 Polyurethane Foam Inventory

Polyurethane foam production involves mixing of formulated polyol produced by Dow Chemical Company with isocyanate and HCFC 141b and injecting the mixture to form PU foam at Sanyo Universal Electric Public Company Ltd. (SUE). The foam is then used as an insulator in refrigerators manufactured by Sanyo. This inventory includes all processes which involve a production of formulated polyol at Dow Chemical Company (from raw materials acquisition and preparation process to mixing process) and injection process at SUE to get 1 kg of polyurethane foam. All processes of polyurethane foam producing are shown in Figure 4.1. Details of input and output data collection of polyurethane production are shown in Table 4.1 which consists of raw materials, utilities, packaging, transportation and all emissions. Process flow diagram of each process in the PU production is shown in Figures 4.2, 4.3, and 4.4. Details of the input-output of the corresponding process are described in Tables 4.2 to Table 4.15. Raw materials of each process are shown in Tables 4.2, 4.6, and 4.10. Products and all wastes are shown in Tables 4.3, 4.7, and 4.11. Energy consumption of mixing and injection process are shown in Tables 4.8 and 4.12. Transportation of raw material and product is shown in Tables 4.5 and 4.14. Packaging used for all chemicals are listed in Tables 4.4 and 4.13. Lastly, all emission details are described in Tables 4.9 and 4.15. For transportation, there are three modes for both domestic and international transportations. For domestic transportation, some of polyether polyol (raw material) and the product (formulated polyol) are transported by pipe and 10-wheel truck and for international transportation, raw materials including polyether polyol, silicone surfactant, amine catalyst, HCFC, and isocyanate are transported by shipment (container ship). Figure 4.5 shows the input-output of overall process of the production of 1 kg polyurethane foam.




Figure 4.1 Polyurethane foam production processes.

| Input Data                            |                | Output Data                  |    |
|---------------------------------------|----------------|------------------------------|----|
| Type Unit                             |                | t Type U                     |    |
| Raw Materials                         |                | Product                      | -  |
| Polyether Polyol                      | kg             | Polyurethane Foam            | kg |
| Silicone Surfactant                   | kg             | Solid Wastes                 | -  |
| Amine Catalyst                        | kg             | Foam Scrap                   | kg |
| HCFC 141b                             | kg             | Contaminate Raw Material     | kg |
|                                       |                | Packaging                    |    |
| Isocyanate                            | kg             | Emission to Air              |    |
| Utilities                             |                | CN <sup>-</sup>              | mg |
| Water                                 | m <sup>3</sup> | NO <sub>2</sub>              | mg |
| Flectricity                           | kWh            | SO <sub>2</sub>              | mg |
| Others                                |                | СО                           | mg |
| Packaging                             |                | CO <sub>2</sub>              | mg |
| - Steel Drum                          | kg             | VOCs                         | mg |
| Transportation                        |                | Emission to Water            |    |
| - 10 Wheel                            | Times          | рН                           |    |
| - Shipment                            | Times          | ТОС                          | mg |
|                                       |                | TDS                          | mg |
|                                       |                | SS                           | mg |
|                                       |                | COD                          | mg |
|                                       |                | BOD                          | mg |
|                                       |                | Oil & Grease                 | mg |
|                                       | -              | Others                       |    |
|                                       |                | Flushing Polyol from Blender | kg |
| · · · · · · · · · · · · · · · · · · · |                | Off-Spec. Formulated Polyol  | kg |

# Table 4.1 Input-output data of polyurethane foam production

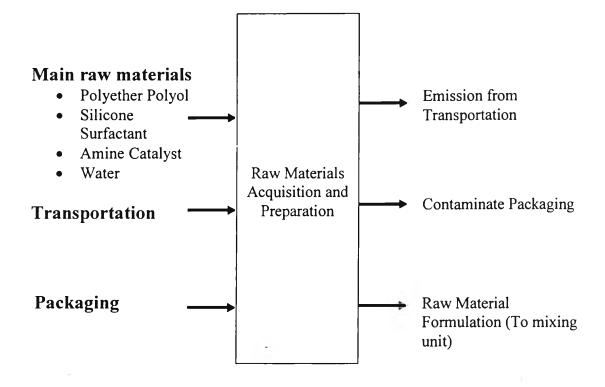



Figure 4.2 Input-output of raw materials acquisition and preparation.

**Table 4.2** Input details of raw materials acquisition and preparation process

| Inpu                | t           |
|---------------------|-------------|
| Туре                | Amount (kg) |
| Polyether Polyol    | 0.3344      |
| Silicone Surfactant | 0.0134      |
| Amine Catalyst      | 0.0042      |
| Water               | 0.005       |

 Table 4.3 Output details of raw materials acquisition and preparation process

| Output                   |                          |
|--------------------------|--------------------------|
| Туре                     | Amount /unit             |
| Raw material Formulation | 0.357 kg                 |
| Emission from Transport  | From program calculation |

|                           | Packaging   |                           |
|---------------------------|-------------|---------------------------|
| Туре                      | Amount (kg) | Remarks                   |
| Packaging (Steel Drum x3) | 0.0352      | Steel drum 21 Kg contains |
|                           |             | 200 L of each substance   |

#### Table 4.4 Packaging details of raw materials acquisition and preparation process

| Transportation         |                      |              |
|------------------------|----------------------|--------------|
| Туре                   | Amount (kgkm)        | Transport by |
| Polyether Polyol (20%) | 3.344E <sup>-3</sup> | Pipe         |
| Polyether Polyol (80%) | 727.168              | Shipment     |
| Silicone Surfactant    | 69.828               | Shipment     |
| Amine Catalyst         | 9.977                | Shipment     |

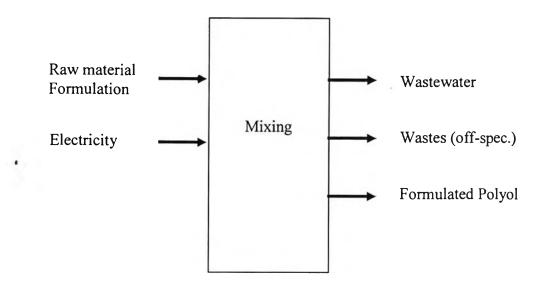



Figure 4.3 Input-output of mixing process.

### Table 4.6 Input details of mixing process

| Input                    |              |
|--------------------------|--------------|
| Туре                     | Amount /unit |
| Raw Material Formulation | 0.357 kg     |

#### Table 4.7 Output details of mixing process

| Output                                     |                      |  |
|--------------------------------------------|----------------------|--|
| Туре                                       | Amount (kg)          |  |
| Formulated Polyol                          | 0.3552               |  |
| Flushing Polyol from Blender               | 4.55E <sup>-4</sup>  |  |
| Discontinued Off-Shelf formulation Product | 1.35 E <sup>-3</sup> |  |

 Table 4.8 Energy consumption of mixing process

| Energy Consumption |              |  |
|--------------------|--------------|--|
| Туре               | Amount /unit |  |
| Electricity        | 0.0504 kWh   |  |

 Table 4.9 Characteristics of wastewater from mixing process

| Wastewater   |   |                     |
|--------------|---|---------------------|
| Туре         | • | Amount (mg)         |
| ТОС          |   | 5.33E <sup>-3</sup> |
| TDS          |   | 0.2879              |
| SS           |   | 5.33E <sup>-3</sup> |
| COD          |   | 0.0213              |
| BOD          |   | 2.25E <sup>-3</sup> |
| Oil & Grease |   | 4.10E <sup>-4</sup> |

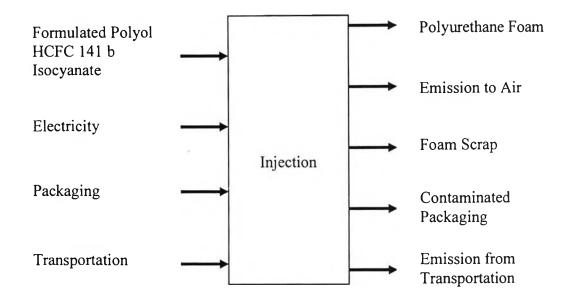



Figure 4.4 Input-output of injection process.

 Table 4.10 Input details of injection process

|                      | Input       |
|----------------------|-------------|
| Туре                 | Amount (kg) |
| Formulated Polyol    | 0.3552      |
| HCFC 141b            | 0.1065      |
| Papi 27 (Isocyanate) | 0.5433      |

 Table 4.11
 Output details of injection process

| • Output                |                          |  |
|-------------------------|--------------------------|--|
| Туре                    | Amount /unit             |  |
| Polyurethane Foam       | 1 kg                     |  |
| Foam Scrap              | 0.005 kg                 |  |
| Emission from Transport | From program calculation |  |

## Table 4.12 Energy consumption of injection process

| Energy Consumption |              |  |
|--------------------|--------------|--|
| Туре               | Amount /unit |  |
| Electricity        | 0.0124 kWh   |  |

## Table 4.13 Packaging details of injection process

| Packaging                 |             |                           |
|---------------------------|-------------|---------------------------|
| Туре                      | Amount (kg) | Remarks                   |
| Packaging (Steel Drum x3) | 0.101       | Steel drum 21 Kg contains |
|                           |             | 200 L of each substance   |

### Table 4.14 Transportation details of injection process

| Transportation       |               |              |
|----------------------|---------------|--------------|
| Туре                 | Amount (kgkm) | Transport by |
| Formulated Polyol    | 71.04         | 10 wheel     |
| HCFC 141b (50%)      | 134.8258      | Shipment     |
| HCFC 141b (50%)      | 60.9545       | Shipment     |
| Papi 27 (Isocyanate) | 6,858.6953    | Shipment     |

•

| Emission to Air |                     |  |
|-----------------|---------------------|--|
| Туре            | Amount (mg)         |  |
| CN <sup>-</sup> | 8.55E <sup>-8</sup> |  |
| VOCs            | 3.49E <sup>-8</sup> |  |
| CO <sub>2</sub> | 0.0262              |  |
| СО              | 4.81E <sup>-5</sup> |  |
| NO <sub>2</sub> | 8.21E <sup>-6</sup> |  |
| SO <sub>2</sub> | 8.55E <sup>-8</sup> |  |

## Table 4.15 Details of air emission from injection process

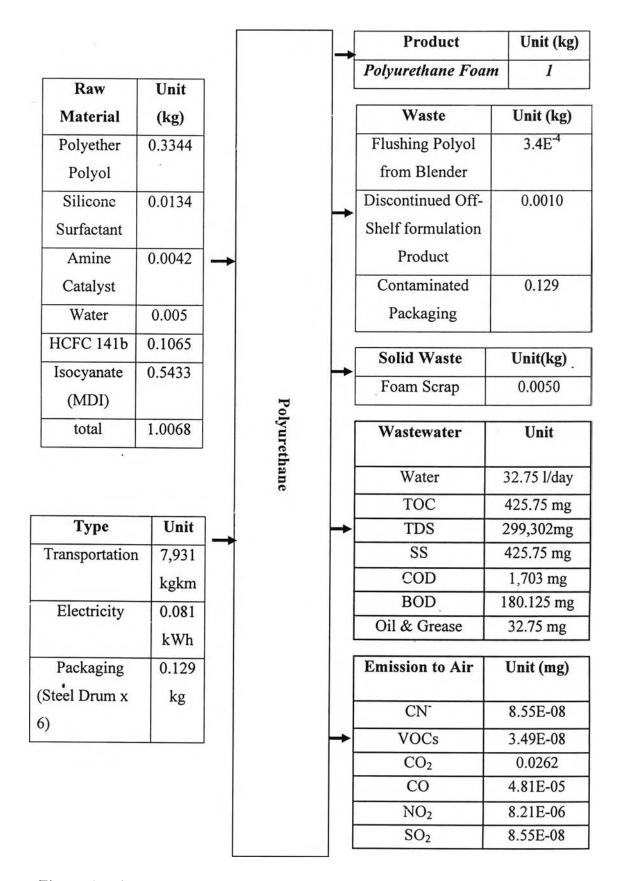



Figure 4.5 Overall input-output of polyurethane foam production (based on 1 kg).

#### 4.1.2 General Purpose Polystyrene (GPPS) Inventory

The processes for the production of general purpose polystyrene or GPPS are shown in Figure 4.6. Basically, there are 7 processes which include mixing of raw materials, which are styrene monomer, ethyl benzene, initiator (organic peroxide), and some additives, polymerization, devolatilization, styrene monomer recovery, extrusion, packaging, and injection. All processes except injection are performed at Dow Chemical Company whereas the injection is done at SUE to produce some parts of Sanyo refrigerator such as shelf, egg tray, etc. Consequently, LCI is performed on these 7 processes based on the production of 1 kg GPPS. Details of input and output data collection are shown in Table 4.16. Process flow diagram of each process is shown in Figures 4.7 to 4.13. Details input-output of each process step are described in Table 4.17 to Table 4.38. Raw materials and energy consumption of each process are described in Tables 4.17, 4.20, 4.22, 4.25, 4.28, 4.30 and 4.34 whereas the products and all emissions are shown in Tables 4.18, 4.21, 4.23, 4.26, 4.29, 4.31, and 4.35. Details of transportation (mode and distance) of raw materials, products and packaging materials for both domestic and international are demonstrated in Tables 4.19, 4.32, and 4.36. Raw materials are transported in domestic by pipe and in international by shipment (container ship) whereas the products are transported by 6-wheel and 10-wheel trucks. Packaging materials for GPPS pellet (polyethylene tilm) and clear shelf (polypropylene film) are also transported by trucks (both 6 wheels and 10 wheels). The amounts of packaging materials used are shown in Tables 4.33 and 3.37. Details of the emissions are described in Tables 4.24, 4.27 and 4.38. Figure 4.14 shows overall input-output of the production of 1 kg GPPS. .

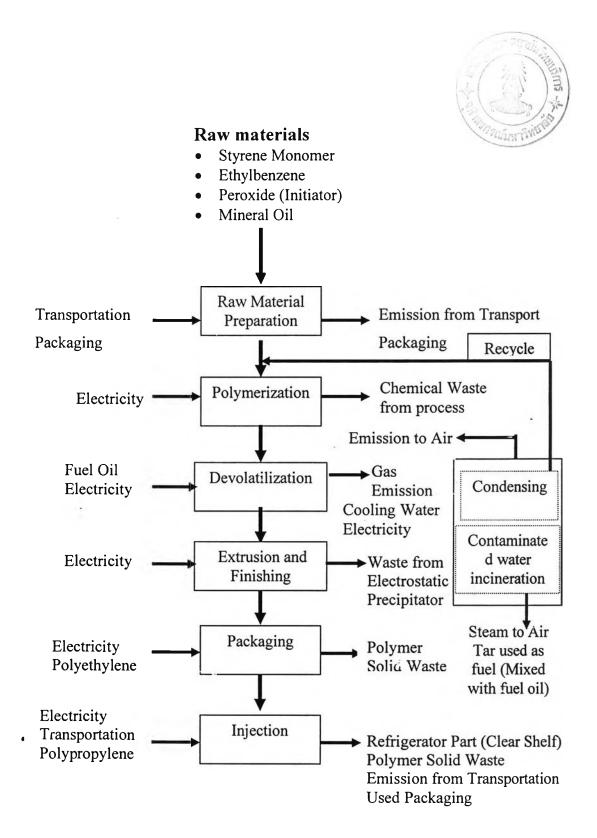



Figure 4.6 General purpose polystyrene production processes.

| Input Data           |                | Output Data             |      |
|----------------------|----------------|-------------------------|------|
| Туре                 | Unit           | Туре                    | Unit |
| Raw Materials        |                | Product                 |      |
| Styrene Monomer      | kg             | General Purpose         | kg   |
|                      |                | Polystyrene Pellet      |      |
| Ethylbenzene         | kg             | Solid Wastes            |      |
| Peroxide (Initiator) | kg             | Polystyrene Scrap       | kg   |
| White Mineral Oil    | kg             | Contaminate Raw         | kg   |
|                      |                | Material Packaging      |      |
| Utilities            |                | Emission to Air         |      |
| Water                | m <sup>3</sup> | TSP                     | mg   |
| Electricity          | kWh            | NO <sub>2</sub>         | mg   |
| Others               | _              | SO <sub>2</sub>         | mg   |
| Packaging            |                | СО                      | mg   |
| - Polypropylene      | kg             | CO <sub>2</sub>         | mg   |
| - Polyethylene       | kg             | Total Hydrocarbon (THC) | mg   |
| Transportation       |                | Antimony (Sb)           | mg   |
| - 10 Wheel           | Times          | VOCs                    | mg   |
| - Shipment           | Times          | Others                  |      |
|                      | 1              | Chemical Waste          | kg   |

٠

# Table 4.16 Input-output data of general purpose polystyrene production

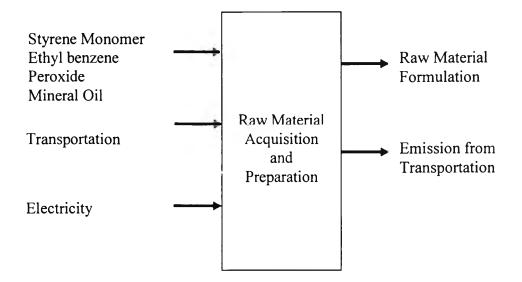



Figure 4.7 Input-output of raw material acquisition and preparation process.

