OPTIMIZATION OF LIQUID-PHASE CYCLOHEXENE EPOXIDATION OVER MESOPOROUS TITANIA PROMOTED WITH CERIA AND RUTHENIA CATALYSTS

Parvinee Chaemchaeng

٩.

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

551769

THERE I

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

TL \searrow

(Asst. Prof. Siriporn Jongpatiwut)

umaith Chrvady

(Prof. Sumaeth Chavadej)

Ale that

(Dr. Natthakorn Kraikul)

ABSTRACT

5371015063:	Petrochemical Technology Program
	Parvinee Chaemchaeng: Optimization of Liquid-Phase Cyclohexene
	Epoxidation over Mesoporous Titania Promoted with Ceria and
	Ruthenia Catalysts
	Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut 75 pp.
Keywords:	Catalyst/ Ceria/ Cyclohexene/ Epoxidation/ Mixed oxides/
	Optimization/ Rutheniam/ Titania

Cyclohexene oxide is an epoxide that serves as a valuable intermediate used in the petrochemical industry. The challenge encountered in production is the formation of undesirable products that are produced by side reactions, such as 2cyclohexene-1-ol, 2-cyclohexene-1-one, trans-1,2-cyclohexanediol, etc. The aim of this research was to optimize cyclohexene epoxidation reaction by studying the effects of incorporating Ce into mesoporous-assembled 1%Ru/Ti mixed oxide catalysts. The catalysts were synthesized by a single-step sol-gel method, which was then compared to the commercial TiO₂ (Degussa P-25) and sol-gel TiO₂. Hydrogen peroxide was chosen as the oxidizing agent. The BET results exhibited the IUPAC Type IV isotherm for all catalysts synthesized via the single-step sol-gel method, implying a mesoporous structure. The optimum Ce loading was found at 0.5%Ce/Ru/TiO₂, giving 28 % conversion and 68 % cyclohexene oxide selectivity. The high reactivity of 0.5%Ce/Ru/TiO₂ could be due to its high surface area (104 m²/g) and high amount of surface hydroxyl (4.53 OH/nm²), as compared to sol-gel TiO₂, 1%Ru/TiO₂ and 2%Ce/TiO₂.

บทคัดย่อ

ภาวินี แจ่มแจ้ง : การพัฒนาปฏิกิริยาอิพอกซิเคชันของไซ โคลเฮกซีนในวัฏภาค ของเหลวโคยใช้ตัวเร่งปฏิกิริยาไทเทเนียโคยการสนับสนุนของซีเรียและรูทีเนีย (Optimization of Liquid-Phase Cyclohexene Epoxidation over Mesoporous Titania Promoted with Ceria and Ruthenia Catalysts) อ. ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร.ศิริพร จงผาติวุฒิ 75 หน้า

ไซโคลเฮกซีนออกไซค์จัคเป็นสารประเภทอีพอกไซค์ที่นิยมใช้เป็นตัวกลาง (intermediate) ในอุตสาหกรรมปีโตรเคมี ซึ่งในกระบวนการผลิตดังกล่าวนั้นมักจะพบปัญหาการ เกิดปฏิกิริยาข้างเคียงที่ไม่เป็นที่ประสงค์ เช่น 2-cyclohexene-1-ol, 2-cyclohexene-1-one, trans-1,2-cyclohexanediol เป็นต้น งานวิจัยนี้ทำการศึกษาการเพิ่มประสิทธิภาพของปฏิกิริยาอิ พอกซิเคชันของไซโคลเฮกซีน (cyclohexene epoxidation reaction) เพื่อผลิตไซโคลเฮกซีน ออกไซด์ โดยทำการศึกษาเปรียบเทียบผลของตัวเร่งปฏิกิริยาระหว่าง 1%Ru/Ti mixed oxide catalysts ซึ่งสังเคราะห์ได้จากจากกระบวนการโซลเจลแบบขั้นเคียว (single-step sol-gel กับ TiO2 ซึ่งเป็นตัวเร่งปฏิกิริยาที่ใช้กันทั่วไปในอุตสหกรรม งานวิจัยนี้เลือกใช้ method) ้ไฮโครเจนเปอร์ออกไซค์เป็นตัวออกซิไคซ์ ผลการทคสอบพื้นที่ผิวบนตัวเร่งปฏิกิริยาพบว่าเป็นไอ โซเทิร์มประเภทที่สี่ตามมาตรฐานของสหพันธ์เคมีบริสุทธิ์และประยุกต์สากล (IUPAC) หรืออาจ กล่าวได้ว่ามีความเป็นรูพรุนในโครงสร้างสูงระดับ 2-50 นาโนเมตร จากการศึกษาการเติม Ce พบว่าสามารถเติมไค้สูงที่สุดคือร้อยละ 0.5 และผลจากการเติมในอัตราส่วนคังกล่าวคือค่ามีการ เปลี่ยนแปลงของปฏิกิริยา (Conversion) ร้อยละ 28 และสมรรถนะการเลือกของไซโคลเฮกซีน ออกไซค์ (Cyclohexene oxide selectivity) ร้อยละ 68 ซึ่งเป็นผลมาจากการพื้นที่ผิวสูงและ ้ปริมาณไฮครอกซิลที่มากเมื่อเทียบกับตัวเร่งปฏิกิริยาที่ใช้กันทั่วไปในอุตสหกรรม

ACKNOWLEDGEMENTS

The author would like to express her gratitude to all those who supported her and gave her the possibility to complete this thesis.

