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บทคัดยอ 
การสรางฟลมบางบนแผนรองรับที่มีลวดลายเปนเทคนิคที่ชั้นของฟลมบางถูก

สรางบนแผนรองรับที่มีการกําหนดลวดลายไวกอนแลว  แบบจําลองอยางงายไดถูกใช
เพื่อศึกษากระบวนการสรางลวดลายที่มีลวดลายแตกตางกันสองแบบ  ไดแก  ลวดลายที่
เรียบและลวดลายที่เปนคาบ  โดยมีจุดมุงหมายเพื่อกําหนดเงื่อนไขในการสรางที่ทําให
ฟลมที่สรางขึ้นสามารถถอดแบบลวดลายดั้งเดิมไดและเพื่อกําหนดวาลวดลายดั้งเดิมมาก
เพียงใดที่จะคงอยูไดไปจนถึงเวลาที่สนใจ  ความนาจะเปนของการคงอยูไดถูกใชเพื่อ
กําหนดสัดสวนของลวดลายที่ยังคงอยู  เราพบวาในการสรางลวดลายที่เรียบอุณหภูมิของ
แผนรองรับที่มีคาสูงจะสงผลใหมีการเพิ่มระยะการแพรบนพื้นผิวของอะตอมที่กําลัง
เคลื่อนที่และสามารถชวยเพิ่มคาสภาพการคงอยูของลวดลายได  ถาอุณหภูมิของแผน
รองรับสูงพอฟลมจะถูกสรางในรูปแบบชั้นตอชัน้และลวดลายที่เรียบจะคงอยูไดเปน
เวลานาน  สวนในการสรางลวดลายที่เปนคาบการเพิ่มระยะการแพรบนพื้นผิวชวยให
เกิดความราบในสวนที่เรียบของลวดลายแตทําลายรูปรางเคาโครงของลวดลาย  เราพบวา
อุณหภูมิของแผนรองรับจะตองเปนคาที่ไมนอยจนเกินไปหรือมากจนเกินไป  คาที่
เหมาะสมที่สุดจะขึ้นอยูกับขนาดของลวดลายโดยลวดลายที่มขีนาดของลักษณะเดนใหญ
กวาจะสามารถคงอยูไดเปนระยะเวลาที่นานกวา  สุดทายเราไดปรับปรุงนิยามของความ
นาจะเปนของการคงอยูเพ่ือที่จะใหไดคาความนาจะเปนที่สอดคลองยิ่งขึ้นกับลักษณะ
พ้ืนผิวที่จําลองขึ้น 
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Abstract 
Patterned substrate growth is a technique that layers of thin film are grown on 

a substrate with a predetermined pattern. A simple model is used to study patterned 

growth process with two different types of pattern: flat pattern and periodic pattern. 

The goals are to determine growth conditions that enable the grown film to reproduce 

the original pattern, and to determine how much of the original patterns survive up to 

a specific time. The persistence probability is used to determine fractions of survived 

pattern. We found that in flat patterned growth, a high substrate temperature which 

results in a long surface diffusion length of moving atoms can help increase the 

persistence probability of the pattern. If the substrate temperature is high enough, the 

film is grown in layer-by-layer mode and the flat pattern persists for a long time. In 

periodic pattern growth, long surface diffusion length helps with the smoothness of 

the flat parts of the pattern but destroys the outline shape of the pattern. We found that 

the substrate temperature has to be a moderate value, not too low and not too high. 

The optimal value depends on the size of the pattern. A pattern with a bigger feature 

size can persist for a longer period of time. Finally, we suggest a modified definition 

of the persistence probability in order to have a probability that agrees better with the 

simulated morphology. 
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Chapter 1  Introduction 
 

Physics of surfaces and interfaces has been an interesting and active research 

topic in the field of condensed matter for a long time. There have been a lot of 

research work, experimentally and theoretically, on the study of thin film growth on 

flat substrates and scientists have gained profound understandings in the subject. On 

the theoretical side, many growth models have been introduced [1-7] in order to use 

computer simulation technique as a tool to study kinetic properties of the evolving 

surface.  

 These days, growing interests in nanotechnology make the surface and 

interface physics even more important. Modern techniques can imprint nano and sub-

nano scale structure on a substrate and then grow thin film on top of the substrate in 

order to fabricate nano scale device such as quantum dot and quantum wire. The 

process of growing thin film on a substrate with a specific structure is known as 

patterned substrate growth process. Obviously, the goal in this process is that after we 

grow thin film on top of the substrate, the pattern should still exist on the film surface. 

In order to be able to control the growth process and have a high quality film, i.e. a 

film that the original pattern on the substrate survives the growth process, we also 

need to determine parameters that give information about the pattern survival rate. 

There is no guarantee that the same knowledge scientists have acquired regarding 

growth process on a flat substrate will still be valid with patterned growth. Hence, 

there is an increasing interest in the study of patterned substrate growth process [8-

10]. 