 Table 4.17 Input details of raw materials acquisition and preparation process

| 1                           | Input        |
|-----------------------------|--------------|
| Туре                        | Amount /unit |
| Styrene monomer             | 0.8392 kg    |
| Ethyl Benzene               | 0.0859 kg    |
| White Mineral Oil (Naphtha) | 0.0303 kg    |
| Peroxide                    | 0.0556 kg    |
| Electricity                 | 0.1342 kWh   |

**Table 4.18** Output details of raw materials acquisition and preparation process

| Outp                         | put                      |  |
|------------------------------|--------------------------|--|
| Type Amount /unit            |                          |  |
| Raw Materials Formulation    | 1.011 kg                 |  |
| Emission from Transportation | From program calculation |  |

| Transportation    |               |              |
|-------------------|---------------|--------------|
| Туре              | Amount (kgkm) | Transport by |
| Styrene monomer   | 1.6784        | Pipe         |
| Ethyl Benzene     | 0.17178       | Pipe         |
| White Mineral Oil | 81.922        | Shipment     |
| Peroxide          | 882.089       | Shipment     |
|                   |               |              |

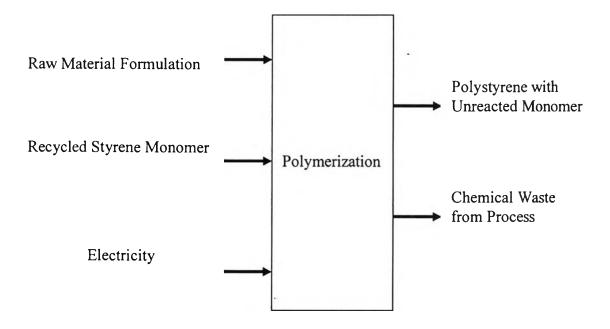



Figure 4.8 Input-output of polymerization process.

 Table 4.20 Input details of polymerization process

| Input                     |                        |
|---------------------------|------------------------|
| Туре                      | Amount /unit           |
| Raw Materials Formulation | 1.011 kg               |
| Recycled Styrene Monomer  | 4.92E <sup>-3</sup> kg |
| Electricity               | 0.0451 kWh             |

 Table 4.19 Transportation details of raw materials acquisition and preparation

 process

### Table 4.21 Output details of polymerization process

| Output                             |                     |
|------------------------------------|---------------------|
| Туре                               | Amount (kg)         |
| Polystyrene with Unreacted Monomer | 1.0121              |
| Chemical Waste from Process        | 3.89E <sup>-3</sup> |

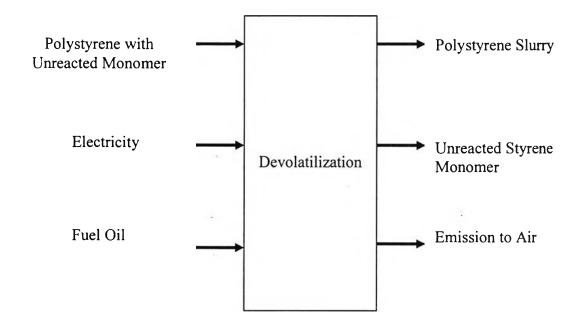



Figure 4.9 Input-output of devolatilization process.

#### Table 4.22 Input details of devolatilization process

| Input        |  |
|--------------|--|
| Amount /unit |  |
| 1.0121 kg    |  |
| 0.1426 kWh   |  |
| 5.76 Btu     |  |
|              |  |

# Table 4.23 Output details of devolatilization process

| Output                    |                  |
|---------------------------|------------------|
| Туре                      | Amount (kg)      |
| Polystyrene Slurry        | 1.0051           |
| Unreacted Styrene Monomer | 7E <sup>-3</sup> |

### Table 4.24 Details of air emission from devolatilization process

| Emission        | n to Air    |
|-----------------|-------------|
| Туре            | Amount (mg) |
| TSP             | 0.48        |
| NO <sub>2</sub> | 2.87        |

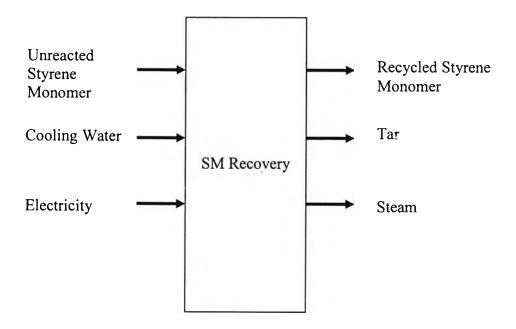



Figure 4.10 Input-output of SM recovery process.

## Table 4.25 Input details of SM recovery process

| Input                     |              |
|---------------------------|--------------|
| Туре                      | Amount /unit |
| Unreacted Styrene Monomer | $7E^{-3}$ kg |
| Cooling Water             | 5.9496 kg    |
| Electricity               | 0.0441 kWh   |

 Table 4.26
 Output details of SM recovery process

1.1

| Output                   |                     |
|--------------------------|---------------------|
| Туре                     | Amount (kg)         |
| Recycled Styrene Monomer | 4.92E <sup>-3</sup> |
| Tar                      | 2.08E <sup>-3</sup> |
| Steam                    | 5.9496              |

 Table 4.27 Details of air emission from SM recovery process

| Emissi          | on to Air   |
|-----------------|-------------|
| Туре            | Amount (mg) |
| TSP             | 83.38       |
| NO <sub>2</sub> | 4.59        |
| СО              | 0.89        |
| THC             | 0.69        |

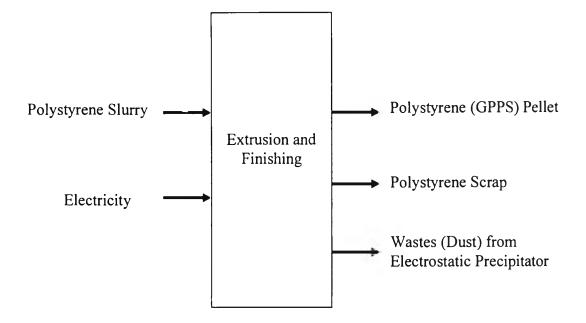



Figure 4.11 Input-output of extrusion and finishing process.

 Table 4.28
 Input details of extrusion and finishing process

| Input              |              |
|--------------------|--------------|
| Туре               | Amount /unit |
| Polystyrene Slurry | 1.0051 kg    |
| Electricity        | 0.0124 kWh   |

 Table 4.29
 Output details of extrusion and finishing process

| Output                                        |                        |  |
|-----------------------------------------------|------------------------|--|
| Туре                                          | Amount /unit           |  |
| Polystyrene (GPPS) Pellet                     | 1 kg                   |  |
| Polystyrene Scrap                             | 4.52E <sup>-3</sup> kg |  |
| Wastes (Dust) from Electrostatic Precipitator |                        |  |
| TSP                                           | 0.47 mg                |  |
| THC                                           | 0.24 mg                |  |
| Sb                                            | 5.87E <sup>-4</sup> mg |  |

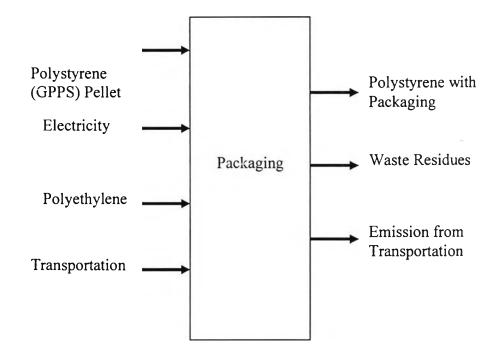
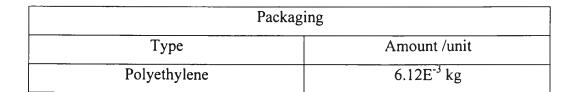



Figure 4.12 Input-output of packaging process.

 Table 4.30 Input details of packaging process

| Input                     |              |  |
|---------------------------|--------------|--|
| Туре                      | Amount /unit |  |
| Polystyrene (GPPS) Pellet | 1 kg         |  |
| Electricity               | 0.0117 kWh   |  |


 Table 4.31
 Output details of packaging process

| Output                       |                          |  |
|------------------------------|--------------------------|--|
| Туре                         | Amount /unit             |  |
| Polystyrene with Packaging   | 1.0044 kg                |  |
| Waste Residues               | 1.72E <sup>-3</sup> kg   |  |
| Emission from Transportation | From program calculation |  |

| Table 4.32 | Transportation | details of j | packaging process |
|------------|----------------|--------------|-------------------|
|            |                |              |                   |

| Transportation |               |              |
|----------------|---------------|--------------|
| Туре           | Amount (kgkm) | Transport by |
| Polyethylene   | 1.5361        | 10 Wheel     |

#### Table 4.33 Packaging details of packaging process



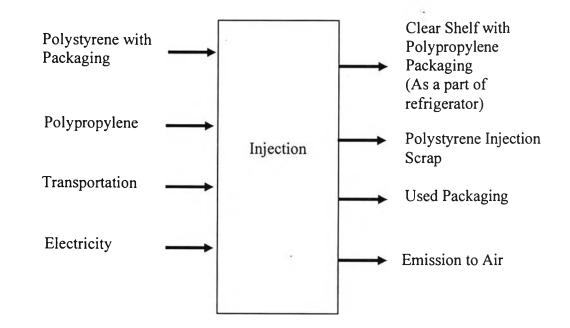



Figure 4.13 Input-output of injection process.

## Table 4.34 Input details of injection process

| Input                      |              |  |
|----------------------------|--------------|--|
| Туре                       | Amount /unit |  |
| Polystyrene with Packaging | 1.0044 kg    |  |
| Electricity                | 3.552 kWh    |  |

### Table 4.35 Output details of injection process

| Output                         |                          |  |
|--------------------------------|--------------------------|--|
| name                           | Amount /unit             |  |
| Clear Shelf with Polypropylene | 0.7937 kg                |  |
| Packaging                      |                          |  |
| Polystyrene Injection Scrap    | 0.2113 kg                |  |
| Used Packaging                 | 0.0044 kg                |  |
| Emission from Transportation   | From program calculation |  |

 Table 4.36
 Transportation details of injection process

| Transportation                           |          |         |  |
|------------------------------------------|----------|---------|--|
| TypeAmount (kgkm)Transpo                 |          |         |  |
| Polystyrene with Packaging               | 376.65   | 6 Wheel |  |
| Clear Shelf with Polypropylene Packaging | 297.6375 | 6 Wheel |  |
| Polypropylene Film                       | 0.15     | 6 Wheel |  |

 Table 4.37 Packaging details of injection process

| Packag             | ing                |
|--------------------|--------------------|
| Туре               | Amount (kg)        |
| Polypropylene Film | 5.0E <sup>-3</sup> |

| Emission to Air |                     |
|-----------------|---------------------|
| Туре            | Amount (mg)         |
| TSP             | 0.91                |
| SO <sub>2</sub> | 0.001               |
| NO <sub>2</sub> | 0.01                |
| СО              | 0.057               |
| CO <sub>2</sub> | 285.712             |
| VOCs            | 4.08E <sup>-4</sup> |

10

# Table 4.38 Details of air emission from injection process

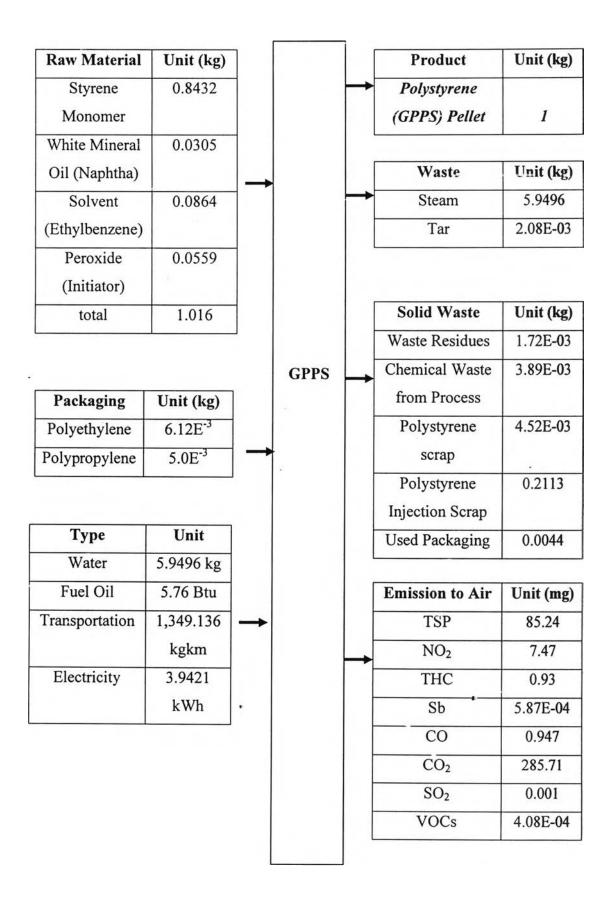



Figure 4.14 Overall input-output of general purpose polystyrene production.

#### 4.1.3 <u>High Impact Polystyrene (HIPS) Inventory</u>

The processes for the production of high impact polystyrene or HIPS are similar those of GPPS as shown in Figure 4.15 which consist of 7 processes including raw materials mixing and preparation, polymerization, devolatilization, styrene monomer recovery, extrusion, packaging, and injection. The only difference between HIPS and GPPS processes is in raw materials where HIPS also include polybutadiene rubber to improve the quality of the polystyrene. All processes except injection are performed at Dow Chemical Company whereas the injection is done at SUE to produce some parts of Sanyo refrigerator such as side air duct, etc. Similar to GPPS, LCI is performed on these 7 processes based on the production of 1 kg HIPS. Details of input and output data collection are shown in Table 4.39. The process flow diagram of each process of HIPS production is illustrated in Figures 4.16 to 4.22. Details input-output of each process step are described in Table 4.40 to Table 4.60. Raw materials and energy consumption of each process are shown in Tables 4.40, 4.43, 4.45, 4.48, 4.51, 4.53 and 4.57. Products and all waste emissions are demonstrated in Tables 4.41, 4.44, 4.46, 4.49, 4.52, 4.53, and 4.58. Transportations of raw material, products, and packaging materials for both domestic and international are described in Tables 4.42, 4.55, and 4.59. Transportation modes for raw materials, product, and packaging are similar to those of GPPS. Details of HIPS pellet packaging is shown in Table 4.56 whereas the emission details are described in Tables 4.47, 4.50 and 4.60. Figure 4.23 shows overall input-output of the production of 1 kg HIPS.

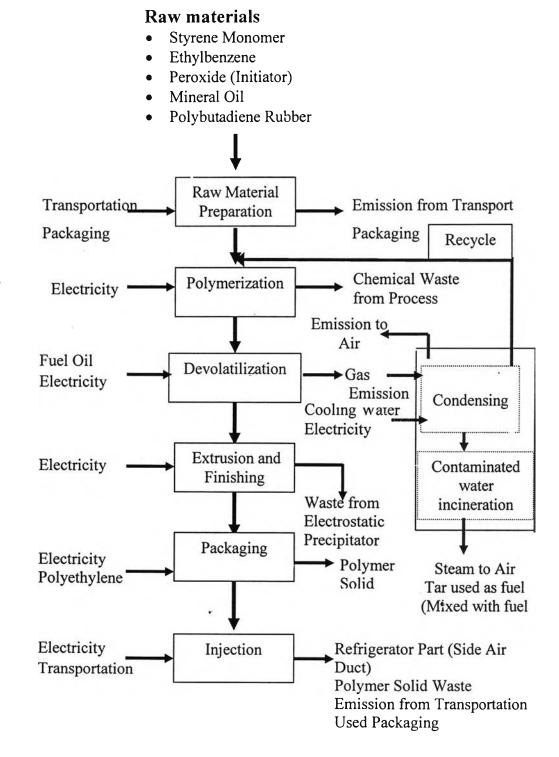



Figure 4.15 High impact polystyrene (HIPS) processes.

| Input Data           |                | Output Data              |      |
|----------------------|----------------|--------------------------|------|
| Туре                 | Unit           | Туре                     | Unit |
| Raw Materials        |                | Product                  |      |
| Polystyrene Monomer  | kg             | High Impact Polystyrene  | kg   |
|                      |                | Pellet                   |      |
| Ethylbenzene         | kg             | Solid Wastes             |      |
| Peroxide (Initiator) | kg             | Polystyrene Scrap        | kg   |
| Butadiene Rubber     | kg             | Contaminate Raw Material | kg   |
|                      |                | Packaging                |      |
| White Mineral Oil    | kg             | Rubberized Slurry        | kg   |
| Utilities            |                | Emission to Air          |      |
| Water                | m <sup>3</sup> | TSP                      | mg   |
| Electricity          | kWh            | NO <sub>2</sub>          | mg   |
| Others               |                | SO <sub>2</sub>          | mg   |
| Packaging            |                | СО                       | mg   |
| - Polyethylene       | kg             | CO <sub>2</sub>          | mg   |
| Transportation       |                | Total Hydrocarbon (THC)  | mg   |
| - 10 Wheel           | Times          | Antimony (Sb)            | mg   |
| - Shipment           | Times          | VOCs                     | mg   |
|                      |                | Others                   |      |
|                      |                | Chemical Waste           | kg   |

 Table 4.39 Input-output data of high impact polystyrene (HIPS) production

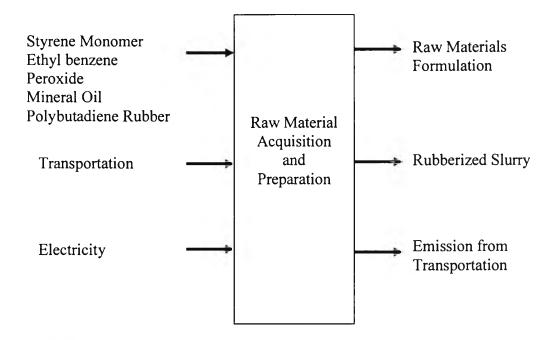



Figure 4.16 Input-output of raw material acquisition and preparation process

| Input                       |              |  |
|-----------------------------|--------------|--|
| Туре                        | Amount /unit |  |
| Styrene monomer 0.84 kg     |              |  |
| Polybutadiene Rubber        | 0.12 kg      |  |
| Ethyl Benzene               | 0.03 kg      |  |
| White Mineral Oil (Naphtha) | 0.028 kg     |  |
| Peroxide                    | 0.058 kg     |  |
| Electricity                 | 0.0482 kWh • |  |

**Table 4.40** Input details of raw material acquisition and preparation process

| Output                       |                          |
|------------------------------|--------------------------|
| Type Amount /unit            |                          |
| Raw Materials Formulation    | 1.048 kg                 |
| Rubberized Slurry            | 0.028 kg                 |
| Emission from Transportation | From program calculation |

 Table 4.41
 Output details of raw material acquisition and preparation process

**Table 4.42**Transportation details of raw material acquisition and preparationprocess

| Transportation       |               |              |
|----------------------|---------------|--------------|
| Туре                 | Amount (kgkm) | Transport by |
| Styrene monomer      | 1.68          | Pipe         |
| Ethyl Benzene        | 0.06          | Pipe         |
| Polybutadiene Rubber | 1903.7892     | Shipment     |
| White Mineral Oil    | 75.7035       | Shipment     |
| Peroxide             | 920.1648      | Shipment     |

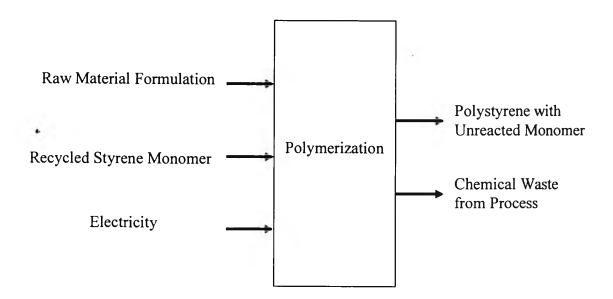



Figure 4.17 Input-output of polymerization process.

| Table 4.43 | Input | details of | polymerization | process |
|------------|-------|------------|----------------|---------|
|------------|-------|------------|----------------|---------|

| Input                    |                       |
|--------------------------|-----------------------|
| Туре                     | Amount /unit          |
| Raw Material Formulation | 1.048 kg              |
| Recycled Styrene Monomer | 5.0E <sup>-3</sup> kg |
| Electricity              | 0.0161 kWh            |

 Table 4.44
 Output details of polymerization process

| Output                             |                     |
|------------------------------------|---------------------|
| Туре                               | Amount (kg)         |
| Polystyrene with Unreacted Monomer | 1.0141              |
| Chemical Waste from Process        | 3.89E <sup>-2</sup> |

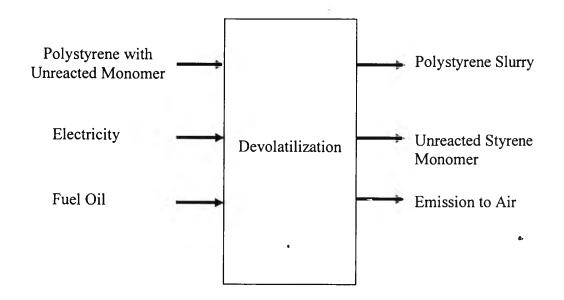



Figure 4.18 Input-output of devolatilization process.