She is deeply indebted to her supervisor, Asst. Prof. Dr. Siriporn Jongpatiwut whose advice, guidance, stimulating suggestions and encouragement helped her throughout the whole dissertation. She would also like to thank Asst. Prof. Dr. Thammanoon Sreethawong, my previous advisor, whom has guided me through the first stages of this dissertation.

The author would like to show her gratitude to Prof. Sumaeth Chavadej and Dr. Natthakorn Kraikul for making time out of their busy schedule to be committee members for my final dissertation. Thank you for using their precious times to read this dissertation and gave their critical comments about it.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

In addition, she would also like to thank her parents and little sister. They always supported her and encouraged her with their best wishes. They were always there cheering her up and standing by her side through the good and bad times.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abst	rract (in English)	iii
Abst	ract (in Thai)	iv
Ack	nowledgements	v
Tabl	e of Contents	vi
List	of Tables	viii
List	of Figures	ix
СНАРТЕ	R	
I	INTRODUCTION	1
11	LITERATURE REVIEW	3
	2.1 Theoretical Background	3
	2.1.1 Epoxides	3
	2.1.2 Sol-gel Process	10
	2.1.3 Catalyst Reactive Components	12
	2.2 Literature Review	15
III	EXPERIMENTAL	22
	3.1 Materials and Equipments	22
	3.1.1 Chemicals	22
	3.1.2 Equipments	22
	3.2 Experimental Procedure	23
	3.2.1 Preparation of Mesoporous-assembled	24
	Ce/Ru/TiO ₂ Catalyst by Single-Step	
	Sol-Gel Method	
	3.2.2 Epoxidation Reaction	24
	3.2.3 Catalyst Characterization	26

IV	RESULTS AND DISCUSSION	32
	4.1 Gas Chromatography Analysis	32
	4.1.1 GC results of sol-gel TiO ₂ , 1%Ru/TiO ₂ ,	33
	and 2%Ce/TiO ₂	
	4.1.2 Effect of Ce Loading on 1%Ru/TiO ₂	36
	4.1.3 Effect of Calcination Parameters	38
	4.1.4 Effect of Reaction Parameters	44
	4.2 N ₂ Adsorption-Desorption Analysis	52
	4.3 Thermogravimetric-Differential Thermal Analysis	56
	(TG-DTA)	
	4.4 X-ray Powder Diffraction (XRD) Analysis	59
	4.5 Temperature Programed Reduction (TPR) Analysis	66
V	CONCLUSIONS AND RECOMMENDATIONS	68
	REFERENCES	69
	CURRICULUM VITAE	74

LIST OF TABLES

TABLE		PAGE
2.1	Porous structure parameters of TiO_2 -SiO ₂ templated by various amines	
3.1	GC conditions for the product analysis	30
4.1	GC conditions for the product analysis	32
4.2	Retention time and response factor of each substance from	33
	GC analysis	
4.3	Summary of BET results for TiO ₂ (degussa P-25), sol-gel	55
	TiO ₂ (reference), 1%Ru/TiO ₂ , 2%Ce/TiO ₂ , variation of Ce	
	in the Ce/Ru/TiO ₂ catalysts and variation of calcination	
	conditions	
4.4	Summary of surface OH calculation results for sol-gel TiO_2	58
	(reference), 1%Ru/TiO ₂ , 2%Ce/TiO ₂ , variation of Ce in the	
	Ce/Ru/TiO ₂ catalysts and variation of calcination conditions	
4.5	Summary of XRD analysis of the (A: Anatase, R: Rutile)	65

viii

LIST OF FIGURES

FIGURE		PAGE
2.1	The epoxide unit structure.	3
2.2	The structure of cyclohexene oxide (also known as 1, 2-	4
	cyclohexane).	
2.3	Olefin peroxidation (epoxidation) reaction model.	5
2.4	Olefin peroxidation mechanism.	5
2.5	Prilezhaev reaction.	6
2.6	Mechanism of halohydrin to epoxide (intramolecular $S_N 2$	6
	substitution).	
2.7	An example of the Johnson-Corey-Chaykovsky reaction.	7
2.8	Epoxidation of 2-cyclohexen-1-ol to 2,3-epoxycyclohexanone.	8
2.9	Epoxidation of cis-alkene to produce cis-epoxide and trans-	8
	epoxide.	
2.10	Sharpless epoxidation.	9
2.11	Jacobsen epoxidation.	9
2.12	Shi epoxidation.	9
2.13	Proposed pathway for cyclohexene epoxidation on TiO_2	18
	surface.	
2.14	Proposed pathway for cyclohexene auto-oxidation.	18
2.15	Solvent effect on cyclohexene oxidation.	20
3.1	Flow diagram of experimental procedure.	23
3.2	Schematic of epoxidation reaction experiment.	25
3.3	Flow diagram of catalyst separation.	25
4.1	Conversion of sol-gel TiO ₂ , 1%Ru/TiO ₂ , and 2%Ce/TiO ₂ .	34
4.2	Selectivity of sol-gel TiO ₂ , 1% Ru/TiO ₂ , and 2% Ce/TiO ₂ .	35
4.3	Yield of sol-gel TiO ₂ , 1% Ru/TiO ₂ , and 2% Ce/TiO ₂ .	35
4.4	Conversion of Ce content variation with 1%Ru/TiO ₂ .	36