In our study here, we focus on the theoretical aspects of molecular beam 

epitaxy growth on patterned substrate. To be specific, our goal is to use a simulation 

model to investigate a growth process with a predetermined pattern embedded into the 

substrate before the film is grown. We want to determine an appropriated parameter 

or parameters which can tell us about the survival rate of the pattern. We also want to 

determine growth conditions that help keep the original pattern after the growth 

process is completed. We note that this study is not aimed only to acquire knowledge 

to control patterned substrate growth process in experiments, but it also has an 
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interesting aspect from a fundamental point of view. The flat substrate growth and 

patterned substrate growth are, in fact, two physical processes that are very similar to 

each other. The only difference is their initial conditions. If we can have insights into 

a patterned substrate growth, we can compare this with the flat substrate growth 

knowledge in literature [1-5], and see whether these two seemingly similar processes 

share the same physical properties. This will let us know how much the initial 

conditions can impact a physical process.  
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Chapter 2   Models and Methods 
 

In this work, our goal is to study molecular beam epitaxy (MBE) growth of 

thin film on patterned substrates. MBE is a technique that can grow very high quality 

thin films. It is used in the fabrication of such things as optoelectronic devices, 

quantum structures, and other devices that require very high accuracy. In the MBE 

technique, neutral atoms or molecules of the film material are thermally evaporated 

from a source or sources. These atoms form a beam that is directed toward a heated 

substrate. The atoms are deposited on the substrate. Some of the deposited atoms have 

enough energy to leave the surface and desorp back. Most of the deposited atoms, 

however, stay on the substrate and diffuse around on the surface before eventually be 

incorporated onto the film. The growth process is generally performed with a slow 

growth rate which is determined by the number of averaged layers grown per unit 

time. There are three main mechanisms that affect the grown surface. These are the 

deposition, diffusion and desorption of the atoms. In most MBE processes, very few 

atoms desorp from the surface so in the study of MBE growth the desorption process 

is usually neglected. That leaves two major competing processes: deposition of atoms 

that induces roughness on the film versus surface diffusion of atoms that smoothens 

the film. In experiments, the controllable parameters associated with these two 

processes are the deposition rate and the substrate temperature. The temperature of the 

substrate is the factor that determines energy, and hence mobility, of the surface 

atoms. MBE growth can also be studied theoretically as well, especially via computer 

modeling. In our study, we use results from simulation results of a computer model to 

try to understand patterned MBE growth. 

 

2.1  Discrete Growth Models 
Since the study of MBE growth by the use of computer simulations has 

attracted a great deal of attention from researchers in the field, many discrete growth 

models are proposed [1-7] to describe the kinetic phenomena of surface growth. 

These models are also used as tools to determine essential properties of the problems. 
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The model we use in this study is the Das Sarma-Tamborenea (DT) model [4] 

introduced in 1991 as a simple model to study MBE growth on a flat substrate. For 

comparison, however, we discuss two other well known growth models in this section 

too. These are the Random Deposition (RD) model [1] and the Molecular Beam 

Epitaxy (MBE) model [5].  

All models discussed here are under solid-on-solid constraints. This means 

there is no desorption, no overhanging, and no bulk vacancy formation on the growth 

front. All deposited atoms must become part of the growing film. Periodic boundary 

condition is also used in all simulations to prevent edge effects. Each atom is 

simplified to a simple unit square block of equal size. Details of the deposition and 

diffusion processes depend on rules of each model. 

 

2.1.1 Random Deposition Model 
The RD model is the simplest discrete growth model that includes only the 

deposition process while desorption and diffusion of atoms are not allowed [1]. An 

atom is dropped on a randomly chosen site. The atom falls vertically until it reaches 

the top of that random site and then it is incorporated there permanently. This 

completes a deposition of one atom and the process is repeated for the next atoms 

until the film reaches desired thickness.  

The characteristic of this model is that each lattice site is grown independently 

and the surface of the growing film is uncorrelated. The interface of the film is 

extremely rough because there is no diffusion at all. The RD model is generally 

studied statistically from the point of view of statistical physicist. However, for the 

study of MBE growth, the model is too unrealistic and not a suitable model.  

 

2.1.2 Molecular Beam Epitaxy Model 
To create a more realistic model, a so-called MBE model is introduced [1,5]. In 

this model, deposition and diffusion processes are included. All atoms on the surface 

can diffuse. The hopping rate of each surface atom is calculated from the Arrhenius 

hopping rate which depends on the substrate temperature and the initial bonding 

configuration of that atom. The atoms continue to hop around until they are buried by 
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other atoms. This model is sometimes called the full diffusion MBE model to 

emphasize that all surface atoms can diffuse.  

The MBE model is one of the most realistic discrete models because of its 

extensive details in the diffusion process. However, everytime that a surface atom hop 

to a different site, bonding configurations of other surface atoms in the vicinity are 

changed. So after one hop made by one atom, hopping rates of all surface atoms in the 

area must be re-calculated. The simulation of this model requires a lot of 

computational time and so the model cannot be used for a system with a large 

substrate.  

 

2.1.3 Das Sarma-Tamborenea Model 
The DT model was introduced in 1991 by S.Das Sarma and P.Tamborenea 

[4,11] as a simple model for MBE growth. It was created in such a way that its 

diffusion rules are much simpler than the MBE model but still captures the essence of 

real MBE growth process. The model includes the deposition and the diffusion on the 

interface but does not allow any atom on the surface to desorp. In this model, the 

diffusion process is instantaneous, i.e. each atom is deposited on to the substrate at a 

randomly chosen site, diffuse to a “better” site and then the atom is incorporated at 

that latter site. Once the atom is incorporated, it becomes a part of the growing film 

and can no longer move. This rule makes the DT model much easier to simulate 

compared to the full diffusion MBE model. 

In the DT model, each atom is assumed to be a simple cubic. Atoms are 

dropped onto the substrate at random sites. The important thing is, in this model, only 

one atom is dropped at a time. After the atom reaches the bottom, it can diffuse within 

a finite diffusion length l  to search for its final site according to the diffusion rule of 

the model. Once the atom finds its final site, it stays there permanently and the next 

atom is dropped.  
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Figure 2.1  A schematic diagram showing the diffusion rule for the DT 
model in one dimensional substrate. The diffusion length here is 1=l . 