### Table 4.45 Input details of devolatilization process

| Input                              |              |
|------------------------------------|--------------|
| Туре                               | Amount /unit |
| Polystyrene with Unreacted Monomer | 1.0141 kg    |
| Electricity                        | 0.051 kWh    |
| Fuel Oil                           | 2.05716 Btu  |

## Table 4.46 Output details of devolatilization process

.

| Output                    |                    |
|---------------------------|--------------------|
| Туре                      | Amount (kg)        |
| Polystyrene Slurry        | 1.0067             |
| Unreacted Styrene Monomer | 7.4E <sup>-3</sup> |

 Table 4.47 Details of emission to air from devolatilization process

| Emission to Air |             |
|-----------------|-------------|
| Туре            | Amount (mg) |
| TSP             | 1.475       |
| NO <sub>2</sub> | 26.964      |

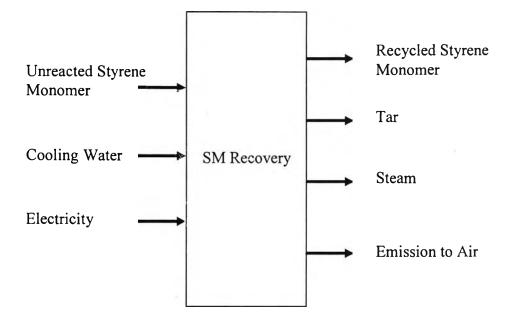



Figure 4.19 Input-output of SM recovery process.

 Table 4.48 Input details of SM recovery process

| Input                     |                       |
|---------------------------|-----------------------|
| Туре                      | Amount /unit          |
| Unreacted Styrene Monomer | 7.4E <sup>-3</sup> kg |
| Cooling Water             | 5.9496 kg             |
| Electricity               | 0.0158 kWh            |

 Table 4.49 Input details of SM recovery process

| Output              |  |
|---------------------|--|
| Amount (kg)         |  |
| 5.0E <sup>-3</sup>  |  |
| 2.08E <sup>-3</sup> |  |
| 5.9496              |  |
|                     |  |

| Emission to Air |             |
|-----------------|-------------|
| Туре            | Amount (mg) |
| TSP             | 244.672     |
| NO <sub>2</sub> | 12.858      |
| СО              | 2.502       |
| THC             | 1.94        |

#### Table 4.50 Details of emission to air from SM recovery process

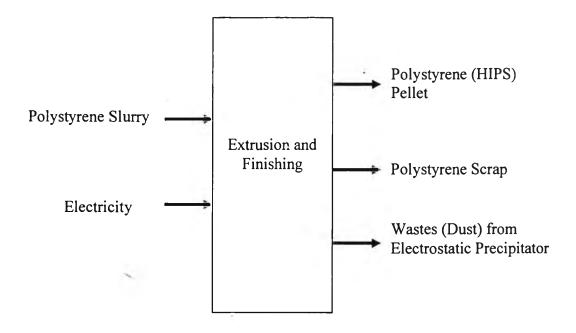
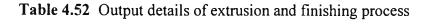




Figure 4.20 Input-output of extrusion and finishing process.

 Table 4.51 Input details of extrusion and finishing process

| Input              |                        |
|--------------------|------------------------|
| Туре               | Amount /unit           |
| Polystyrene Slurry | 1.0067 kg              |
| Electricity        | 4.4E <sup>-3</sup> kWh |

| Output                                        |                       |
|-----------------------------------------------|-----------------------|
| Туре                                          | Amount /unit          |
| Polystyrene (HIPS) Pellet                     | 1 kg                  |
| Polystyrene Scrap                             | 6.6E <sup>-3</sup> kg |
| Wastes (Dust) from Electrostatic Precipitator |                       |
| TSP                                           | 0.468 mg              |
| THC                                           | 0.678 mg              |
| Sb                                            | 1.6E <sup>-3</sup> mg |



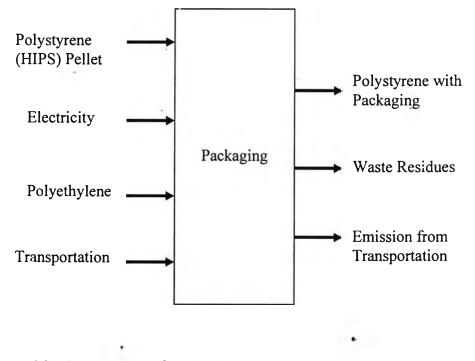



Figure 4.21 Input-output of packaging process.

### Table 4.53 Input details of packaging process

| Input                     |                 |
|---------------------------|-----------------|
| Туре                      | Amount /unit    |
| Polystyrene (HIPS) Pellet | 1 kg            |
| Electricity               | $4.2E^{-3}$ kWh |

 Table 4.54
 Output details of packaging process

| Output                       |                          |
|------------------------------|--------------------------|
| Туре                         | Amount /unit             |
| Polystyrene with Packaging   | 1.0044 kg                |
| Emission from Transportation | From program calculation |
| Waste Residues               | 1.72E <sup>-3</sup> kg   |

 Table 4.55
 Transportation details of packaging process

| Transportation |               |              |
|----------------|---------------|--------------|
| Туре           | Amount (kgkm) | Transport by |
| Polyethylene   | 1.5361        | 10 Wheel     |

 Table 4.56
 Packaging details of packaging process

| Packaging    |                        |
|--------------|------------------------|
| Туре         | Amount /unit           |
| Polyethylene | 6.12E <sup>-3</sup> kg |

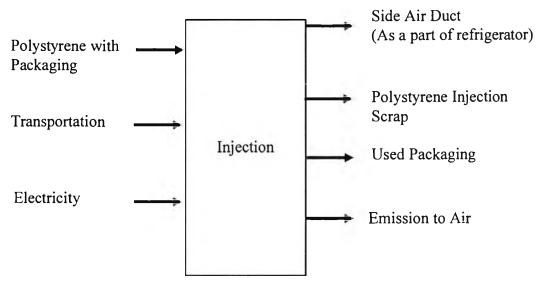



Figure 4.22 Input-output of injection process.

 Table 4.57 Input details of injection process

| Input                      |              |
|----------------------------|--------------|
| Туре                       | Amount /unit |
| Polystyrene with Packaging | 1.0044 kg    |
| Electricity                | 3.552 kWh    |

 Table 4.58
 Output details of injection process

| Output                       |                          |
|------------------------------|--------------------------|
| Туре                         | Amount /unit             |
| Side Air Duct                | 0.5261 kg                |
| Polystyrene Injection Scrap  | 0.4739 kg                |
| Used Packaging               | 0.0044 kg                |
| Emission from Transportation | From program calculation |

| <b>Table 4.59</b> | Transportation | details of injection process |
|-------------------|----------------|------------------------------|
|-------------------|----------------|------------------------------|

| Transportation             |               |              |  |  |  |  |  |
|----------------------------|---------------|--------------|--|--|--|--|--|
| Туре                       | Amount (kgkm) | Transport by |  |  |  |  |  |
| Polystyrene with Packaging | 376.65        | 6 Wheel      |  |  |  |  |  |
| Side Air Duct              | 197.2875      | 6 Wheel      |  |  |  |  |  |

 Table 4.60 Details of air emission from injection process

| Emission to Air |                    |  |  |  |  |  |  |
|-----------------|--------------------|--|--|--|--|--|--|
| Туре            | Amount (mg)        |  |  |  |  |  |  |
| TSP             | 0.916              |  |  |  |  |  |  |
| SO <sub>2</sub> | 0.001              |  |  |  |  |  |  |
| NO <sub>2</sub> | 0.012              |  |  |  |  |  |  |
| СО              | 0.057              |  |  |  |  |  |  |
| CO <sub>2</sub> | 285.712            |  |  |  |  |  |  |
| VOCs            | 4.0E <sup>-4</sup> |  |  |  |  |  |  |

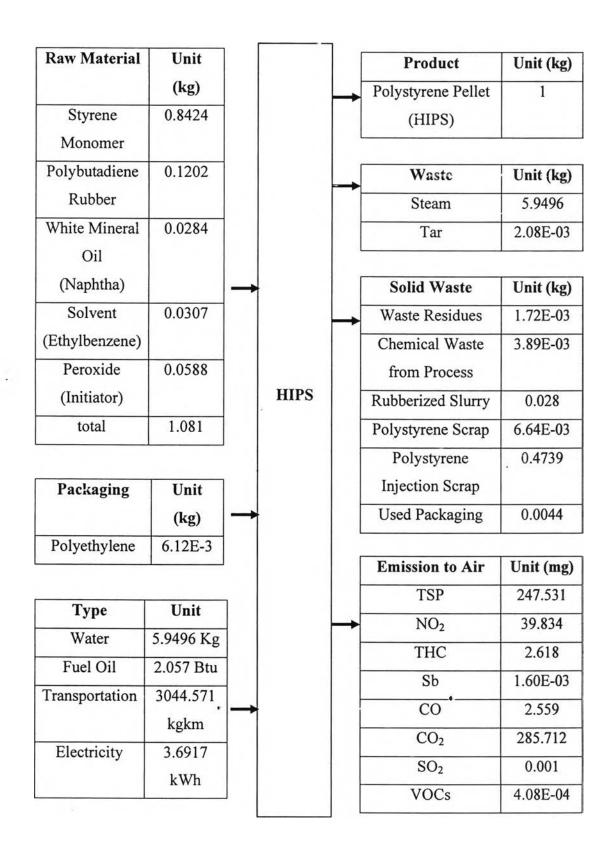
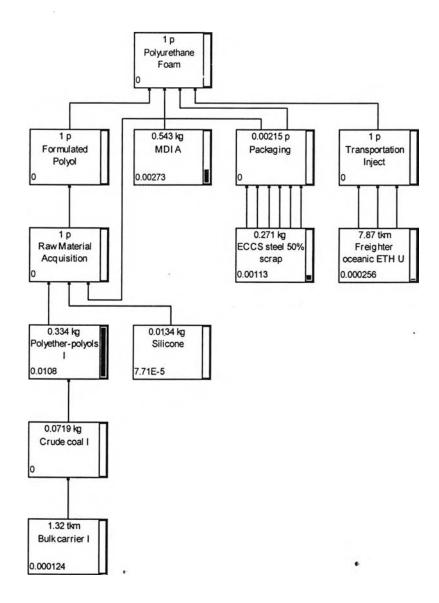
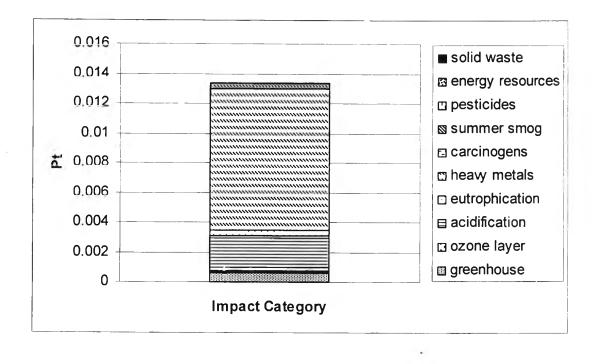


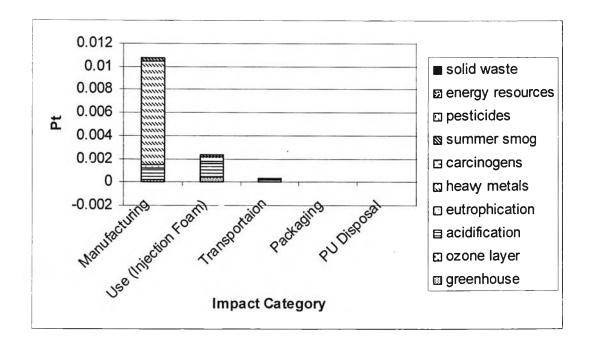

Figure 4.23 Overall input-output of HIPS processes.

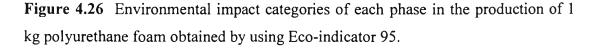

## 4.2 Environmental Impact Assessment

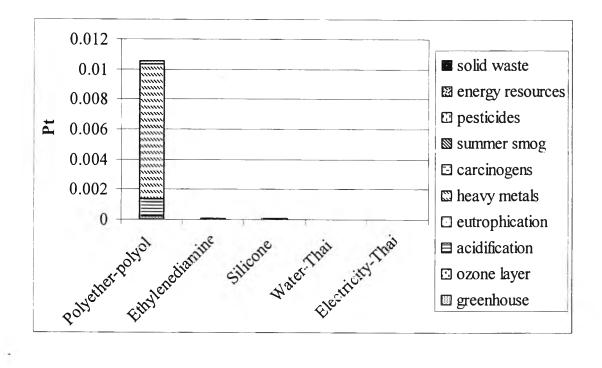
After the life cycle inventory (LCI) was carried out, life cycle impact assessment (LCIA) could then be performed based on the quantitative information attained from LCI study in order to identify the environmental impacts from the production of the three model petrochemical products, PU foam, GPPS, and HIPS. This was done by using the commercial LCA software - SimaPro 5.1 - with Eco-Indicator 95 and Eco-Indicator 99 for environmental impact assessment. Eco-Indicator 95 is a mid-point approach to the impact assessment whereas Eco-Indicator 99 is an end-point approach. The environmental categories being the focus in this research are global warming, stratospheric ozone depletion, acidification, recourse depletion, and carcinogenic affect from carcinogen substances (human health damage). In this part of the study, the results from Eco-Indicator 95 were firstly presented followed by the results from Eco-Indicator 99. In addition, the comparison between the two methods was also discussed.


## 4.2.1 Environmental Impact Assessment of Polyurethane Foam

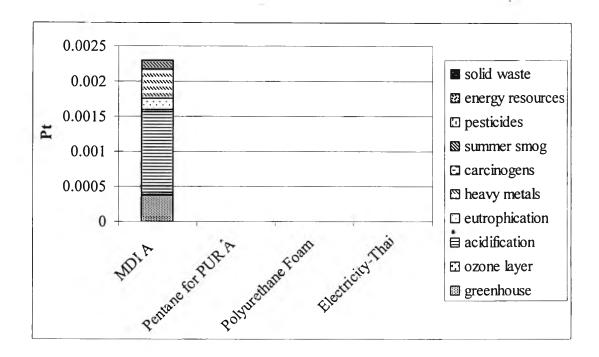
Using Eco-indicator 95, the overall results of the production of 1 kg PU foam shown in Figure 4.24 indicates the environmental impacts mainly come from raw materials used in the manufacturing processes which are chemicals such as polyether polyol and isocyanate (MDI) as indicated by the level of the bar in each block diagram. Figure 4.25 reveals that heavy metals and acidification are the major environmental impact categories of the overall PU process. The comparison of the environmental impact for all 5 phases of PU foam production shown in Figure 4.26 illustrates that the manufacturing phase contributes most followed by the use phase (injection) and transportation whereas the contributions from packaging and disposal phases are shown to be negligible. In the manufacturing phase, Figure 4.27 shows that the environmental impact is essentially from polyether polyol of which its production contributes mainly in heavy metals and acidification. Figure 4.28 shows the environmental impact assessment for the use phase where the main contribution


is from isocyanate (MDI). Heavy metals, acidification, greenhouse gases, and carcinogens are the main impact categories resulted from MDI production.





**Figure 4.24** Overall results of the environmental impact assessment of the production of 1 kg polyurethane obtained by using Eco-Indicator 95.