FIGURE

4.5	Selectivity of Ce content variation with 1%Ru/TiO2.	37
4.6	Yield of Ce content variation with 1%Ru/TiO2.	37
4.7	Conversion of 0.5% Ce/1%Ru/TiO ₂ with various calcination	38
	temperatures	
4.8	Selectivity of 0.5% Ce/1%Ru/TiO ₂ with various calcination	39
	temperatures	
4.9	Yield of 0.5% Ce/1%Ru/TiO ₂ with various calcination	39
	temperatures	
4.10	Conversion of 0.5% Ce/1%Ru/TiO ₂ with various calcination	40
	times	
4.11	Selectivity of 0.5% Ce/1%Ru/TiO ₂ with various calcination	41
	times	
4.12	Yield of 0.5%Ce/1%Ru/TiO ₂ with various calcination times	41
4.13	Conversion of 0.5% Ce/1%Ru/TiO ₂ with various calcination	42
	ramp rates	
4.14	Selectivity of 0.5% Ce/1%Ru/TiO ₂ with various calcination	43
	ramp rates	
4.15	Yield of 0.5% Ce/1%Ru/TiO ₂ with various calcination ramp	43
	rates	
4.16	Conversion of 0.5% Ce/1%Ru/TiO ₂ with various catalyst	44
	amounts	
4.17	Selectivity of 0.5% Ce/1%Ru/TiO ₂ with various catalyst	45
	amounts	
4.18	Yield of 0.5% Ce/1%Ru/TiO ₂ with various catalyst amounts	45
4.19	Conversion of 0.5% Ce/1%Ru/TiO ₂ at various reaction	46
	temperatures	
4.20	Selectivity of 0.5% Ce/1%Ru/TiO ₂ with various catalyst	46
	amounts	

PAGE FIGURE 47 4.21 Yield of 0.5%Ce/1%Ru/TiO₂ with various catalyst amounts 47 4.22 Selectivity of 0.5%Ce/1%Ru/TiO2 with various C6H6-to-H₂O₂ ratios 48 4.23 Selectivity of 0.5%Ce/1%Ru/TiO₂ with various C₆H₆-to- H_2O_2 ratios Selectivity of 0.5%Ce/1%Ru/TiO₂ with various C₆H₆-to-48 4.24 H₂O₂ ratios 49 4.25 Conversion and Selectivity of 0.5%Ce/1%Ru/TiO2 with various reaction times 4.26 Side-products from allylic oxidation and ring opening 50 50 4.27 Side-products from cyclohexene epoxidation 4.28 N₂ sorption isotherm of sol-gel TiO₂. 52 4.29 53 N₂ sorption isotherm of 1%Ru/TiO₂. 4.30 53 N_2 sorption isotherm of 2%Ce/TiO₂. 4.31 N₂ sorption isotherm of 0.5%Ce/1%Ru/TiO₂. 54 4.32 TG/DTA curve of the uncalcined 2%Ce on 1%Ru/TiO₂ 56 support 4.33 XRD patterns of sol-gel TiO₂, 1%Ru/TiO₂, 2%Ce/TiO₂ and 60 0.5%Ce/1%Ru/TiO₂. XRD patterns of Ce/1%Ru/TiO₂ calcined at 500 °C (ramp 61 4.34 rate 10°C/min) for 4 hours with different Ce loadings: 0.5%, 1,0%, 1.5%, 2.0%, 2.5%, 3.0% 4.35 XRD patterns of 0.5%Ce/1%Ru/TiO₂ calcined for 4 hours 62 (ramp rate 10 °C/min) with different calcination temperatures: 475 °C, 500 °C, 525 °C, and 550 °C. 4,36 XRD patterns of 0.5%Ce/Ru/TiO₂ calcined at 500 °C with 62 different calcination time: 1 hour, 2 hours, 3 hours, 4 hours,

5 hours, and 6 hours.

FIGURE

PAGE

- 4.37 XRD patterns of 0.5%Ce/Ru/TiO₂ calcined at 500 °C for 4
 hours with different calcination ramp rates: 1 °C/min, 5
 °C/min, 10°C/min, and 15°C/min.
 4.38 TPR profile of sol-gel TiO₂, 1%Ru/TiO₂, 2%Ce/TiO₂, and
 67
- 4.38 TPR profile of sol-gel TiO₂, 1%Ru/TiO₂, 2%Ce/TiO₂, and 67 0.5Ce/Ru/TiO₂.