 

 

The diffusion rule for this model [4,11], shown schematically in Fig. 2.1 

for 1=l  case, is quite simple. At first the atom checks to see the number of nearest 

neighbor bonding it can have at the random site it is dropped upon. If there are at least 

two bonds, the atom will choose that random site as its incorporation site and it will 

stay there without diffusing any further. However, if the atom can have only one 

bonding (with a neighbor directly beneath it), it will search its nearest neighbors and 

see how many bonding it can form if it goes there. If one of the nearest neighbors 

offers more bonding than the original site, the atom diffuses there. If there are many 

(i.e. more than one) nearest neighbors that offer more than one bonding, then the atom 

chooses its final site by a random pick among those nearest neighbors. However, if all 

the nearest neighbors offer only one bonding each, the atom will search further away 

from its original site. If the atom reaches its limit, i.e. the pre-determined diffusion 

length l , and still has not found a better site than the original site, then it stays at its 

original site. We should emphasize here that the possibility that two atoms will “fight” 

for the same final site does not exist. This is because in the DT model, only one atom 

is allowed to move at a time. Once the moving atom chooses the final site and be 

incorporated at that site, only then the next atom is dropped and allowed to move on 

the surface.  
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2.2    Surface Roughness 
In the study of thin film growth, the first thing we can investigate is the 

surface morphology of the grown film. In simulation it is easy to plot the height of the 

surface as a function of the position on the substrate. From the plot, we can usually 

judge how “rough” the film is just by taking a look at the morphology. But our 

judgment is not universal and what considered rough by one researcher may be 

considered smooth by another researcher. So we need a quantity that can judge 

“roughness” of a thin film surface universally. That quantity is the interface width W  

defined as  [1] 

 

( ) 2/12)(),()(
x

thtxhtW −=  

 

where ),( txh  is the height of the surface at site x  at time t , )(th  is the average 

height of the film at that time which can be thought of as the average thickness of the 

film, and the brackets 
x

...  means the quantity in the bracket is averaged over all 

value of x  on the substrate. 

 From the definition of the interface width, it can be interpreted that W  tells us 

how much the actual height of the film at various position on the substrate differ from 

its average value. This is, by definition, the standard deviation of ),( txh . In general, 

the interface width increases as a function of growth time. It means, in general, the 

longer you grow the film (or the thicker the film), the rougher the film surface 

becomes. 

 

2.3     Persistence Probability 
 When studying growth on a flat substrate, the most important thing is to 

determine how smooth, or how rough, the film is as deposition process continues 

through time. A quantity used to determine the roughness of a film is the root mean 

square value of the height fluctuation, also known as the interface width, of the film. 

However, when the film is grown on a patterned substrate, the most important thing is 

not the roughness of the film anymore. The question has now become, how much of 
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the original pattern survive the growth process. To answer this question, the 

persistence probability is used in the study of thin film growth on patterned substrates. 

The persistence probability is conventionally defined as [8] 

 

∏
=

+δ=
t

s
sxhsxhtP

1
)0,(),,()( . 

 

Here ),( sxh  is height of the simulated surface at the lattice site x  at time s  and 

sxh +)0,(  is the height of the substrate at site x  (i.e. before the growth process 

begins because time is set at zero) plus the average thickness of the grown film. 

Basically, sxh +)0,(  is the desired height of the film at the site x . The notation δ  is 

the Kronecker delta function which takes on the value of unity when its two indices 

are equal and becomes zero otherwise ( 1, =δ ji  when ji = ), ∏ denotes the product 

of the delta function from time 1=s  ML through ts =  ML, and the angular brackets 

...  represents the average of the quantity over all lattice sites on the substrate. 

 By definition, )(tP  means that survival of the pattern at time t  is counted 

only when the initial pattern is reproduced exactly every time after each monolayer 

deposition, from the very beginning of the growth process until the film is grown to t  

ML.  

 

2.4   Noise Reduction Technique 
 In all atomistic models, there are unavoidable stochastic noises during the 

growth process. The most dominant noise is the noise associated with the deposition 

process. When using a discrete model such as the DT model, the simulation starts 

from the deposition of thin film process which is a process where atoms are deposited 

on the substrate at randomly chosen sites. This randomness produces noise which 

causes roughness on the surface. To reduce the noise effects, a noise reduction 

technique is utilized in this work.  

 Here, we choose to use the long surface diffusion length noise reduction 

technique [12]. In this technique, the surface diffusion length ( )l of each atom is 



 

9

increased from the default value of unity. This means we increase the maximum 

lateral length that an atom can move. It is obvious that an atom with a longer diffusion 

length ( 1>l ) will have more chance to find a more appropriated incorporation site. In 

the DT model, the atom with a long surface diffusion length will be able to search 

further away from its random deposition site for the incorporation site with a large 

coordination number. This situation will result in a smoother interface. 

 Although the long surface diffusion length here is just a computer simulation 

technique, it actually relates to a controllable parameter in experiments: the 

temperature of the substrate T . When T  is increased, the surface atoms have more 

thermal energy which raise their mobility because they can break bonds at their 

original deposition sites and travel for a relatively large distance. So large T  

corresponds to large l . To be explicit, the diffusion length varies with the substrate 

temperature as  [13] 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∝

TkB

1expl  

 

when Bk  is the Boltzmann constant. It should be noted here, however, that the 

substrate temperature cannot be set too high because it is assumed in this study that 

the desorption rate is too small to have any effect on the surface. 
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Chapter 3   Results and Discussions 
 

In this chapter, we present our simulation results and offer discussions. The 

results are separated into 2 groups. The first group is results of growth on a “flat 

pattern” substrate. The second group is from growth of thin films on substrates with 

periodic patterns. All simulation results presented here are from our studies of the DT 

model on one dimensional substrates with the periodic boundary condition to prevent 

edge effects.  