**Figure 4.25** Environmental impact categories of 1 kg polyurethane foam production obtained by using Eco-indicator 95.







**Figure 4.27** Environmental impact categories of the manufacturing phase in the production of 1 kg polyurethane foam obtained by using Eco-Indicator 95.



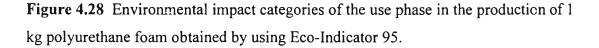



Table 4.61 shows the results of the environmental impact assessment using Eco-indicator 95 and presented in terms of equivalent units for each impact category for the production of 1 kg polyurethane foam. It can be seen that the production of 1 kg of PU foam utilizes energy resources equivalent to 79.9 MJ LHV and generates green house gases equivalent to 3.34 kg of CO<sub>2</sub>, solid wastes 1.76 kg, acidification equivalent to  $2.7E^{-2}$  kg of SO<sub>2</sub>, heavy metals  $1.04E^{-4}$  kg of Pb equivalent, ozone layer depletion substances equivalent to  $3.47E^{-7}$  kg of CFC11, and carcinogenic effect equivalent to  $8.34E^{-9}$  kg of benzo(a)pyrene. Energy is mostly consumed in the use phase (approximately 64%) which involves injection of formulated polyol and other chemicals to produce PU foam. Greenhouse gases are generated mainly from manufacturing and use phases which account for 38% and 58%, respectively. Manufacturing phase also contributes most to the solid wastes being generated in the production of PU foam (38%). For acidification, the manufacturing and use phases share 40% and 50% of the total SO<sub>2</sub> kg-equivalent emitted in the production of PU foam. For packaging phase, the result gives minus value in summer smog and carcinogens. This means, it benefits for environment because PU foam packaging dispose by 20% recycle and 20% incineration for using as energy.

Table 4.62 and Table 4.63 show the environmental impacts in equivalent units for the manufacturing phase and use phase, respectively. For manufacturing phase, it can be obviously seen from the result that polyether polyol contributes most in almost all impact categories, except ozone layer depletion and carcinogens where silicone-based surfactant and ethylenediamine are the main contributors. For use phase, isocyanate (MDI), extensively used in injection process, has been shown to contribute most in all impact categories.

| Impact Category  | Unit                             | Total                | Manufacturing        | Use                  | Packaging             | Transportation       | PU Disposal          |
|------------------|----------------------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|
| Energy resources | MJ LHV                           | 79.9                 | 27.2                 | 51.5                 | 9.55E <sup>-2</sup>   | 1.09                 | 0                    |
| Greenhouse       | kg CO <sub>2</sub>               | 3.34                 | 1.28                 | 1.95                 | 2.61 E <sup>-2</sup>  | 7.96 E <sup>-2</sup> | 0                    |
| Solid waste      | kg                               | 1.76                 | 6.64 E <sup>-1</sup> | 7.28 E <sup>-2</sup> | 2.12 E <sup>-2</sup>  | 0                    | 1                    |
| Acidification    | kg SO <sub>2</sub>               | 2.69 E <sup>-2</sup> | 1.1 E <sup>-2</sup>  | 1.38 E <sup>-2</sup> | 8.88 E <sup>-5</sup>  | 2.07 E <sup>-3</sup> | 0                    |
| Eutrophication   | kg PO₄                           | 2.96 E <sup>-3</sup> | $1.62 E^{-3}$        | 1.2 E <sup>-3</sup>  | 7.18 E <sup>-6</sup>  | 1.31 E <sup>-4</sup> | 0                    |
| Summer smog      | kg C <sub>2</sub> H <sub>4</sub> | 2.67 E <sup>-3</sup> | 1.65 E <sup>-3</sup> | 9.65 E <sup>-₄</sup> | -5.36 E <sup>-5</sup> | 1.08 E <sup>-4</sup> | 0                    |
| Heavy metals     | kg Pb                            | 1.04 E <sup>-₄</sup> | 9.8 E <sup>-5</sup>  | 4.47 E <sup>-6</sup> | 505 E <sup>-7</sup>   | 3.14 E <sup>-7</sup> | 3.83 E <sup>-7</sup> |
| Ozone layer      | kg CFC11                         | 3.47 E <sup>-7</sup> | 1.2 E <sup>-7</sup>  | 8.65E <sup>-8</sup>  | 3.27E <sup>-9</sup>   | 1.38 E <sup>-7</sup> | 0                    |
| Carcinogens      | kg B(a)P**                       | 8.34E <sup>-9</sup>  | 4.37E <sup>-9</sup>  | 2.4E <sup>-9</sup>   | -2.3E <sup>-9</sup>   | 3.86E <sup>-9</sup>  | 0                    |
| Pesticides       | kg act.subst***                  | 0                    | 0                    | 0                    | 0                     | 0                    | 0                    |

Table 4.61 Environmental impact in equivalent units for each impact category for the production of 1 kg polyurethane foam

•

Note: \* Dust and SO<sub>2</sub>

\*\* Benzo [a] Pyrene- it applies in particular to the group of PAHs (Polycyclic Aromatic Hydrocarbon)

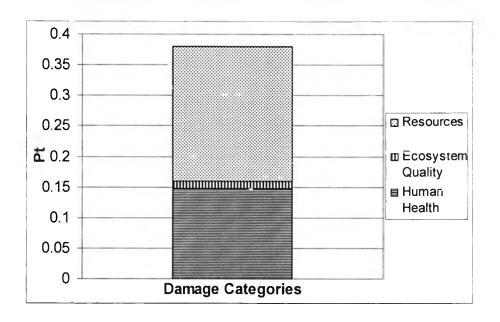
\*\*\* Active Ingredient Substances

| Table 4.62 Environmental impact in equivalent units for each impact category for the manufacturing phase of PU foam production | n |
|--------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                |   |

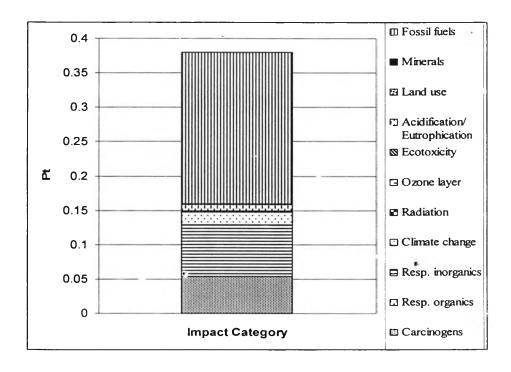
| Impact category  | Unit         | Total                | Polyether-           | Silicone             | Ethylenediamine      | Water-               | Electricity-         | Formulated           |
|------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                  |              |                      | polyol               |                      |                      | Thai                 | Thai                 | Polyol               |
| Energy resources | MJ LHV       | 27.2                 | 25.5                 | 5.33 E <sup>-1</sup> | 4.63 E <sup>-1</sup> | 9.9 E <sup>-2</sup>  | 6.56 E <sup>-1</sup> | 0                    |
| Greenhouse       | kg CO2       | 1.28                 | 1.19                 | 3.71 E <sup>-2</sup> | 2.92 E <sup>-2</sup> | 1.87 E <sup>-3</sup> | 2.37 E <sup>-2</sup> | 0                    |
| Solid waste      | kg           | 3.09 E <sup>-1</sup> | 3.04 E <sup>-1</sup> | 0                    | 2.22 E <sup>-3</sup> | 1.04 E <sup>-3</sup> | 5.59 E <sup>-5</sup> | 1.8 E <sup>-3</sup>  |
| Acidification    | kg SO2       | $1.1 \text{ E}^{-2}$ | 1.05 E <sup>-2</sup> | 1.91 E <sup>-₄</sup> | 1.57 E <sup>-4</sup> | 9.18 E <sup>-6</sup> | 1.41 E <sup>-4</sup> | 0                    |
| Eutrophication   | kg PO4       | 1.62 E <sup>-3</sup> | $1.51 E^{-3}$        | 2.13 E <sup>-5</sup> | 3.35 E <sup>-5</sup> | 6.17 E <sup>-7</sup> | 1.47 E <sup>-5</sup> | 3.75 E <sup>-5</sup> |
| Summer smog      | kg C2H4      | 1.65 E <sup>-3</sup> | 1.59 E <sup>-3</sup> | 1.11 E <sup>-5</sup> | 2.28 E <sup>-5</sup> | 1.84 E <sup>-5</sup> | 3.55 E <sup>-6</sup> | 0                    |
| Heavy metals     | kg Pb        | 9.8 E <sup>-5</sup>  | 9.75 E <sup>-5</sup> | 3.92 E <sup>-7</sup> | 1.53 E <sup>-7</sup> | 1.81E <sup>-9</sup>  | 2.25E <sup>-9</sup>  | 0                    |
| Ozone layer      | kg CFC11     | 1.2E <sup>-7</sup>   | 7.39E <sup>-11</sup> | 2.51E <sup>-8</sup>  | 9.43E <sup>-8</sup>  | 2.06E <sup>-10</sup> | 4.41E <sup>-13</sup> | 0                    |
| Carcinogens      | kg B(a)P     | 4.37E <sup>-9</sup>  | 4.98E <sup>-10</sup> | 2.41E <sup>-9</sup>  | 5.29E <sup>-10</sup> | 8.87E <sup>-10</sup> | 3.78E <sup>-11</sup> | 0                    |
| Pesticides       | kg act.subst | 0                    | 0                    | 0                    | 0                    | 0                    | 0                    | 0                    |
|                  | L            |                      | L.,,,,,,,,,,         |                      |                      |                      |                      | 1                    |

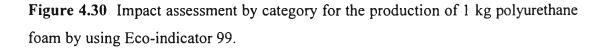
| Impact category  | Unit         | Total    | Pentane for PUR A | MDI A    | Polyurethane Foam | Electricity Thai |
|------------------|--------------|----------|-------------------|----------|-------------------|------------------|
| Energy resources | MJ LHV       | 51.5     | 3.3 E-1           | 51       | 0                 | 1.19 E-1         |
| Greenhouse       | kg CO2       | 1.95     | 9.57 E-4          | 1.95     | 2.62E-8           | 4.29 E-3         |
| Solid waste      | kg           | 7.28 E-2 | 2.98 E-6          | 6.78 E-2 | 5 E-3             | 1.01 E-5         |
| Acidification    | kg SO2 ·     | 1.38 E-2 | 9.96 E-6          | 1.38 E-2 | 5.83E-12          | 2.54 E-5         |
| Eutrophication   | kg PO4       | 1.2 E-3  | 1.73 E-6          | 1.2 E-3  | 1.07E-12          | 2.65 E-6         |
| Summer smog      | kg C2H4      | 9.65 E-4 | 3.26 E-6          | 9.61 E-4 | 9.05E-14          | 6.42 E-7         |
| Heavy metals     | kg Pb        | 4.47E-6  | 0                 | 4.47 E-6 | 0                 | 4.07E-10         |
| Ozone layer      | kg CFC11     | 8.65E-8  | 0                 | 8.65E-8  | 4.19E-15          | 7.97E-14         |
| Carcinogens      | kg B(a)P     | 2.4E-9   | 0                 | 2.4E-9   | 3.07E-18          | 6.83E-12         |
| Pesticides       | kg act.subst | 0        | 0                 | 0        | 0                 | 0                |

.....


 Table 4.63 Environmental impact in equivalent units for each impact category for the use phase of PU foam production

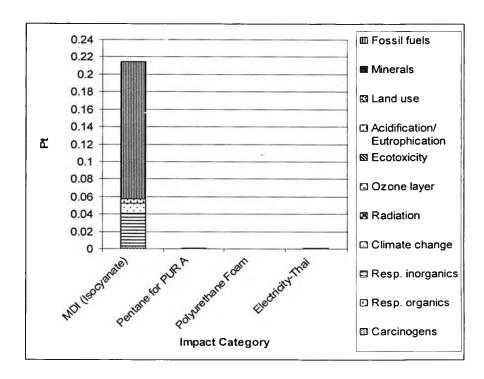
÷


Using the end-point approach, Eco-indicator 99 results in a single score for the environmental impact assessment based on weighting factor assigned for each impact category. In addition, Eco-indicator 99 also accounts for resource depletion which was not accounted for in Eco-Indicator 95. In Eco-indicator 99, damage categories are divided into resources, ecosystem quality, and human health. Impact categories include fossil fuels, minerals, land use, acidification/eutrophication, ecotoxicity, ozone layer, radiation, climate change, respiration of organics and inorganics, and carcinogens.

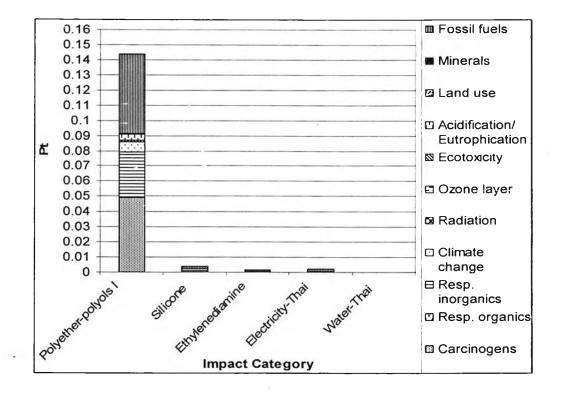

Apart from the fact that the results obtained from Eco-indicator 99 also include resource depletion, other environmental impacts are in the same trend as obtained from Eco-Indicator 95. For damage assessment (Figure 4.29), the damages are mainly in the resources depletion and human health which resulted from depletion of fossil fuels, respiration of inorganic substances and carcinogenic effect on human as shown in Figure 4.30. The impact assessment for various phases in the production of PU foam is shown in Figure 4.31. It can be seen that the environmental impact is mainly in the manufacturing phase and use phase (injection) which is similar to the results obtained by using Eco-indicator 95. However, when the resource depletion is accounted for, the use phase contributes more than the manufacturing which is not the case for Eco-indicator 95 (Fig. 4.26). This is due to the extensive utilization of electricity generated from fossil fuels in the use phase. Figure 4.31 reveals that the second highest impact is in respiration of inorganics in both manufacturing and use phases followed by carcinogens. This is attributed to the use of polyether polyol and isocyanate (MDI) in manufacturing and use phases, respectively, as shown in Figures 4.32 and 4.33.

The comparison of the results obtained from Eco-indicator 95 and Ecoindicator 99 is shown in Figures 4.34 for each impact category. Although the percentages may be different but similar trend is clearly observed between these two impact assessment methods.




- Figure 4.29 Damage assessment for the production of 1 kg polyurethane foam by using Eco-indicator 99.








**Figure 4.31** Impact assessment for each phase in the production of 1 kg polyurethane foam by using Eco-indicator 99.



**Figure 4.32** Impact assessment of use phase in the production of 1 kg polyurethane foam by using Eco-indicator 99.



**Figure 4.33** Impact assessment for manufacturing phase in the production of 1 kg polyurethane foam by using Eco-indicator 99.

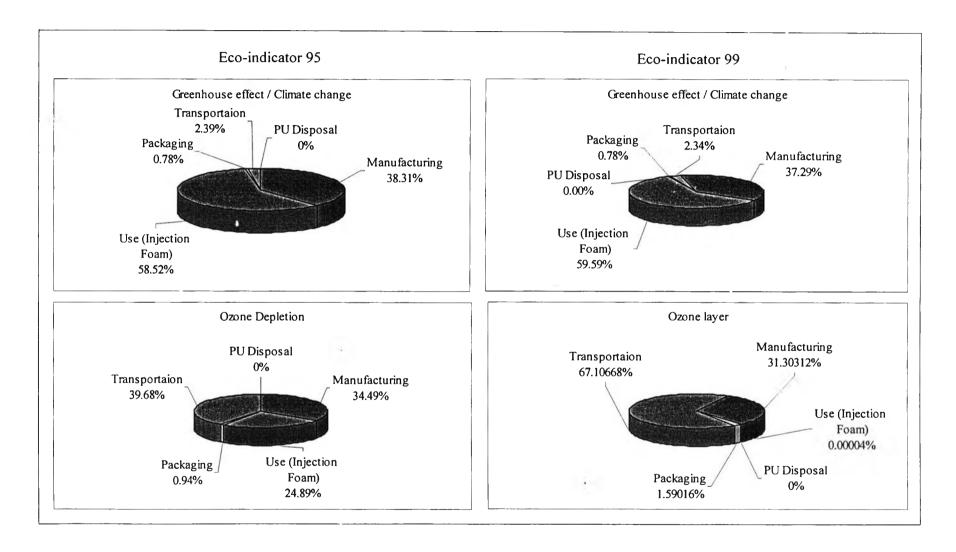



Figure 4.34 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg PU foam.

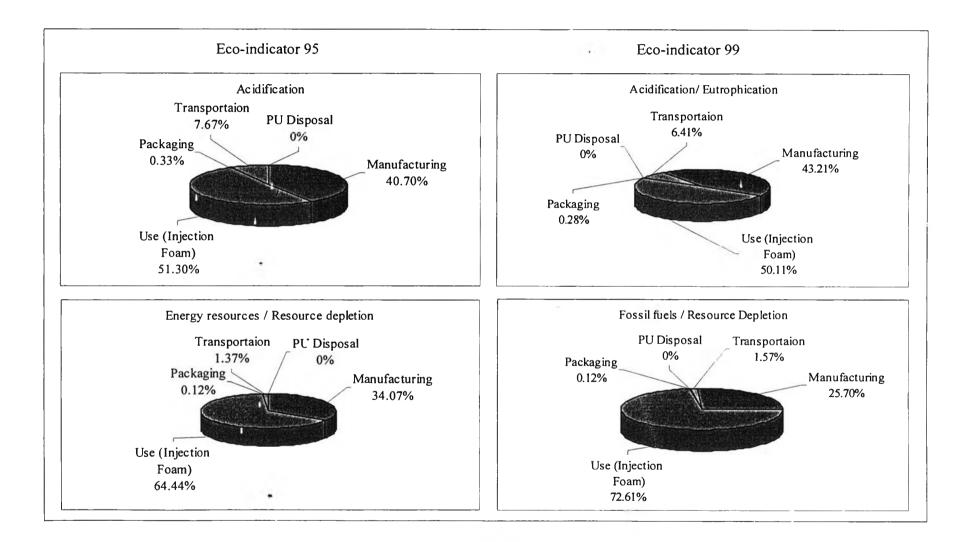



Figure 4.34 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg PU foam (continued).

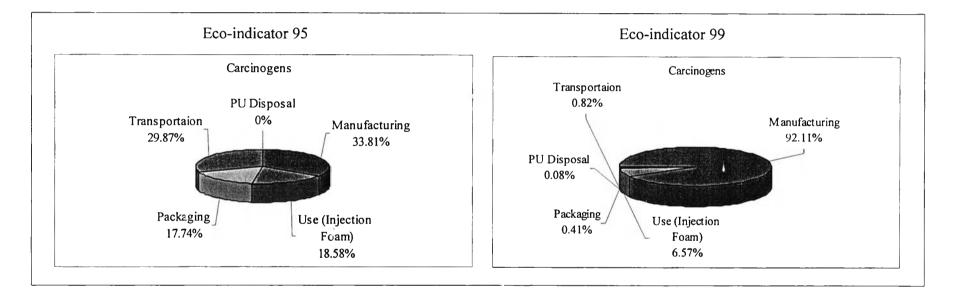
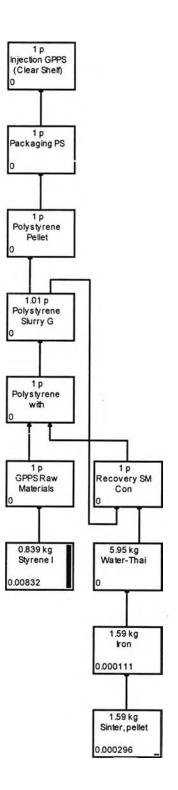




Figure 4.34 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg PU foam (continued).

•

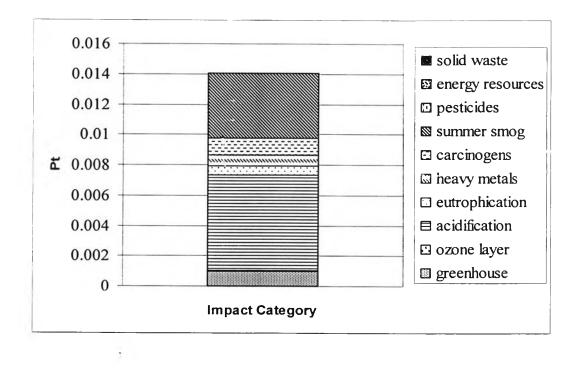
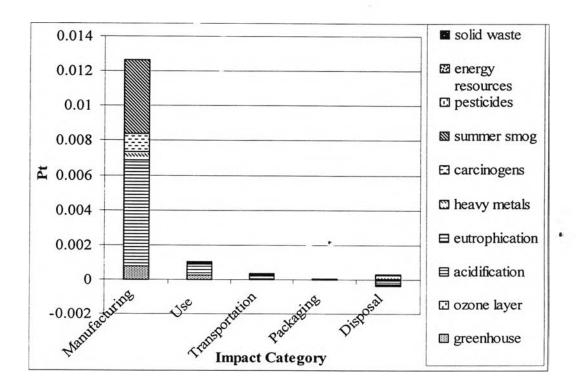
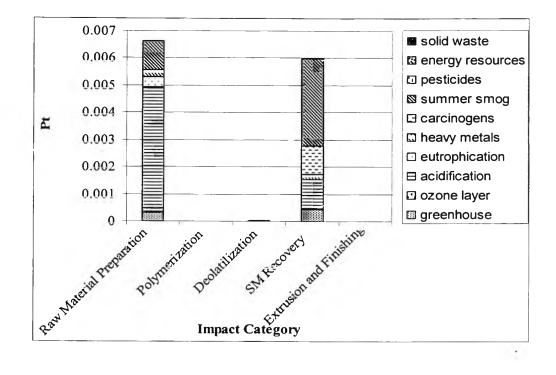
## 4.2.2 Environmental Impact Assessment of General Purpose Polystyrene

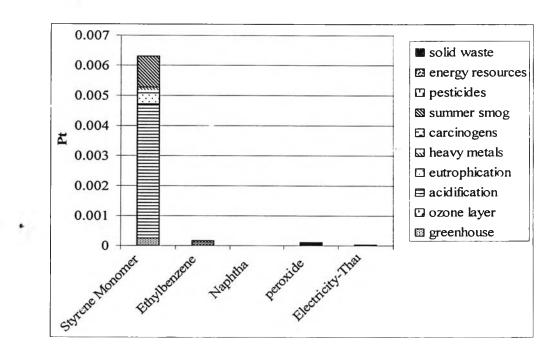
Using Eco-indicator 95, the overall results of the production of 1 kg GPPS shown in Figure 4.35 indicates that the environmental impacts mainly come from styrene monomer which is the raw material used in the manufacturing process. Figure 4.36 reveals that acidification and summer smog formation are the major environmental impact categories of the overall GPPS process. The comparison of the environmental impact for all 5 phases of GPPS production shown in Figure 4.37 illustrates that the manufacturing phase contributes most followed by the use phase (injection) and transportation whereas the contributions from packaging is shown to be negligible. In contrast, the disposal phase contributes the positive effect to the environment as shown from minus value in the result which is due to the recycle process that can reduce the use of materials in the manufacturing phase. In manufacturing phase, processes consist of raw material preparation, polymerization, devolatilization, styrene monomer recovery (SM recovery), and extrusion and finishing. Environmental impact is identified in raw material preparation process and SM recovery respectively which is illustrated in Figure 4.38. For raw material preparation process, Figures 4.39 shows that the environmental impact is essentially from styrene monomer of which its production contributes mainly in acidification and summer smog. In SM recovery process, the environmental impact is mainly in the production of water in Thailand which contributes most in summer smog, acidification, and carcinogenic effect as illustrated in Figure 4.40. Figure 4.41 shows the environmental impact assessment for the use phase where the main contribution is from electricity in Thailand. Acidification, greenhouse gases, and eutrophication are the main impact categories resulted from electricity production.



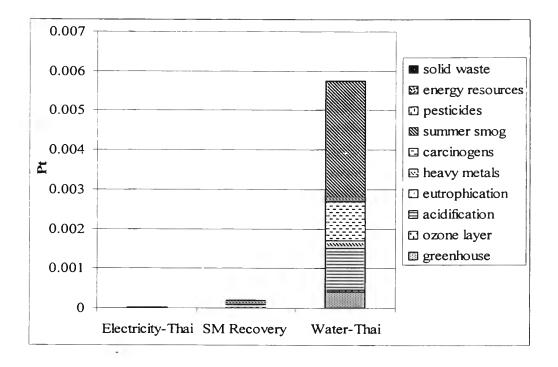
**Figure 4.35** Overall results of the environmental impact assessment of the production of 1 kg General Purpose Polystyrene (GPPS) obtained by using Eco-indicator 95.

٠

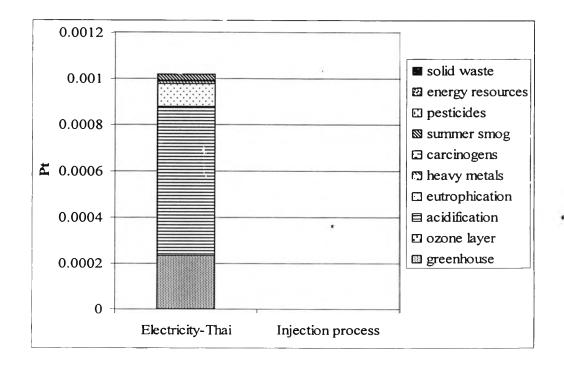






Figure 4.36 Environmental impact categories of 1 kg GPPS production obtained by using Eco-indicator 95.




**Figure 4.37** Environmental impact categories of each phase in the production of 1 kg GPPS obtained by Eco-indicator 95.




**Figure 4.38** Environmental impact categories of each process in the manufacturing phase of 1 kg GPPS production obtained by using Eco-indicator 95.



**Figure 4.39** Environmental impact categories of raw material preparation process in the manufacturing phase of 1 kg GPPS production obtained by using Eco-indicator 95.



**Figure 4.40** Environmental impact categories of SM recovery process in the manufacturing phase of 1 kg GPPS production obtained by using Eco-indicator 95.



**Figure 4.41** Environmental impact categories of the use phase in the production of 1 kg GPPS obtained by using Eco-indicator 95.

Table 4.64 shows the results of the environmental impact assessment using Eco-indicator 95 which are presented in terms of equivalent units for each impact category for the production of 1 kg GPPS. It can be seen that the production of 1 kg of GPPS utilizes energy resources equivalent to 229 MJ LHV and generates green house gases equivalent to 5.19 kg CO<sub>2</sub>, solid wastes 1.96 kg, acidification equivalent to 7.1E<sup>-2</sup> kg of SO<sub>2</sub>, heavy metals 7.96E<sup>-6</sup> kg of Pb equivalent, ozone layer depletion substances equivalent to 4.95E<sup>-7</sup> kg of CFC11, and carcinogenic effect equivalent to 1.17E<sup>-6</sup> kg of benzo(a)pyrene. Energy is mostly consumed in the manufacturing phase (approximately 91%) which involves in production of styrene monomer. Greenhouse gases are generated mainly from manufacturing and use phases which account for 77% and 24%, respectively. Manufacturing phase also contributes most to the solid wastes and acidification being generated in the production of GPPS which approximately contribute 65% and 89%.

Tables 4.65 and 4.66 show the environmental impacts in equivalent units for the manufacturing phase and use phase, respectively. For manufacturing phase, the environmental impacts emphasize on raw material preparation process and SM recovery process. It can be obviously seen from the result that styrene monomer contributes most in almost all impact categories in raw material preparation process and water in Thailand contributes most in almost all impact categories in SM recovery process. For use phase, electricity, which is extensively used in injection process, has been shown to contribute most in all impact categories. For disposal phase, Table 4.69 shows the benefit of the recycle process to the environment as indicated by the minus values in various impact categories.

6

| Impact category  | Unit         | Total               | Manufacturing       | Use                  | Packaging            | Transportation       | Disposal              |
|------------------|--------------|---------------------|---------------------|----------------------|----------------------|----------------------|-----------------------|
| Energy resources | MJ LHV       | 229                 | 209                 | 33.9                 | 1.1                  | 2.33                 | -17.3                 |
| Greenhouse       | kg CO2       | 5.19                | 4                   | 1.23                 | 4.19E <sup>-2</sup>  | 0.177                | -2.54E <sup>-1</sup>  |
| Solid waste      | kg           | 1.96                | 1.28                | 7.29E <sup>-3</sup>  | 1.21E <sup>-2</sup>  | 7.42E <sup>-5</sup>  | 6.64E <sup>-1</sup>   |
| Acidification    | kg SO2       | 7.1E <sup>-2</sup>  | 6.32E <sup>-2</sup> | 7.26E <sup>-3</sup>  | 3.76E <sup>-4</sup>  | 2.61E <sup>-3</sup>  | -2.47E <sup>-3</sup>  |
| Eutrophication   | kg PO4       | 4.33E <sup>-3</sup> | 3.6E <sup>-3</sup>  | 7.57E <sup>-4</sup>  | 2.3E <sup>-5</sup>   | 3.67E <sup>-4</sup>  | -4.13E <sup>-4</sup>  |
| Summer smog      | kg C2H4      | 3.08E <sup>-2</sup> | 3.06E <sup>-2</sup> | 1.84E <sup>-4</sup>  | 5.83E <sup>-5</sup>  | 3.02E <sup>-4</sup>  | -3.62 E <sup>-4</sup> |
| Heavy metals     | kg Pb        | 7.96E⁻⁰             | 4.91E <sup>-6</sup> | 1.16E <sup>-7</sup>  | 1.78E <sup>-7</sup>  | 3.69E <sup>-8</sup>  | 2.72E <sup>-6</sup>   |
| Ozone layer      | kg CFC11     | 4.95E <sup>-7</sup> | 2.61E <sup>-7</sup> | 7.18E <sup>-11</sup> | 2.42E <sup>-9</sup>  | 1.56E <sup>-8</sup>  | 2.17E <sup>-7</sup>   |
| Carcinogens      | kg B(a)P     | 1.17E <sup>-6</sup> | 1.15E <sup>-6</sup> | 1.95E <sup>-9</sup>  | 2.47E <sup>-10</sup> | 4.66E <sup>-10</sup> | 1.72E <sup>-8</sup>   |
| Pesticides       | kg act.subst | 0                   | 0                   | 0                    | 0                    | 0                    | 0                     |

Table 4.64 Environmental impact in equivalent units for each impact category for the production of 1 kg GPPS

| Impact category  | Unit         | Total    | Raw Material | Polymerization | Deolatilization | SM Recovery | Extrusion and |
|------------------|--------------|----------|--------------|----------------|-----------------|-------------|---------------|
|                  |              |          | Preparation  |                |                 |             | Finishing     |
| Energy resources | MJ LHV       | 209      | 89.1         | 0.431          | 1.37            | 118         | 0.118         |
| Greenhouse       | kg CO2       | 4        | 1.69         | 0.0156         | 0.0498          | 2.24        | 0.00427       |
| Solid waste      | kg           | 1.28     | 0.034        | 0.00393        | 0.000116        | 1.24        | 1.01E-05      |
| Acidification    | kg SO2       | 0.0632   | 0.0518       | 9.23E-05       | 0.000299        | 0.011       | 2.53E-05      |
| Eutrophication   | kg PO4       | 0.0036   | 0.00281      | 9.62E-06       | 3.09E-05        | 0.000744    | 2.64E-06      |
| Summer smog      | kg C2H4      | 0.0306   | 0.00784      | 2.33E-06       | 7.79E-06        | 0.0228      | 6.39E-07      |
| Heavy metals     | kg Pb        | 4.91E-06 | 2.75E-06     | 1.48E-09       | 4.67E-09        | 2.15E-06    | 4.05E-10      |
| Ozone layer      | kg CFC11     | 2.61E-07 | 1.57E-08     | 2.89E-13       | 9.14E-13        | 2.45E-07    | 7.93E-14      |
| Carcinogens      | kg B(a)P     | 1.15E-06 | 3.84E-09     | 2.48E-11       | 7.84E-11        | 1.15E-06    | 6.8E-12       |
| Pesticides       | kg act.subst | 0        | 0            | 0              | 0               | 0           | 0             |

Table 4.65 Environmental impact in equivalent units for each impact category for the manufacturing phase of kg GPPS production

| Impact category  | Unit         | Total                | Electricity-Thai      | Clear Shelf          |
|------------------|--------------|----------------------|-----------------------|----------------------|
| Energy resources | MJ LHV       | 33.9                 | 33.9                  | 0                    |
| Greenhouse       | kg CO2       | 1.23                 | 1.23                  | 2.86E <sup>-4</sup>  |
| Solid waste      | kg           | 7.29E <sup>-3</sup>  | 2.89E <sup>-3</sup>   | 4.4E <sup>-3</sup>   |
| Acidification    | kg SO2       | 7.26E <sup>-3</sup>  | 7.26E <sup>-3</sup>   | 9.4E <sup>-9</sup>   |
| Eutrophication   | kg PO4       | 7.57E <sup>-4</sup>  | . 7.57E <sup>-4</sup> | 1.56E <sup>-9</sup>  |
| Summer smog      | kg C2H4      | 1.84E <sup>-4</sup>  | 1.84E <sup>-4</sup>   | 1.06E <sup>-9</sup>  |
| Heavy metals     | kg Pb        | 1.16E <sup>-7</sup>  | 1.16E <sup>-7</sup>   | 0                    |
| Ozone layer      | kg CFC11     | 7.18E <sup>-11</sup> | 2.28E <sup>-11</sup>  | 4.9E <sup>-11</sup>  |
| Carcinogens      | kg B(a)P     | 1.95E <sup>-9</sup>  | 1.95E <sup>-9</sup>   | 3.59E <sup>-14</sup> |
| Pesticides       | kg act.subst | 0                    | 0                     | 0                    |

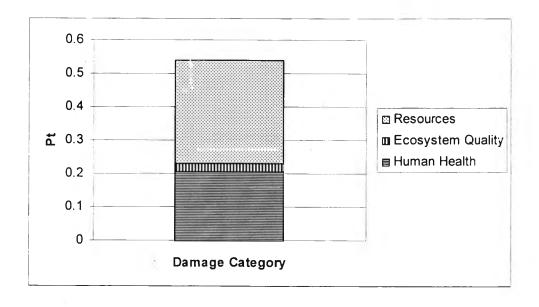
 Table 4.66
 Environmental impact in equivalent units for each impact category for the use phase of GPPS production

 Table 4.67
 Environmental impact in equivalent units for each impact category for raw material preparation process in the manufacturing phase of GPPS production