 

3.1 Flat Patterned Growth 
 The initial configuration for flat patterned growth is that height at the starting 

time ( 0=t ) is set to zero at all lattice sites, i.e. 0)0,( ==txh  for Lx ,...,3,2,1=  when 

L  is the size of the substrate. Three quantities are studied in this case: the surface 

morphology of the simulated film, the interface width (W ), and the persistence 

probability ( P ). 

 Let us first investigate the film morphology. Fig. 3.1 shows the time evolution 

of a typical surface of a film simulated from the DT model with only nearest neighbor 

diffusion, i.e. 1=l . It is clear from Fig. 3.1 that once the deposition process begins, 

the film roughness increases. This is expected as the diffusion rules allow atoms to 

move only to their nearest neighbors at the most, so it is difficult for atoms to find the 

most appropriated sites that will help maintain the smoothness of the surface. In order 

to improve the film quality, the long surface diffusion length noise reduction 

technique was applied. The results are shown in Fig. 3.2 where surface morphologies 

after 100 ML deposition are illustrated. The diffusion length is set to be 

50,10,1,0=l . The 0=l  simulation is obviously just the RD model and the surface 

is extremely rough. The 1=l  system is the original nearest neighbor diffusion DT 

model as seen in Fig. 3.1 (the middle line at 100 ML). The top two lines here show 

the DT morphologies with longer surface diffusion length. It is striking how smooth 

the surfaces become when the moving atoms are allowed to search further away from 

the randomly chosen deposition sites. The longer an atom can move, the smoother the 
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Figure 3.1  Dynamical morphology shows the time evolution of the 
kinetically rough thin film grown by using the DT model. The diffusion 
length is fixed at 1=l . 

 

surface is because the moving atom has more chance to diffuse to a site with larger 

numbers of bonding, i.e. a site that is a groove/pit in the surface.   

 The interface width results for the DT simulations on flat substrate growth are 

shown in Fig. 3.3 for various values of l . As discussed earlier in section 2.2, W  

increases with time in general. Results in Fig. 3.3 confirm that. It is also found here 

that when the diffusion length of moving atoms increases, which means the atoms 

have higher mobility, the surface roughness decreases. This result agrees with the 

morphologies in Fig. 3.2 which show that when l  is larger, the surface is smoother. 

There is a striking characteristic in Fig. 3.3 ; the oscillation of W  in 1>l  systems 

which is especially obvious when 50=l  and 100=l . The oscillation indicates that 

the thin film is being grown in layer-by-layer mode [12] which means one layer is 

grown completely before the next layer is formed. Starting from a flat layer, atoms are 

incorporated into the film as the next layer is grown and W increases during this
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Figure 3.2  Morphologies at 100=t  MLs for the DT model with 

various diffusion length. 

 

 

process until the interface width reaches its peak when the layer is half filled. As new 

atoms are incorporated into this half filled layer, the standard deviation of ),( txh  

decreases. W  reaches its minimum value when the layer is completely filled, forming 

a flat surface again. The whole process is then repeated for the next layer. Eventually, 

the film cannot be grown in this layer-by-layer mode due to the stochastic noise 

associated with the growth process, so the amplitude of the oscillation decreased 

continuously in time until the oscillation eventually damp out completely. Note that 

this layer-by-layer oscillatory surface roughness is seen experimentally in RHEED 

results as well when the substrate temperature is sufficiently high.    
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Figure 3.3  The interface width vs. time plots for various diffusion 
length. 

 

 In the flat patterned substrate growth, the pattern here is just a completely flat 

substrate. So the goal is to keep the film flat after growth process is finished. From the 

interface width plot in Fig. 3.3, we can conclude that increasing the diffusion length to 

a very large value can help reduce the surface roughness. However, when l  is small 

and the film is rough, can we decide how much of the “pattern” is still maintained? To 

answer this question, we need to study the persistence probability introduced earlier in 

the literature [8]. Our )(tP  results are plotted as a function of time in Fig. 3.4. Let us 

concentrate on the original DT model with 1=l  first. In this system, the morphology 

is very rough and the interface width increases rather rapidly in time. It can then be 

assumed that the persistence probability of the pattern in this system should decrease 

quickly in time as well. This is exactly what is seen in Fig. 3.4, that )(tP  starts from 

its maximum possible value ( 1=P ) and then decreases to 510−≈P  before the film 
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thickness reaches 20 ML. Since the substrate here is 000,10=L  lattice sites, the 

probability 510)( −=tP  means only an average of one site in the whole substrate can 

maintain the “theoretical height” throughout the growth process up to the time t .  

When the diffusion length is increased, both the morphologies and the interface width 

results suggest that more of the original pattern can survive growth process for longer 

period of time. The results in Fig. 3.4 agree well with that assumption, with the decay 

rate of )(tP  smaller when l  is larger. From this plot, we can determine how thick we 

can grow the film at a fixed l  when the acceptable level of persistence probability is 

specified. For example, when we need at least 1% of the pattern in the grown film, i.e. 
210)( −≥tP , we can grow the film to approximately 40 ML with 100=l . However, if 

the diffusion length in the system is 000,1=l , then the film can be growth to 

approximately 80 ML. It should be emphasized that l  is not just a computational 

parameter. The diffusion length relates directly with the temperature of the substrate 

in experiment. To have larger l , one needs to increase the substrate temperature when 

growing a real film experimentally. 

There is also an interesting point in Fig. 3.4, that for 000,5=l , 1)( =tP  

throughout the whole process, which is up to 200 ML in this study. This data means 

after 200 ML deposition, the surface of this film is still totally flat like the substrate. It 

can be explained that, in the system with 000,10=L  that we have here, 000,5=l  

indicates that all atoms can search the whole substrate for the most appropriated sites. 