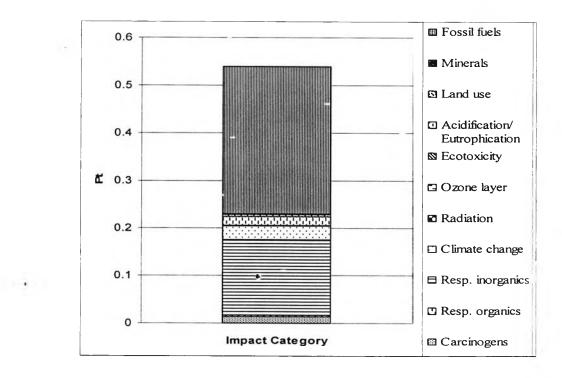
| Impact category  | Unit         | Total               | Styrene<br>Monomer  | Ethylbenzene         | Naphtha             | Peroxide            | Electricity-Thai     |
|------------------|--------------|---------------------|---------------------|----------------------|---------------------|---------------------|----------------------|
| Energy resources | MJ LHV       | 89.1                | 77.8                | 7.59                 | 1.53                | 8.91E <sup>-1</sup> | 1.28                 |
| Greenhouse       | kg CO2 *     | 1.69                | 1.26                | 3.19E <sup>-1</sup>  | 1.02E <sup>-2</sup> | 4.89E <sup>-2</sup> | 4.63E <sup>-2</sup>  |
| Solid waste      | kg           | 3.4E <sup>-2</sup>  | 3.33E <sup>-2</sup> | 0                    | 1.01E <sup>-4</sup> | 4.64E <sup>-4</sup> | 1.09E <sup>-4</sup>  |
| Acidification    | kg SO2       | 5.18E <sup>-2</sup> | 5.05E <sup>-2</sup> | 5.49 E <sup>-4</sup> | 1.06E <sup>-4</sup> | 4.11E <sup>-4</sup> | 2.75E <sup>-4</sup>  |
| Eutrophication   | kg PO4       | 2.81E <sup>-3</sup> | 2.69E <sup>-3</sup> | 4.62E <sup>-5</sup>  | 1.15E <sup>-5</sup> | 2.99E <sup>-5</sup> | 2.86E <sup>-5</sup>  |
| Summer smog      | kg C2H4      | 7.84E <sup>-3</sup> | 7.38E <sup>-3</sup> | 3.42E <sup>-4</sup>  | 5.26E <sup>-6</sup> | 1.02E <sup>-4</sup> | 6.94E <sup>-6</sup>  |
| Heavy metals     | kg Pb        | 2.75E <sup>-6</sup> | 2.2E <sup>-6</sup>  | 5.76E <sup>-8</sup>  | 1.07E <sup>-9</sup> | 4.84E <sup>-7</sup> | 4.4E <sup>-9</sup>   |
| Ozone layer      | kg CFC11     | 1.57E <sup>-8</sup> | 0                   | 0                    | 0                   | 1.57E <sup>-8</sup> | 8.61E <sup>-13</sup> |
| Carcinogens      | kg B(a)P     | 3.84E <sup>-9</sup> | 1.51E <sup>-9</sup> | 5.28E <sup>-10</sup> | 3.6E <sup>-12</sup> | 1.73E <sup>-9</sup> | 7.38E <sup>-11</sup> |
| Pesticides       | kg act.subst | 0                   | 0                   | 0                    | 0                   | 0                   | 0                    |

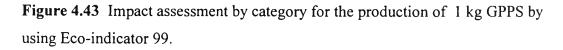
**Table 4.68** Environmental impact in equivalent units for each impact category for SM recovery process in the manufacturing phase ofGPPS production

| Impact category  | Unit         | Total               | Electricity Thai     | SM Recovery         | Water Thai          |
|------------------|--------------|---------------------|----------------------|---------------------|---------------------|
| Energy resources | MJ LHV       | 118                 | 4.21E <sup>-1</sup>  | 0                   | 118                 |
| Greenhouse       | kg CO2       | 2.24                | 1.52E <sup>-2</sup>  | 0                   | 2.22                |
| Solid waste      | kg           | 1.24                | 3.59E <sup>-5</sup>  | 0                   | 1.24                |
| Acidification    | kg SO2       | 1.1E <sup>-2</sup>  | 9.02E <sup>-5</sup>  | 3.21E <sup>-6</sup> | 1.09E <sup>-2</sup> |
| Eutrophication   | kg PO4       | 7.44E <sup>-4</sup> | 9.41E <sup>-6</sup>  | 5.97E <sup>-7</sup> | 7.34E <sup>-4</sup> |
| Summer smog      | kg C2H4      | 2.28E <sup>-2</sup> | 2.28E <sup>-6</sup>  | 8.65E <sup>-4</sup> | 2.19E <sup>-2</sup> |
| Heavy metals     | kg Pb        | 2.15E <sup>-6</sup> | 1.45E <sup>-9</sup>  | 0                   | 2.15E <sup>-6</sup> |
| Heavy metals     | kg Pb        | 2.15E <sup>-6</sup> | 1.45E <sup>-9</sup>  | 0                   | 2.15E <sup>-6</sup> |
| Ozone layer      | kg CFC11     | 2.45E <sup>-7</sup> | 2.83E <sup>-13</sup> | 0                   | 2.45E <sup>-7</sup> |
| Carcinogens      | kg B(a)P     | 1.15E <sup>-6</sup> | 2.43E <sup>-11</sup> | 9.15E <sup>-8</sup> | 1.06E <sup>-6</sup> |
| Pesticides       | kg act.subst | 0                   | 0                    | 0                   | 0                   |


•

| Impact category  | Unit         | Total                | Landfill            | Recycling            |
|------------------|--------------|----------------------|---------------------|----------------------|
| Energy resources | MJ LHV       | -17.3                | 0                   | -17.3                |
| Greenhouse       | kg CO2       | -2.54E <sup>-1</sup> | 0                   | -2.54E <sup>-1</sup> |
| Solid waste      | kg           | 6.64E <sup>-1</sup>  | 5.0E <sup>-1</sup>  | 1.64E <sup>-1</sup>  |
| Acidification    | kg SO2       | -2.47E <sup>-3</sup> | 0                   | -2.47E <sup>-3</sup> |
| Eutrophication   | kg PO4       | -4.1E <sup>-4</sup>  | 0                   | -4.1E <sup>-4</sup>  |
| Summer smog      | kg C2H4      | -3.6E <sup>-4</sup>  | 0                   | -3.6E <sup>-4</sup>  |
| Heavy metals     | kg Pb        | 2.72E <sup>-6</sup>  | 1.91E <sup>-7</sup> | 2.53E <sup>-6</sup>  |
| Ozone layer      | kg CFC11     | 2.17E <sup>-7</sup>  | 0                   | 2.17E <sup>-7</sup>  |
| Carcinogens      | kg B(a)P     | 1.72E <sup>-8</sup>  | 0                   | 1.72E <sup>-8</sup>  |
| Pesticides       | kg act.subst | 0                    | 0                   | 0                    |


 Table 4.69 Environmental impact in equivalent units for each impact category for disposal phase of GPPS production


Using Eco-indicator 99, the single score results show the same trend as the results assessed by using Eco-Indicator 95, except for resource depletion which is not included in Eco-Indicator 95. For damage assessment (Figure 4.42), the damages are mainly in the resources depletion and human health which resulted from depletion of fossil fuels, resp iration of inorganic substances and climate change effect on human as shown in Figure 4.43. The impact assessment for various phases in the production of GPPS is shown in Figure 4.44. It can be seen that the environmental impact is mainly in the manufacturing phase and use phase (injection) which is similar to the results obtained by using Eco-indicator 95. Disposal phase also contributes the positive effect for the environment in decreasing of the extensive utilization of electricity generated from fossil fuels in the recycle process. Figure 4.44 reveals that the impact is in fossil fuel depletion and respiration of inorganics respectively. In manufacturing phase, Table 4.45 shows environmental impact is mostly in raw material preparation and SM recovery process. This is attributed to the use of styrene monomer, water and electricity in manufacturing and use phases, respectively, as shown in Figures 4.46, 4.47, and 4.48.

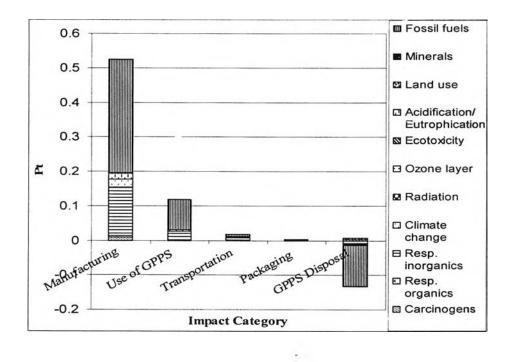
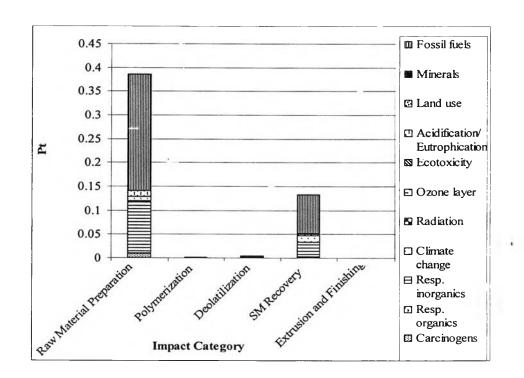
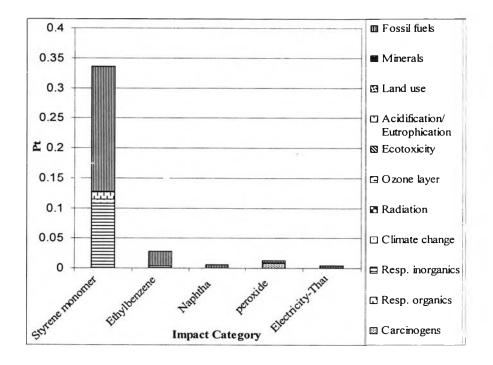
The comparison of the results obtained from Eco-indicator 95 and Eco-indicator 99 is shown in Figures 4.49 for each impact category. Although the percentages may be different but similar trend is clearly observed between these two impact assessment methods.

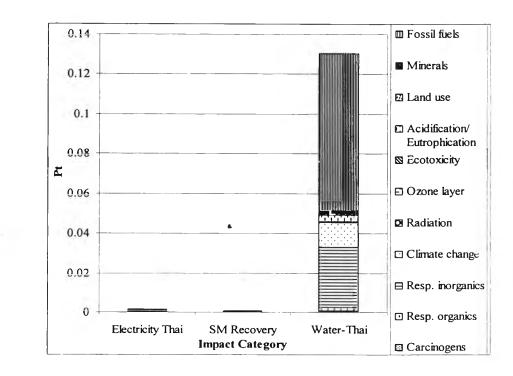


**Figure 4.42** Damage assessment for the production of 1 kg GPPS by using Ecoindicator 99.

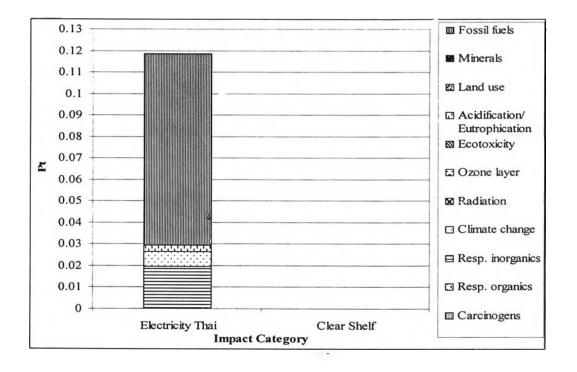






Figure 4.44 Impact assessment for each phase in the production of 1 kg GPPS by using Eco-indicator 99.




**Figure 4.45** Impact assessment for each process in the manufacturing phase of 1 kg GPPS production by using Eco-indicator 99.



**Figure 4.46** Impact assessment for raw material preparation process in the manufacturing phase of 1 kg GPPS production by using Eco-indicator 99.



**Figure 4.47** Impact assessment for SM recovery process in the manufacturing phase of 1 kg GPPS production by using Eco-indicator 99.



Ŀ

Figure 4.48 Impact assessment of use phase in the production of 1 kg GPPS by using Eco-indicator 99.

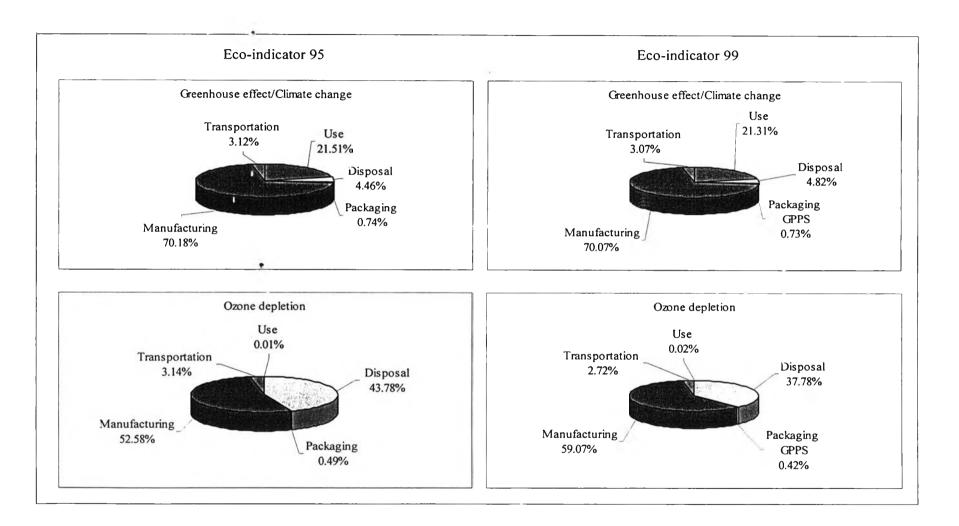
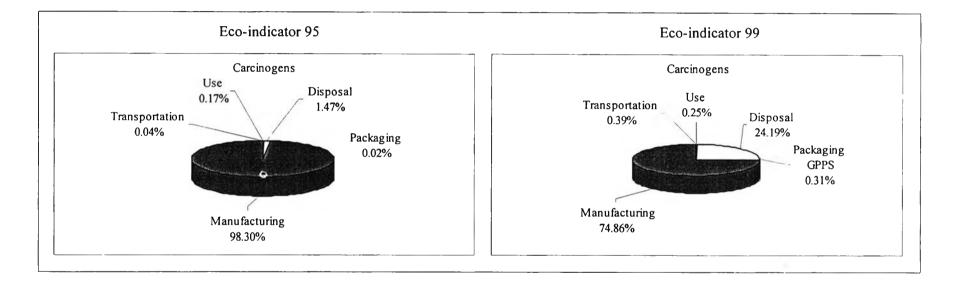
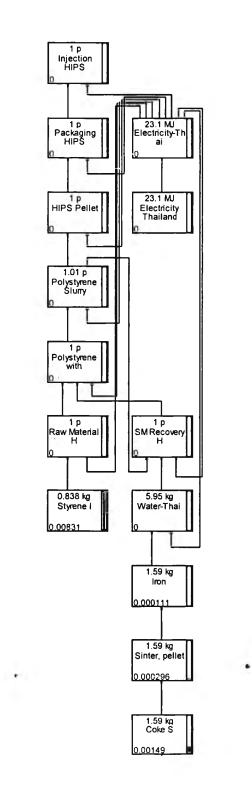
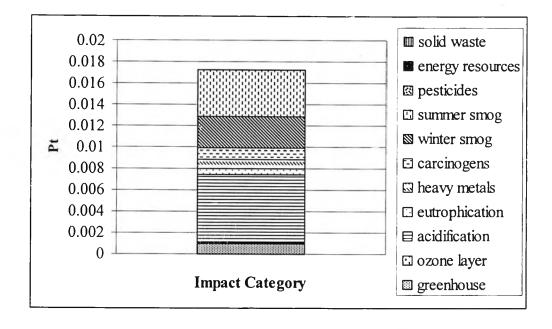



Figure 4.49 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg GPPS.

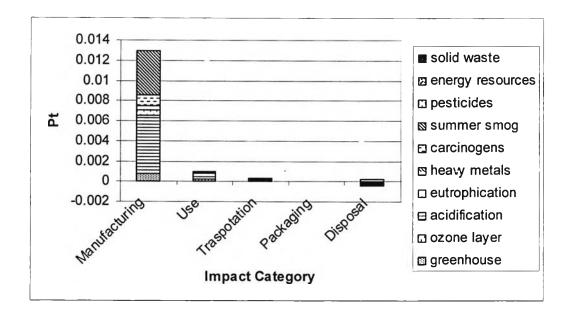



Figure 4.49 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg GPPS (continued).

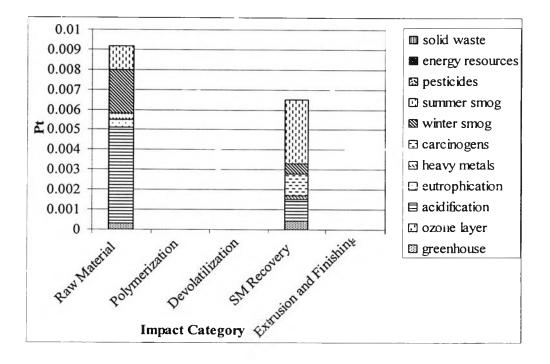





Figure 4.49 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg GPPS (continued).

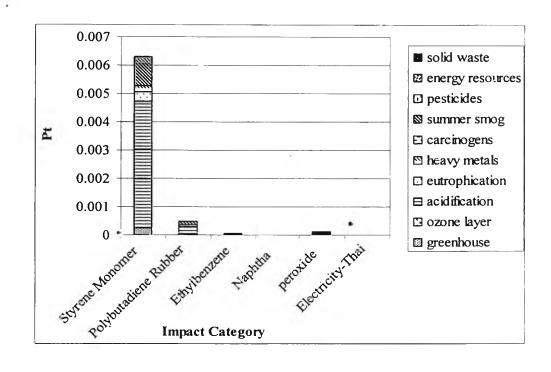
#### 4.2.3 Environmental Impact Assessment of High Impact Polystyrene


The environmental impact assessment of 1 kg HIPS production by using Eco-indicator 95 and Eco-indicator 99 gives the similar results as seen in the production of 1 kg GPPS but slightly higher due to the polybutadiene rubber production. Using Eco-indicator 95, the overall results of the production of 1 kg HIPS shown in Figure 4.50 indicates that the environmental impacts mainly come from the raw material used in the manufacturing processes which is styrene monomer. Figure 4.51 reveals that acidification and summer smog formation are the major environmental impact categories of the overall HIPS process. The comparison of the environmental impact for all 5 phases of HIPS production is shown in Figure 4.52 illustrates that the manufacturing phase contributes most followed by the use phase (injection) and transportation whereas the contributions from packaging is shown to be negligible. Similar to GPPS, the disposal phase yields positive effect to the environment as indicated from minus value due to the recycle process that can reduce the use of materials in the manufacturing phase. In manufacturing phase, there are 5 processes as HIPS which the result in Figure 4.53 identifies raw material preparation process and SM recovery respectively. For raw material preparation process, Figures 4.54 shows that the environmental impact is essentially from styrene monomer and polybutadiene rubber of which their production contributes mainly in acidification and summer smog. In SM recovery process, the environmental impact is mainly in the production of water in Thailand which contributes to summer smog, acidification, and carcinogenic effect as illustrated in Figure 4.55. Figure 4.56 shows the environmental impact assessment for the use phase where the main contribution is from electricity in Thailand. Acidification, greenhouse gases, and eutrophication ' are the main impact categories resulted from the electricity production.

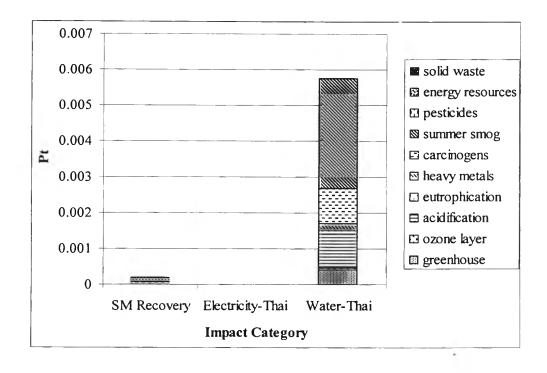



**Figure 4.50** Overall results of the environmental impact assessment of the production of 1 kg High Impact Polystyrene (HIPS) obtained by using Eco-indicator 95.

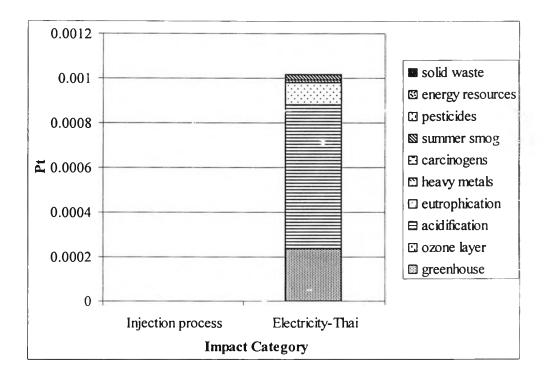



**Figure 4.51** Environmental impact categories of 1 kg HIPS production obtained by using Eco-indicator 95.




**Figure 4.52** Environmental impact categories of each phase in the production of 1 kg HIPS obtained by Eco-indicator 95.




**Figure 4.53** Environmental impact categories of each process in the manufacturing phase of 1 kg HIPS production obtained by using Eco-indicator 95.



**Figure 4.54** Environmental impact categories of raw material preparation process in the manufacturing phase of 1 kg HIPS production obtained by using Eco-indicator 95.



**Figure 4.55** Environmental impact categories of SM recovery process in the manufacturing phase of 1 kg HIPS production obtained by using Eco-indicator 95.



**Figure 4.56** Environmental impact categories of the use phase in the production of 1 kg HIPS obtained by using Eco-indicator 95.

Table 4.70 shows the results of the environmental impact assessment using Eco-indicator 95 in terms of equivalent units for each impact category for the production of 1 kg HIPS. It can be seen that the production of 1 kg of HIPS utilizes energy resources equivalent to 231 MJ LHV and generates green house gases equivalent to 5.01 kg CO<sub>2</sub>, solid wastes 1.97 kg, acidification equivalent to 7.23E<sup>-2</sup> kg of SO<sub>2</sub>, heavy metals 9.0E<sup>-6</sup> kg of Pb equivalent, ozone layer depletion substances equivalent to 5.21E<sup>-7</sup> kg of CFC11, and carcinogenic effect equivalent to 1.17E<sup>-6</sup> kg of benzo(a)pyrene. Similar to PU and GPPS, energy is mostly consumed in the manufacturing phase (approximately 92%), especially in the production of styrene monomer. Greenhouse gases are generated mainly from manufacturing and use phases which account for 77% and 25%, respectively. Manufacturing phase also contributes most to the solid wastes and acidification being generated in the production of HIPS which contribute approximately 65% and 90%, respectively.

Tables 4.71 and 4.72 show the environmental impacts in equivalent units for the manufacturing phase and use phase, respectively. For manufacturing phase, the environmental impacts cause from raw material preparation process and SM recovery process. It can be obviously seen from the results shown in Tables 4.73 and 4.74 that styrene monomer contributes most in almost all impact categories followed by polybutadiene rubber in raw material preparation process. For SM recovery process, the production of water in Thailand contributes highest in almost all impact categories in. For use phase, electricity produced in Thailand and extensively used in injection process, has been shown to be the major contributor to all impact categories. For disposal phase, similar to GPPS, Table 4.75 shows the benefit for the environment in minus value in almost all impact categories.

| Impact category  | Unit         | Total               | Manufacturing       | Use                  | Transportation      | Packaging           | Disposal             |
|------------------|--------------|---------------------|---------------------|----------------------|---------------------|---------------------|----------------------|
| Energy resources | MJ LHV       | 231                 | 212                 | 33.9                 | 1.99                | 9.55E <sup>-2</sup> | -17.3                |
| Greenhouse       | kg CO2       | 5.01                | 3.86                | 1.23                 | 1.51E <sup>-1</sup> | 2.61E <sup>-2</sup> | -2.54E <sup>-1</sup> |
| Solid waste      | kg           | 1.97                | 1.28                | 7.29E <sup>-3</sup>  | 5.68E <sup>-5</sup> | 2.12E <sup>-2</sup> | 6.64E <sup>-1</sup>  |
| Acidification    | kg SO2       | 7.23E <sup>-2</sup> | 6.5E <sup>-2</sup>  | 7.26E <sup>-3</sup>  | 2.42E <sup>-3</sup> | 8.88E <sup>-5</sup> | -2.47E <sup>-3</sup> |
| Eutrophication   | kg PO4       | 4.42E <sup>-3</sup> | 3.76E <sup>-3</sup> | 7.57E <sup>-4</sup>  | 3.04E <sup>-4</sup> | 7.18E <sup>-6</sup> | -4.1E <sup>-4</sup>  |
| Summer smog      | kg C2H4      | 3.14E <sup>-2</sup> | 3.13E <sup>-2</sup> | 1.84E <sup>-4</sup>  | 2.48E <sup>-4</sup> | -5.4E <sup>-5</sup> | -3.6E <sup>-4</sup>  |
| Heavy metals     | kg Pb        | 9.0E <sup>-6</sup>  | 5.57E <sup>-6</sup> | 1.16E <sup>-7</sup>  | 9.33E <sup>-8</sup> | 5.05E <sup>-7</sup> | 2.72E <sup>-6</sup>  |
| Ozone layer      | kg CFC11     | 5.21E <sup>-7</sup> | 2.61E <sup>-7</sup> | 7.18E <sup>-11</sup> | 3.93E <sup>-8</sup> | 3.27E <sup>-9</sup> | 2.17E <sup>-7</sup>  |
| Carcinogens      | kg B(a)P     | 1.17E <sup>-6</sup> | 1.15E <sup>-6</sup> | 1.95E <sup>-9</sup>  | 1.19E <sup>-9</sup> | -2.3E <sup>-9</sup> | 1.72E <sup>-8</sup>  |
| Pesticides       | kg act.subst | 0                   | 0                   | 0                    | 0                   | 0                   | 0                    |

 Table 4.70 Environmental impact in equivalent units for each impact category for the production of 1 kg HIPS

| Impact category  | Unit         | Total               | Raw Material        | Polymerization       | Devolatilization     | Recovery SM         | Extrusion and        |
|------------------|--------------|---------------------|---------------------|----------------------|----------------------|---------------------|----------------------|
|                  |              |                     |                     |                      |                      |                     | Finishing            |
| Energy resources | MJLHV        | 212                 | 93.4                | 1.54E <sup>-1</sup>  | 4.88E <sup>-1</sup>  | 118                 | 4.22E <sup>-2</sup>  |
| Greenhouse       | kg CO2       | 3.86                | 1.61                | 5.56E <sup>-3</sup>  | 1.78E <sup>-2</sup>  | 2.23                | 1.53E <sup>-3</sup>  |
| Solid waste      | kg           | 1.28                | 3.86E <sup>-2</sup> | 3.9E <sup>-3</sup>   | 4.15E <sup>-5</sup>  | 1.24                | 3.59E <sup>-6</sup>  |
| Acidification    | kg SO2       | 6.5E <sup>-2</sup>  | 5.39E <sup>-2</sup> | 3.29E <sup>-5</sup>  | 1.25E <sup>-4</sup>  | 1.1E <sup>-2</sup>  | 9.03E <sup>-6</sup>  |
| Eutrophication   | kg PO4       | 3.76E <sup>-3</sup> | 3.0E <sup>-3</sup>  | 3.43E <sup>-6</sup>  | 1.44E <sup>-5</sup>  | 7.39E <sup>-4</sup> | 9.42E <sup>-7</sup>  |
| Summer smog      | kg C2H4      | 3.13E <sup>-2</sup> | 8.57E <sup>-3</sup> | 8.32E <sup>-7</sup>  | 2.78E <sup>-6</sup>  | 2.28E <sup>-2</sup> | 2.28E <sup>-7</sup>  |
| Heavy metals     | kg Pb        | 5.57E <sup>-6</sup> | 3.41E <sup>-6</sup> | 5.28E <sup>-10</sup> | 1.67E <sup>-9</sup>  | 2.15E <sup>-6</sup> | $1.45E^{-10}$        |
| Ozone layer      | kg CFC11     | 2.61E <sup>-7</sup> | 1.66E <sup>-8</sup> | 1.03E <sup>-13</sup> | 3.27E <sup>-13</sup> | 2.45E <sup>-7</sup> | 2.83E <sup>-14</sup> |
| Carcinogens      | kg B(a)P     | 1.15E <sup>-6</sup> | 3.54E <sup>-9</sup> | 8.86E <sup>-12</sup> | 2.8E <sup>-11</sup>  | 1.15E <sup>-6</sup> | 2.43E <sup>-12</sup> |
| Pesticides       | kg act.subst | 0                   | 0                   | 0                    | 0                    | 0                   | 0                    |

Table 4.71 Environmental impact in equivalent units for each impact category for the manufacturing phase of kg HIPS production

| Impact category  | Unit         | Total                | Side Air Duct        | Electricity Thai     |
|------------------|--------------|----------------------|----------------------|----------------------|
| Energy resources | MJ LHV       | 33.9                 | 0                    | 33.9                 |
| Greenhouse       | kg CO2       | 1.23                 | 2.86E <sup>-4</sup>  | 1.23                 |
| Solid waste      | kg           | 7.29E <sup>-3</sup>  | 4.4E <sup>-3</sup>   | 2.89E <sup>-3</sup>  |
| Acidification    | kg SO2       | 7.26E <sup>-3</sup>  | 9.4E <sup>-9</sup>   | 7.26E <sup>-3</sup>  |
| Eutrophication   | kg PO4       | 7.57E <sup>-4</sup>  | 1.56E <sup>-9</sup>  | 7.57E <sup>-4</sup>  |
| Summer smog      | kg C2H4      | 1.84E <sup>-4</sup>  | 1.06E <sup>-9</sup>  | 1.84E <sup>-4</sup>  |
| Heavy metals     | kg Pb        | 1.16E <sup>-7</sup>  | 0                    | 1.16E <sup>-7</sup>  |
| Ozone layer      | kg CFC11     | 7.18E <sup>-11</sup> | 4.9E <sup>-11</sup>  | 2.28E <sup>-11</sup> |
| Carcinogens      | kg B(a)P     | 1.95E <sup>-9</sup>  | 3.59E <sup>-14</sup> | 1.95E <sup>-9</sup>  |
| Pesticides       | kg act.subst | 0                    | 0                    | 0                    |

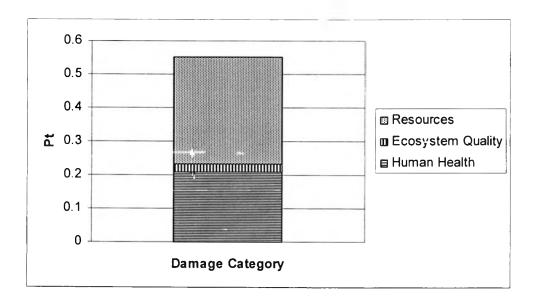
 Table 4.72 Environmental impact in equivalent units for each impact category for the use phase of HIPS production

 Table 4.73
 Environmental impact in equivalent units for each impact category for raw material preparation process in the manufacturing phase of HIPS production

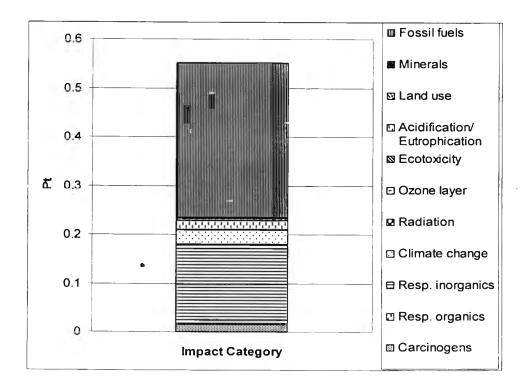
| Impact category  | Unit         | Total               | Styrene             | Ethylbenzene         | Polybutadiene       | Naphtha              | Peroxide            | Electricity-         |
|------------------|--------------|---------------------|---------------------|----------------------|---------------------|----------------------|---------------------|----------------------|
|                  |              | •                   | Monomer             |                      | Rubber              |                      |                     | Thai                 |
| Energy resources | MJ LHV       | 93.4                | 77.7                | 2.7                  | 10.2                | 1.42                 | 9.37E <sup>-1</sup> | 4.61E <sup>-1</sup>  |
| Greenhouse       | kg CO2       | 1.61                | 1.26                | 1.13E <sup>-1</sup>  | 1.56E <sup>-1</sup> | 9.54E <sup>-3</sup>  | 5.14E <sup>-2</sup> | 1.67E <sup>-2</sup>  |
| Solid waste      | kg           | 3.86E <sup>-2</sup> | 3.33E <sup>-2</sup> | 0                    | 4.75E <sup>-3</sup> | 9.41E <sup>-5</sup>  | 4.88E <sup>-4</sup> | 3.93E <sup>-5</sup>  |
| Acidification    | kg SO2       | 5.39E <sup>-2</sup> | 5.04E <sup>-2</sup> | 1.95E <sup>-4</sup>  | 2.67E <sup>-3</sup> | 9.87E <sup>-5</sup>  | 4.32E <sup>-4</sup> | 9.88E <sup>-5</sup>  |
| Eutrophication   | kg PO4       | 3.0E <sup>-3</sup>  | 2.69E <sup>-3</sup> | 1.64E <sup>-5</sup>  | 2.44E <sup>-4</sup> | 1.07E <sup>-5</sup>  | 3.15E <sup>-5</sup> | 1.03E <sup>-5</sup>  |
| Summer smog      | kg C2H4      | 8.57E <sup>-3</sup> | 7.38E <sup>-3</sup> | 1.22E <sup>-4</sup>  | 9.57E <sup>-4</sup> | 4.9E <sup>-6</sup>   | 1.07E <sup>-4</sup> | 2.5E <sup>-6</sup>   |
| Heavy metals     | kg Pb        | 3.41E <sup>-6</sup> | 2.2E <sup>-6</sup>  | 2.05E <sup>-8</sup>  | 6.84E <sup>-7</sup> | 1.0E <sup>-9</sup>   | 5.09E <sup>-7</sup> | 1.58E <sup>-9</sup>  |
| Ozone layer      | kg CFC11     | 1.66E <sup>-8</sup> | 0                   | 0                    | 0                   | 0                    | 1.66E <sup>-8</sup> | 3.1E <sup>-13</sup>  |
| Carcinogens      | kg B(a)P     | 3.54E <sup>-9</sup> | 1.5E <sup>-9</sup>  | 1.88E <sup>-10</sup> | 0                   | 3.35E <sup>-12</sup> | 1.82E <sup>-9</sup> | 2.66E <sup>-11</sup> |
| Pesticides       | kg act.subst | 0                   | 0                   | 0                    | 0                   | 0                    | 0                   | 0                    |

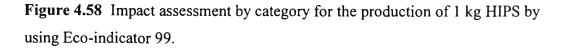
 Table 4.74
 Environmental impact in equivalent units for each impact category for SM recovery process in the manufacturing phase of

 HIPS production


| Impact category  | Unit         | Total               | Electricity-Thai     | SM Recovery         | Water-Thai          |
|------------------|--------------|---------------------|----------------------|---------------------|---------------------|
| Energy resources | MJ LHV       | 118                 | 0.15                 | 0                   | 118                 |
| Greenhouse       | kg CO2       | 2.23                | 5.44E <sup>-3</sup>  | 0                   | 2.22                |
| Solid waste      | kg           | 1.24                | 1.28E <sup>-5</sup>  | 0                   | 1.24                |
| Acidification    | kg SO2       | 1.1E <sup>-2</sup>  | 3.22E <sup>-5</sup>  | 9.0E <sup>-6</sup>  | 1.09E <sup>-2</sup> |
| Eutrophication   | kg PO4       | 7.39E <sup>-4</sup> | 3.36E <sup>-6</sup>  | 1.67E <sup>-6</sup> | 7.34E <sup>-4</sup> |
| Summer smog      | kg C2H4      | 2.28E <sup>-2</sup> | 8.14E <sup>-7</sup>  | 8.67E <sup>-4</sup> | 2.19E <sup>-2</sup> |
| Heavy metals     | kg Pb        | 2.15E <sup>-6</sup> | 5.16E <sup>-10</sup> | 0                   | 2.15E <sup>-6</sup> |
| Ozone layer      | kg CFC11     | 2.45E <sup>-7</sup> | 1.01E <sup>-13</sup> | 0                   | 2.45E <sup>-7</sup> |
| Carcinogens      | kg B(a)P     | 1.15E <sup>-6</sup> | 8.67E <sup>-12</sup> | 9.17E <sup>-8</sup> | 1.06E <sup>-6</sup> |
| Pesticides       | kg act.subst | 0                   | 0                    | 0                   | 0                   |

| Impact category  | Unit         | Total                | Landfill            | Recycling            |
|------------------|--------------|----------------------|---------------------|----------------------|
| Energy resources | MJ LHV       | -17.3                | 0                   | -17.3                |
| Greenhouse       | kg CO2       | -2.54E <sup>-1</sup> | 0                   | -2.54E <sup>-1</sup> |
| Solid waste      | kg           | 6.64E <sup>-1</sup>  | 0.5                 | 1.64E <sup>-1</sup>  |
| Acidification    | kg SO2       | -2.47E <sup>-3</sup> | 0                   | -2.47E <sup>-3</sup> |
| Eutrophication   | kg PO4       | -4.1E <sup>-4</sup>  | 0                   | -4.1E <sup>-4</sup>  |
| Summer smog      | kg C2H4      | -3.6E <sup>-4</sup>  | 0                   | -3.6E <sup>-4</sup>  |
| Heavy metals     | kg Pb        | 2.72E <sup>-6</sup>  | 1.91E <sup>-7</sup> | 2.53E <sup>-6</sup>  |
| Ozone layer      | kg CFC11     | 2.17E <sup>-7</sup>  | 0                   | 2.17E <sup>-7</sup>  |
| Carcinogens      | kg B(a)P     | 1.72E <sup>-8</sup>  | 0                   | 1.72E <sup>-8</sup>  |
| Pesticides       | kg act.subst | 0                    | 0                   | 0                    |


 Table 4.75
 Environmental impact in equivalent units for each impact category for disposal phase of HIPS production


The results of the impact assessment of HIPS production using Ecoindicator 99 show the same trend as observed with GPPS. Figure 4.57 reveals that the damages are mainly in the resources depletion and human health which resulted from depletion of fossil fuels, respiration of inorganic substances and climate change effect on human as elaborated in Figure 4.58. The impact assessment for various phases in the production of HIPS is shown in Figure 4.59. The environmental impact is mainly in the manufacturing phase and use phase (injection). The recycle process in the disposal phase contributes the positive effect to the environment by decreasing the extensive utilization of electricity generated from fossil fuels. Figure 4.59 reveals that the impact is in fossil fuel depletion and respiration of inorganics respectively. In manufacturing phase, Table 4.60 shows that the major environmental impacts are in raw material preparation and SM recovery process. This is attributed to the use of styrene monomer, water and electricity in manufacturing and use phases, respectively, as shown in Figures 4.61, 4.62, and 4.63.