There will not be any groove left after each layer is grown. The layer-by-layer growth 

mode can be maintained throughout the entire growth time up to infinite film 

thickness. This is a little interesting bit from the computational point of view but has 

no real impact on experiments because it is not possible to have a system with atom 

mobility being so large that the diffusion length reaches 000,5  lattice sites. In order to 

do so, the substrate temperature must be extremely high that the substrate, and the 

chamber for that matter, will melt away long before we can reach the desired 

diffusion length. 

To summarized this part, we have found that the flat pattern on the substrate 

can last for a longer period of time when the diffusion length in the model is 

increased. However, when the model followed nearest neighbor diffusion rule, the flat
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Figure 3.4  The persistence probability versus time plots for the DT 
model with various diffusion length. 

 

pattern of the substrate was destroyed very quickly after deposition process begins. 

This is confirmed by the study of the surface morphologies, the interface width versus 

time plots, and the plots of the persistence probability as a function of growth time. 

There is no limit to how large the diffusion length can be in our simulations as it was 

found that the survival rate of the original pattern continue to improve as the diffusion 

length becomes larger. 

 

3.2  Periodic Patterned Growth 
The flat patterned growth presented in the previous section seems to be trivial 

because it is actually just surface growth problems which have been done on flat 

substrates. It was studied here from the patterned growth point of view for the sake of 
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completeness and also for comparison with results from growth on other types of 

pattern. This was also a good chance for us to have a better understanding of the 

nature of the persistence probability. In this section, we continue our study by 

imposing a periodic pattern on our substrates. This type of growth process is a very 

interesting case because it offers a new technique to fabricate highly ordered 

nanostructure devices. In our study here, the initial pattern is designed to be a series of 

blocks placed at an equal interval throughout the substrate. All the blocks have the 

same shape and size. The width of each block is denoted by r  and the original height 

of each block is 0h . This is illustrated in Fig. 3.5 for a system with a substrate of size 

000,10=L , 000,1=r  and 1000 =h  lattice sites. To understand this problem, we 

utilized the same tool to study the survival rate of the pattern as in the previous 

section, i.e. the persistence probability. 

 From our results of flat patterned growth in the previous section, it is clear that 

the long surface diffusion length can indeed reduce noise and help the original pattern 

to persist through a long period of growth time when compared with the 1=l  model. 

With this knowledge in mind, we expect similar results for the periodic patterned 

  

 
 

Figure 3.5  The periodic patterned substrate. 
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growth in this section. However, our results in Fig. 3.6 indicate that our expectation is 

not correct as longer diffusion length does not always provide better survival rate for 

the periodic pattern growth.  The details are seen in Fig. 3.6. When l  is increased 

from 1  to ,50,10  and then 100 , the decay rates of the persistence probability 

continue to decrease as we expect. When 500=l , however, )(tP  decreases rapidly 

after 100  ML. In fact, after approximately 135 ML, the persistence probability of the 

system with 100=l  is better than that of the system with larger diffusion length, i.e. 

500=l . For systems with an even longer diffusion length ( 1000=l  and 5000=l  in 

Fig. 3.6), the persistence probabilities reduce with a dramatic decay rate and it looks 

like the original pattern is destroyed after only a few mono-layers deposition. 

 To understand this difference between the flat pattern and periodic pattern 

growth, we investigate the time evolution of the growing morphology for the system 

with 1000=l . The results are shown in Fig. 3.7. The grey area indicates the original 

patterned substrate before the growth process starts. This is a periodic pattern system 

with 000,10=L , 000,1=r  and 1000 =h  as already shown in Fig. 3.5. The red area 

shows the addition to the film after 30 ML deposition while the blue and pink area 

indicate the film after 50 and 100 ML deposition respectively. It is obvious from these 

morphologies that during the first 30 ML, the newly deposited atoms do not nucleate 

on top of any of the original blocks at all. All newly deposited atoms hop down to fill 

the empty space between the blocks. Although we did not expect this result, it actually 

makes sense. This is because the diffusion rule of the DT model requires that a 

moving atom search for a final incorporation site where it can increase number of 

bondings. So when a new atom is dropped on top of a completely flat block, it has 

only one bonding with its neighbor underneath it and no lateral bonding at all. 

According to the diffusion rule of the model, the atom searches, within 1000=l  

sites, for a site that can offer larger number of bond. The atom finds that final site at 

the bottom edge of the block where it can form one bond with the neighbor below and 

one lateral bond with the side of the block. This leaves the top of the block flat as 

before, and any new atom deposited on the top of the block faces the same situation, 

and eventually ends up at the bottom in the similar process. After 30 ML deposition, 
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Figure 3.6  The persistence probability versus time plots for the 
periodic patterned growth with various diffusion length. 

 

 

Figure 3.7  The periodic patterned film with a fixed 1000=l  at  
0=t  (grey), 30=t  (grey and red), 50=t  (grey, red and blue), and 
100=t  (grey, red, blue and pink) MLs. 
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the pattern of the film is changed to a series of blocks with 1000>r   and 1000 <h . 

After a total of 50 ML deposition, a total of 500000 atoms are deposited, and that is 

the number of atoms required to completely fill all the empty spaces between the 

original blocks. The film is turned into a flat surface without any information of the 

original pattern left. Any additional deposited atoms do not “know” that there is a 

pattern hidden in the substrate, so the growth process after 50 ML is a flat substrate 

growth. Since the diffusion length in this case is comparatively large, the surface 

remains relatively smooth throughout the growth process. 

 These results shown in Figs. 3.6 and 3.7 and discussed extensively above point 

out that a longer surface diffusion length is not always good for patterned growth. 

However, nearest neighbor diffusion only ( 1=l ) is not good either as the surface of 

the growing film is too rough. So how big the diffusion length (in other words, how 

high the substrate temperature) should be in a patterned substrate growth? The answer 

to this question depends on the size of the original pattern, i.e. r  in our simulations. 

Once the diffusion length is equal to 2/r , all atoms can hop down from the top of the 

original blocks. A close examination of Fig. 3.6 leads to our conclusion as follows. 

 

 3.2.1 Effects of diffusion length and size of the pattern 
 When l  is very small ( 1=l  and 10=l  in Fig. 3.6), the persistence 

probability decays in almost the same way as )(tP  in the flat substrate cases (Fig. 

3.4), which is an exponential decay. This is because l  is so small when compared 

with r  so the deposited atoms can search for final sites in the vicinity of the 

deposition sites only. In this situation, most of the deposited atoms do not come across 

the edge of the blocks, so they do not “see” the pattern. The diffusion situation for 

these atoms, which are the majority, are exactly the same as in flat substrate growth. 

So it is understandable that the persistence probabilities in the systems with very 

small diffusion length are similar to those from the flat pattern studies. This means the 

pattern is destroyed quickly because with small l , the surface (which is originally 

smooth both on top of the blocks and between the blocks) becomes rough in a short 

time from the noise.  
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 When l  is not too small but still less than 2/r  ( 50=l  and 100 in Fig. 3.6), 

the behavior of )(tP  in Fig. 3.6 can be separated into two time regimes. In the early 

time, )(tP  decay exponentially and the plots are straight lines. After 30 - 40 ML, 

)(tP  decay at smaller rates which means the persistence of the pattern is better. This 

is because the diffusion length is long enough to maintain some “smoothness” of the 

original pattern and at the same time the diffusion length is not too long (compared to 

the pattern size) so many atoms can be incorporated on top of the blocks and help 

keep the information of the pattern.  

 When 2/r=l  ( 500=l  in Fig. 3.6), the behavior of )(tP  is very interesting. 

In the very early time, the persistence probability decays very quickly (very sharp 

slope). After approximately 10 – 20 ML, however, the decay rate becomes smaller 

until after 100 ML that the decay rate becomes very large again. The reason for these 

changes is that at very early time, the diffusion length is exactly equal to half of the 

block size. This means all atoms deposited on the top of a block have to be 

incorporated at the bottom edge of the block and the persistence decays quickly. Soon 

afterward, the blocks in the film become slightly bigger. The increase of the pattern 

size means at this time the diffusion length (which is fixed at l ) is less than half the 

size of a block and some atoms can stay on the top surface. This helps with the 

survival rate of the pattern and the persistence probability decay rate slows down 

which means the film can keep the pattern for some time. 

And finally, when l  is very large, i.e. r≥l  ( 000,1=l  and 5,000 in Fig. 3.6), 

the persistence probabilities in these cases decays at a dramatic rate, i.e. the pattern is 

destroyed within an extremely short deposition time. This is because none of the 

newly deposited atom is allowed to stay on top of the blocks, as described in detail 

earlier. 

From the above results, a diffusion length that is too small or too large 

compared to the pattern size ( r ) is not a good choice for periodic patterned growth 

because the “pattern” can be thought of a combination of two things: a series of flat 

surfaces on the top and bottom of the blocks, and the shape of the blocks. Both must 

be maintained throughout the growth but they require different technique. Long 

diffusion length is needed to maintain the smooth flat surfaces but it destroys the 
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structure of the periodic block series. Small diffusion length will help keep the 

original block width for a long time but the flat parts become rough after a short 

growth time. The appropriated value for l  is in between a very small and very large 

value. From our results, the best value for l  seems to be a large value that is still less 

than 2/r . To confirm that the optimal value of surface diffusion length depends 

critically on the pattern size, we study a system with a different r . In Fig. 3.8, the 

persistence probabilities of a system with 200=r  and varying l  are shown. The 

substrate size and the block original height are the same as before : 000,10=L  and 

1000 =h . It is obvious that the statistical behavior of )(tP  is the same as described 

before, with an abrupt drop of )(tP  when 150=l  which is greater than 2/r  in this 

system. This leads to our conclusion that large diffusion length can still help with the 

 

 

Figure 3.8  The persistence probability versus time plots for periodic 
patterned substrate with a smaller pattern size, 200=r . The diffusion 
length is varied. 



 

22

survival rate of the periodic pattern similar to what we find for flat pattern growth. 

However, the diffusion length must be less than half of the pattern size. The size of 

the desired pattern is a very crucial factor to determine the most appropriated value of 

l . 

 

3.2.2 Effects of height of the pattern 
The pattern size as discussed above is only the lateral size, i.e. the width of the 

block. Another factor we should consider is the vertical size of the pattern. So far the 

height of the block, 0h , is fixed at a constant value of 100. To study effects of 0h , we 

change the pattern height from 100 to 50 and 200. The results are shown in Figs. 3.9 

and 3.10 for 500 =h  and  2000 =h  respectively. In both systems, 000,10=L  and 

000,1=r . When the diffusion length is relatively small ( 50,10,1=l and 100), the 

persistence probability of the two systems with different 0h  are statistically the same. 

In the case when 5002/ == rl , however, it can be seen that the pattern persists 

better in the system with a larger 0h .  This is because when l  is large enough, the 

empty space between blocks can be completely filled after a deposition of 2/0h  ML.  