The comparison of the results obtained from Eco-indicator 95 and Ecoindicator 99 is shown in Figure 4.64 for each impact category. Although the percentages may be different but similar trend is clearly observed between these two impact assessment methods.



**Figure 4.57** Damage assessment for the production of 1 kg HIPS by using Ecoindicator 99.





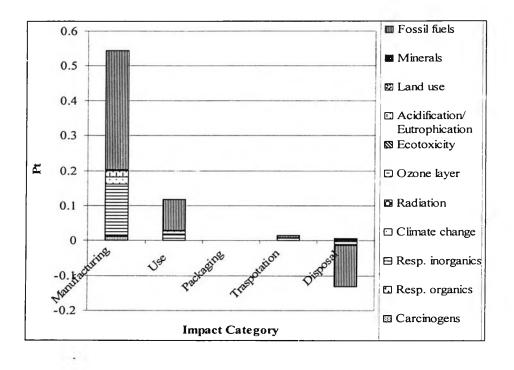
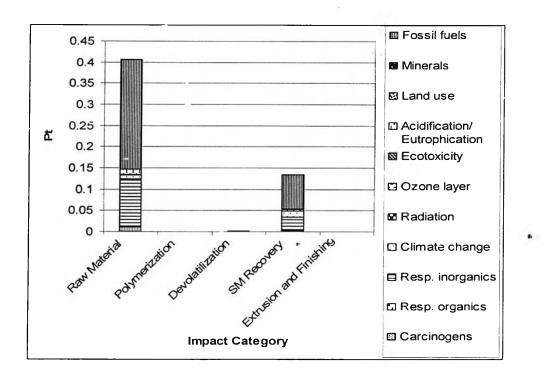




Figure 4.59 Impact assessment for each phase in the production of 1 kg HIPS by using Eco-indicator 99.



**Figure 4.60** Impact assessment for each process in the manufacturing phase of 1 kg HIPS production by using Eco-indicator 99.

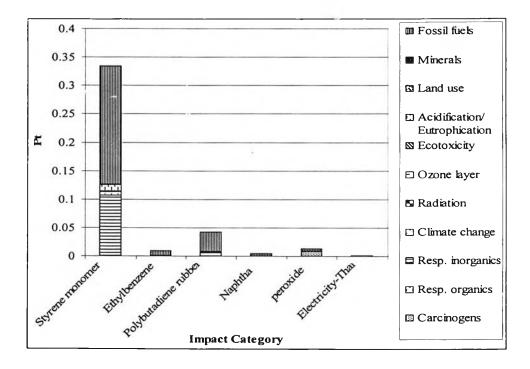
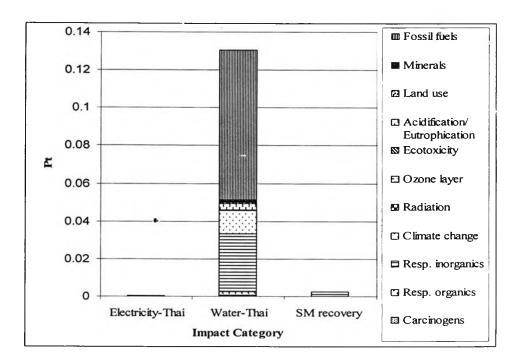
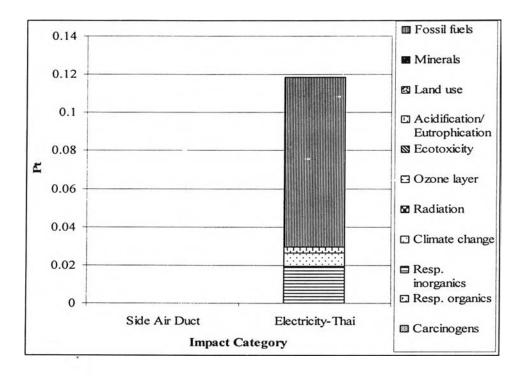





Figure 4.61 Impact assessment for raw material preparation process in the manufacturing phase of 1 kg HIPS production by using Eco-indicator 99.



**Figure 4.62** Impact assessment for SM recovery process in the manufacturing phase of 1 kg HIPS production by using Eco-indicator 99.



**Figure 4.63** Impact assessment of use phase in the production of 1 kg HIPS by using Eco-indicator 99.

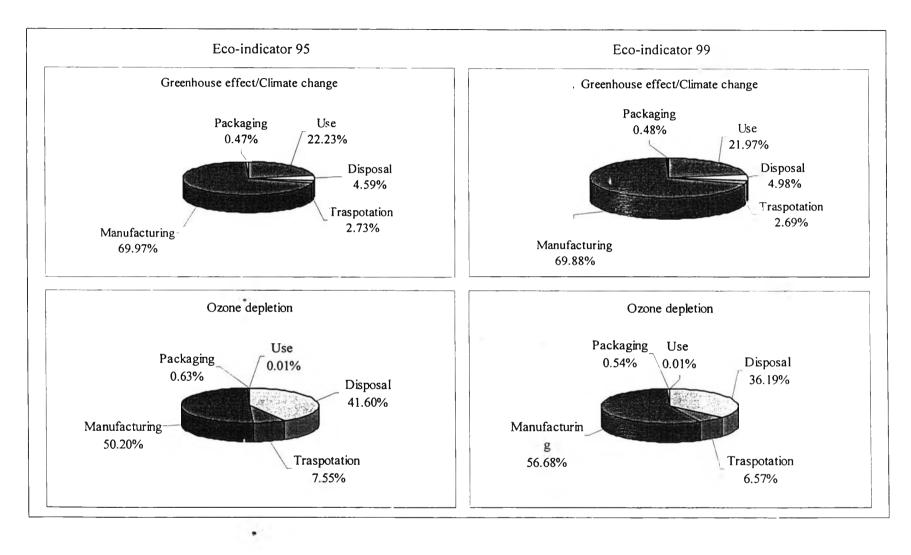



Figure 4.64 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg HIPS.

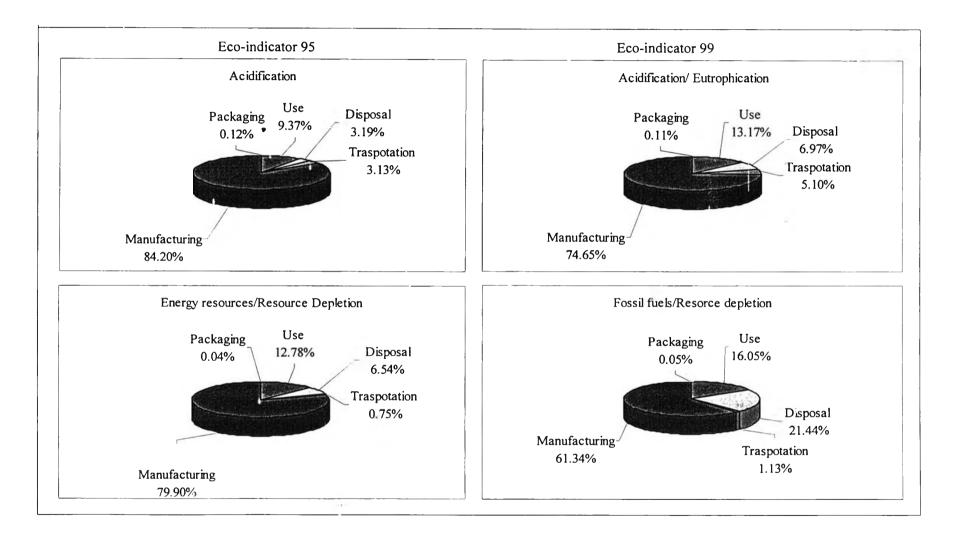



Figure 4.64 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg HIPS (continued).

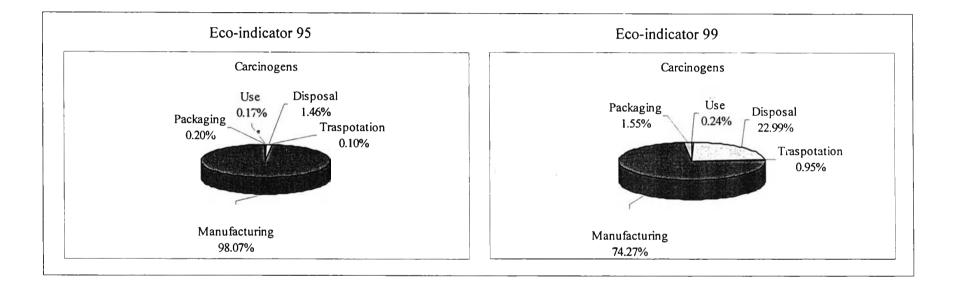



Figure 4.64 Comparison of the environmental impacts assessed by Eco-indicator 95 and Eco-indicator 99 for 1 kg HIPS (continued).

# 4.3 Comparison of the Life Cycle Assessment of Polyurethane Foam, General Purpose Polystyrene and High Impact Polystyrene

Figure 4.65 shows the comparison of the life cycle assessment (LCA) of the three polymers used in this study, PU foam, GPPS, and HIPS. It can be seen that the environmental impacts of HIPS and GPPS are nearly the same and are much higher than the impacts caused by the production of PU foam. The total impact of PU foam is approximately 1.5 times lower than that of HIPS. For all three polymers, the main impact is in fossil fuels followed by respiration of inorganics, climate change and acidification. For PU foam, carcinogens appear to be one of the important factors as well.

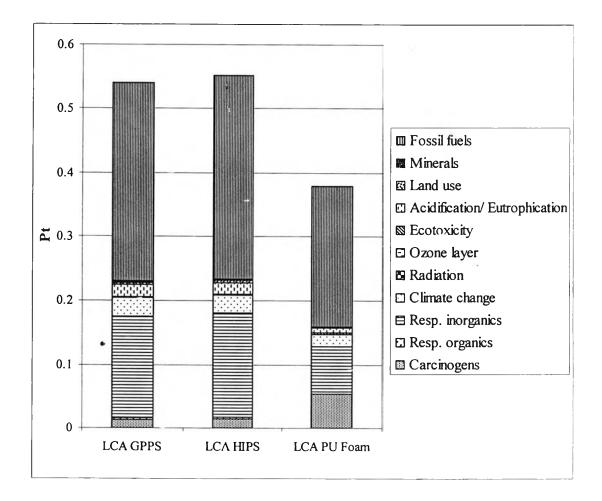
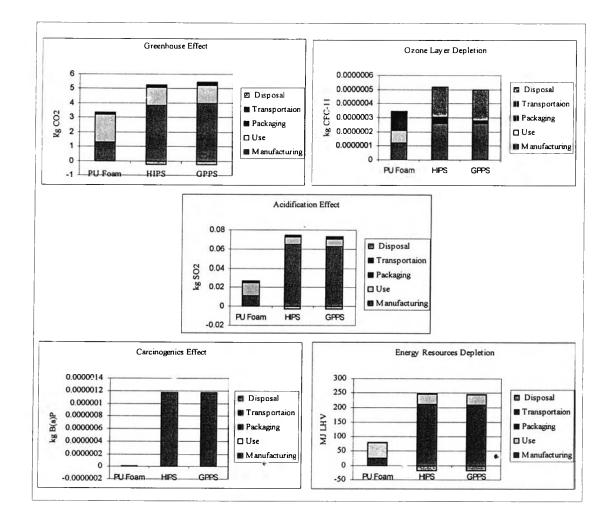
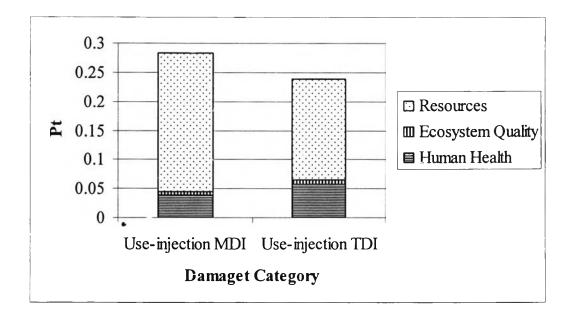
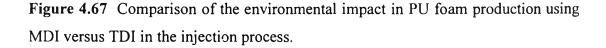




Figure 4.65 LCA comparison between PU foam, GPPS, and HIPS.

The comparison of life cycle assessment of PU foam, GPPS, and HIPS for each impact category is shown in Figure 4.66. This includes greenhouse effect, ozone layer depletion, acidification, carcinogens, and energy resources depletion. It can be seen from the figure that, for all three plastics, the most affected areas are in manufacturing and use phases which is quite common for the production of petrochemical products. In addition, it is clearly seen that, among the three plastics studied, PU foam contributes the least in all impact categories.

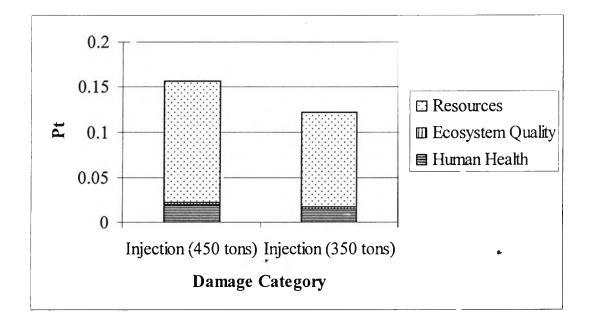


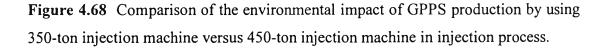

**Figure 4.66** LCA comparison between PU foam, GPPS, and HIPS for various impact categories.


### 4.4 Suggestions for Improvement

In this section, suggestions for the improvements of the process based on the results obtained from LCA study are discussed for each plastic as follows.

### 4.4.1 Polyurethane Foam Production


From the LCA results, the environmental impacts of the production of PU foam are mainly from the chemicals used in the manufacturing and use phases. In particular, diphenylmethane diisocyanate or MDI used in injection process contributes most significantly. Therefore, the process can be improved if MDI can be replaced by a more environmental friendly substance. In this case, MDI can be easily replaced by toluene diisocyanate or TDI which is extensively used in the production of PU foam in other parts of the world. By substituting MDI with TDI and rerun the program using the same conditions, the results show that 15% reduction in the environmental impact of PU foam production can be achieved as shown in Figure 4.67.






#### 4.4.2 General Purpose Polystyrene Production

The LCA results show that the environmental impact of the production of GPPS is mainly from chemicals and electricity used the manufacturing and use phases. For chemicals, the production of styrene monomer contributes most to the environmental impact and it is rather difficult to change this monomer as long as the current production technology is still being used to produce GPPS. In contrast, for electricity, reducing electricity consumption in the injection process could lead to lowered environmental impact. For injection process, Engineering Plastics Co., Ltd uses 2 injection machines, 450-ton and 350-ton, to produce clear shelf for refrigerators at the production of 4000 pieces/month. In many cases, although the 350-ton machine is capable of the work but the 450-ton machine is normally used instead. If the 350-ton injection machine is used to produce GPPS part instead of 450-ton machine, it is estimated that 22% decrease in the environmental loads could be achieved as shown in Figure 4.68.





## 4.4.3 Use of Cleaner Technology in the Production Process

Apart from chemicals used, energy consumption is the major source of the environmental impacts in the production of these plastics (PU foam, GPPS, and HIPS). New or emerging technologies such as cleaner technology (CT) and Ecodesign can be used to improve the efficiency of energy utilization in the production process of these petrochemical products. The feasibility and appropriateness of the use of these environmental management tools should be conducted at the manufacturing level of the companies in the petrochemical industry.