So for the system with 500 =h , the empty space between blocks are completely filled 

after only 25 ML deposition while it take a much longer time, 100 ML deposition, to 

completely filled the space in the system with 2000 =h .  In other words, it takes 

more time to completely destroy the original pattern when the pattern height is 

greater, so the persistence probability in such systems decay slower. When 2/r>l  

the difference in the decay rates of )(tP for various 0h  is even more obvious. Looking 

back at our results for 1000 =h  in Fig. 3.6, it agrees with the above explanation as 

well.  

It should be noted here that although the height of the pattern effects the 

calculated persistence probability when 2/r≥l , the value of 0h  has very little impact 

on )(tP  when the diffusion length is smaller. The vertical size of the pattern has no 

part in the determination of the optimum l either. 
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Figure 3.9  The persistence probability versus time plots for periodic 
patterned substrate with 1000=r  and 500 =h . The diffusion 
length is varied. 

 

3.3    Modified Persistence Probability 
All the persistence probabilities presented here in our work are calculated 

from the conventional definition of )(tP  [8] as defined in section 2.3 which is a very 

strict definition. The pattern is counted as “survive” only when the exact pattern is 

reproduced. A closer inspection of )(tP shown in Fig. 3.6 raise an interesting question 

when compared with the morphologies results. Let us concentrate on the system with 

a moderate diffusion length at 50=l . Snapshots of surface morphology of the system 

at 10=t , 50, 100 and 200 ML are shown in Fig. 3.11. Although the simulated film 

we obtained after 50 layers deposition is relatively rough compares to the original 

substrate, the intended pattern – a series of blocks – can still be seen very clearly. The 
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Figure 3.10  The persistence probability versus time plots for periodic 
patterned substrate with 1000=r  and 2000 =h . The diffusion 
length is varied. 

 

calculated persistence probability in Fig. 3.6, on the other hand, is only approximately 

0.001 from the 50=l  data in Fig. 3.6, which is an extremely small value. From Fig. 

3.6, )(tP  is practically zero at 100=t  ML while the obtained morphology in Fig. 

3.11 still shows a good reproduction of the original pattern. Even at 200 ML where 

the calculated )(tP is too small to be seen on Fig. 3.6 plot, the grown film still 

exhibits a clear series of block with approximately the same r  and 0h  as in the 

substrate. From experimental point of view, this creates a question of how reliable the 

calculated persistence probability is.  

Before addressing this question, we note that the decay of )(tP  is very rapid 

because of  the way )(tP  is defined. We consider that the pattern survives only when 

the exact pattern is reproduced. Any minor changes from the original pattern will kill 
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off the calculated persistence probability right away while in reality a slight “error” on 

the patterned films we obtain after growth process may still be considered a success. 

To better reflect this point, we modify the definition of )(tP  so that it is more 

flexible. This new and modified persistence probability is denoted )(tPn  and is 

defined as 
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when hΔ  is the limit of the acceptable “error”. It can be seen from the modified 

definition that this new )(tPn  will not decay as fast as the original one because the 

pattern is counted as “survive” even if the obtained height is not exactly the same as 

the ideal height, as long as it differs from the ideal height, sxh +)0,( , by only a small 

number of layers. 

To be more specific, the pattern is considered survived if the simulated height 

at time s , ),( sxh , is in the range from hsxh Δ−+ ])0,([  to hsxh Δ++ ])0,([ .  Here 

hΔ  is an integer number calculated from the ideal height at that time times ε  when ε  

is the percentage of error we are willing to accept. If 0=ε  then 0=Δh  and our 

modified persistence probability )(tPn  returns to the original definition )(tP . In Fig. 

3.12 we show a plot of )(tPn  as a function of time when we choose the level of 

acceptable error to be  %1 , i.e. 01.0=ε . The data shown here are from the same 

systems as in the plot of Fig. 3.6. For very small and very large diffusion length l , the 

original definition and the modified version of persistence probability does not differ 

much. This is because when the diffusion length is too small, the surface becomes 

extremely rough and the obtained height is not in the acceptable range because ε  is 

set to be very small. As for the situations when l  is too large ( 2/r≥l ), the pattern is 

destroyed quickly and the surface becomes completely flat without any block left, as 
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Figure 3.11  Dynamical morphologies of the periodic patterned 
substrate growth with  1000=r , 1000 =h  and 50=l  at 10=t  

MLs (a),  50=t  MLs (b), 100=t  MLs (c), and  200=t  MLs (d). 
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discussed earlier. So, again, the obtained height is not within the acceptable range. 

)(tP  and )(tPn  yield practically the same values. However, for a moderate l  ( 50=l  

and 100 in the plots), it is clear that the modified persistence probability decays much 

slower than the original “strict” version. In Fig. 3.13, our results with various 

flexibility are shown. In the plot, we concentrate only on the moderate 50=l  case 

and the percentage of acceptable error is varied from %5%,1%,0  to %10 . As 

expected, the larger ε  yields the better persistence probability )(tPn . It is very 

important to emphasize that our modified definition for the persistence probability 

does not change the behavior of the grown film at all. Rather, it changes the behavior 

of the persistence probability to agree better with the obtain morphology. 

 Although the new definition makes the persistence probability more flexible, it 

has a problem as can be seen in Fig. 3.13. For example, when %1=ε , before 50 ML 

the plot of )(tPn  are the same as )(tP  (which is )(tPn  with %0=ε ). This is because 

when 50<t  ML, the calculated 5.0<Δh  and is rounded down to be zero since hΔ  

has to be an integer. As time increases, hΔ  increases to be nonzero and the modified 

and the original version of the persistence probability start giving different values. 

This rounding number of the computer causes abrupt changes in )(tPn  as seen in 

Figs. 3.12 and 3.13. 

 To avoid the above mentioned problem, we use another way to calculate the 

modified persistence probability. Instead of using the percentage of ideal height at 

each time step, hΔ  is chosen as a fixed constant for the whole process. Fig. 3.14 

shows the re-modified persistence probability when 1=Δh  ML. Here we can see that 

when we accept the error of just 1 layer, the modified persistence probability decays 

much slower than the original definition (in Fig. 3.6) and the curves are smooth 

without any broken line as in Fig. 3.12. When the diffusion length is too large, we 

have seen from the morphology in Fig. 3.7 that the pattern is destroyed quickly and 

any definition of persistence probability reflects that as all version of )(tP  and )(tPn  

decay at a dramatic rate. 
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Figure 3.12  The modified persistence probability versus time plot for 
the periodic patterned growth when %1=ε . 
 

 

 

Figure 3.13  The modified persistence probability versus time plot for 
the periodic patterned growth with various ε . 
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 With the new definition of )(tPn , a new question comes up as how we should 

choose a proper value for hΔ . In another word, we have to decide how much “error” 

we should allow. This seems to be a type of question that does not have one correct 

answer. This depends on the goal of each experiment, i.e. how accurate the film has to 

be for the purpose of that experiment. It will be up to the judgment of one who uses 

)(tPn  as a parameter to determine the survival rate. 

 

 

 

 

Figure 3.14  The modified persistence probability versus time plot for 
the periodic patterned growth with 1=Δh . 
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Chapter 4   Conclusions 
 

In this project, we have created a computer code for a discrete model to 

simulate MBE growth process on a substrate with a specified initial condition. The 

model used here is a well established MBE growth model, the DT model, that has 

been studied extensively in the flat substrate growth. The model is modified to 

simulate growth on a substrate with a specific predetermined pattern. Two initial 

conditions were studied: a flat pattern and a periodic pattern. In the case of periodic 

pattern, the initial substrate has a series of equally sized block located at an equal 

interval.  

 For the flat patterned growth, we found that the film can remain flat when it is 

grown in layer-by-layer mode. This can be achieved by increasing the mobility of 

surface atom, i.e. increasing the surface diffusion length of the moving atom. In 

experiments, the long surface diffusion length is a result of high substrate 

temperature. The layer-by-layer mode can be identified via an oscillatory interface 

width. The quantity we used here to determine the pattern survival rate is the 

persistence probability. We found that the probability decays exponentially in time for 

the flat patterned growth. The decay is more rapid in a system with a shorter diffusion 

length (or lower substrate temperature). For longer diffusion length, the persistence 

probabilities decay slower which indicate that the pattern can survive for a longer 

period of time. When the diffusion rate is long enough, the persistence probability 

remains a constant throughout growth time, the film is grown in layer-by-layer mode 

for the whole time and the surface is totally smooth. 

 For the periodic pattern substrate, we found that there are two crucial factors 

that determine how long the pattern can survive. The first one is the ability of the film 

to stay smooth in the flat parts which are the top terraces of the blocks and the lower 

terraces between each block. The second factor is the film ability to keep the 

shape/outline of the pattern, i.e. the width and height of the blocks. Similar technique 

of increasing surface diffusion length is used here in the periodic patterned case as 

had been done with the flat patterned study. We found that although the longer 

diffusion length helps keep the flat parts smooth, just as we found in the flat substrate 
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growth, longer diffusion length destroys the outline of the pattern. Since we need to 

keep both the smooth parts and the block size, the surface diffusion length needs to be 

chosen in a compromised manner: not too short and not too long. If the diffusion 

length is very short, the block size stays approximately the same as the original size 

but the flat parts turn extremely rough quickly and the persistence probability 

decreases very quickly. If the diffusion length is too long, the empty space between 

blocks are filled up with atoms and soon the film becomes flat and the original pattern 

is totally lost. The optimal value of diffusion length that we found here is a number 

that is slightly less than half of the block width. So wider blocks are easier to 

maintained because we can choose a large diffusion length and the flat parts can be 

maintained for a long time. The is in contrast to a pattern with narrow blocks that we 

need to use small diffusion length and the flat parts turn into rough surfaces in a short 

time. We have also found that the original height of the blocks does not effect the way 

the diffusion length should be selected, but it effects the decay rate of the persistence 

probability. Taller blocks survive better. So in conclusion, when the original pattern 

has a bigger scale (both in width and height), it can last longer. 

 In this work, we have shown that the conventional definition of the persistence 

probability is not consistent with the obtained morphology. Since only the 

reproduction of the exact pattern is considered, the persistence probability decays very 

quickly even when the pattern can still be seen in the grown film. In this work, we 

introduce a modification to the persistence probability definition in order to count the 

pattern when it is just slightly off from the exact pattern. We found that the modified 

version agree better with the quality of the pattern seen on the simulated films. 

 Finally, we note that our results from both flat patterned and periodic 

patterned systems with limited mobility ( 1=l  only) agree well with previous work 

[8-9], i.e. the persistence probability decreases with growth time with a power law 

relation, leading to a straight line with a negative slope when )(tP  is plotted versus 

time on a log-log scale. However, the pioneer work on patterned substrate growth [8-

9] concentrated on statistical behavior of )(tP  so the studies [8,9] involve large-scale 

simulations to investigate asymptotic behavior and scaling relations of )(tP  but do 

not include any noise reduction technique. In our work that concentrate on 
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determining important parameters that control the persistence of the pattern, we 

utilized the long surface diffusion noise reduction technique in order to make the 

model more realistic. Our large l  results, though cannot be compared with other work 

in the literature, yield interesting results which we have reliable reasons to support 

them as already discussed in the previous chapter. The modification of the persistence 

probability definition in our work was done in response to comments from 

experimentalists. We believe this is a new result that does not have any published 

work to compare with as well. 
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