HYDROGEN PRODUCTION FROM WATER SPLITTING UNDER UV LIGHT IRRADIATION OVER Cu-LOADED MESOPOROUS-ASSEMBLED SrTi_xZr_{1-x}O₃ AND SrTi_xSi_{1-x}O₃ NANOCRYSTAL PHOTOCATALYSTS

Pusratha Wongchanapai

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2012

551757

Thesis Title:	Hydrogen Production from Water Splitting under UV Light
	Irradiation over Cu-Loaded Mesoporous-Assembled
	$SrTi_{x}Zr_{1-x}O_{3}$ and $SrTi_{x}Si_{1-x}O_{3}$ Nanocrystal Photocatalysts
By:	Pusratha Wongchanapai
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej
	Assoc. Prof. Pramoch Rangsunvigit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

è

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Sumaeth Chuvadoj

(Prof. Sumaeth Chavadej)

Ramol 2

(Assoc. Prof. Pramoch Rangsunvigit)

····· apan

(Assoc. Prof. Apanee Leungnaruemitchai)

(Dr. Tarawipa Puangpetch)

ABSTRACT

5371035063: Petrochemical Technology Program
Pusratha Wongchanapai: Hydrogen Production from Water Splitting
under UV Light Irradiation over Cu-Loaded Mesoporous-Assembled
SrTi_xZr_{1-x}O₃ and SrTi_xSi_{1-x}O₃ Nanocrystal Photocatalysts
Thesis Advisors: Prof. Sumaeth Chavadej, and Assoc. Prof. Pramoch
Rangsunvigit 85 pp.
Keywords: Hydrogen production/ Mesoporous material / Perovskite/

Photocatalysis/ Water splitting

Nowadays, the global demand for energy is expected to increase, and the primary source of currently consumed energy is fossil fuels, e.g. petroleum oils, which cause global warming because fossil fuels produce a large amount of CO₂. So, renewable and environmentally friendly energy resources are desirable and have tendency to increase in the future. Hydrogen has received great attention for use as an alternative and renewable energy source for internal-combustion engines and fuel cells. Photocatalytic water splitting can produce hydrogen by using solar light as an energy source and water as a feedstock. SrTiO₃ is one of the interesting photocatalysts due to its superior physicochemical properties, such as its excellent thermal stability, photocorrosion resistibility, and good structure stability as the host for metal ion doping. The purpose of this work was to optimize the composition of mesoporous-assembled SrTi_xZr_{1-x}O₃ and SrTi_xSi_{1-x}O₃ nanocrystals, which were synthesized by a sol-gel process with the aid of a structure-directing surfactant for achieving the highest photocatalytic activity for hydrogen production from water splitting under UV light irradiation with methanol as a hole scavenger. The mesoporous-assembled SrTi_{0.93}Zr_{0.07}O₃ and SrTi_{0.95}Si_{0.05}O₃ photocatalysts calcined at 700 °C were found to show the better the photocatalytic hydrogen production activity than the other $SrTi_xZr_{1-x}O_3$ and $SrTi_xSi_{1-x}O_3$ photocatalysts. Moreover, the Cu loadings by photochemical deposition method were found to greatly enhance the photocatalytic activity of the SrTi_{0.93}Zr_{0.07}O₃ and SrTi_{0.95}Si_{0.05}O₃ photocatalysts.

บทคัดย่อ

ภัสส์รฐา วงศ์ชนะภัย: การผลิตไฮโครเจนจากโมเลกุลของน้ำภายใต้สภาวะที่มีแสงโคย ใช้ตัวเร่งปฏิกิริยาสทอนเทียมไททาเนียมเซอร์โคเนตและสทอนเทียมไททาเนียมซิลิเกตที่มีขนาด อนุภาคผลึกและรูพรุนในระดับนาโนเมตรซึ่งถูกกระตุ้นด้วยคอปเปอร์ (Hydrogen Production from Water Splitting under UV Light Irradiation over Cu-Loaded Mesoporous-Assembled SrTi_xZr_{1-x}O₃ and SrTi_xSi_{1-x}O₃ Nanocrystal Photocatalysts) อ. ที่ปรึกษา : ศ. คร. สุเมธ ชวเคช และ รศ. คร. ปราโมช รังสรรค์วิจิตร 85 หน้า

ในปัจจุบันความต้องการในการใช้พลังงานเพิ่มมากขึ้น และพลังงานที่สำคัญ คือ เชื้อเพลิงธรรมชาติ ได้แก่ น้ำมันปีโตรเลียมและถ่านหิน ซึ่งเป็นสาเหตุที่ทำให้เกิดภาวะโลกร้อน เพราะเชื้อเพลิงธรรมชาติทำให้เกิดก๊าซการ์บอนไดออกไซด์เป็นจำนวนมาก ไฮโดรเจนได้รับความ สนใจอย่างมากเพื่อใช้เป็นพลังงานทางเลือกใหม่และพลังงานทคแทนสำหรับเครื่องยนต์และเซลล์ เชื้อเพลิง ไฮโครเจนสามารถถูกผลิตได้จากแหล่งพลังงานที่สามารถหาได้อย่างไม่จำกัดได้แก่ น้ำ ้และแสงอาทิตย์ พร้อมกับตัวเร่งปฏิกิริยาแบบใช้แสงร่วมที่เหมาะสมเป็นตัวช่วยให้เกิดปฏิกิริยา ตัว ้เร่งปฏิริยาสทอนเทียมไททาเนตได้รับความสนใจเนื่องจากมีคุณสมบัติทางกายภาพและทางเคมีที่ เหมาะสม เช่น มีความเสถียรต่ออุณหภูมิ, มีด้านทานต่อการกัดกร่อน และมีโครงสร้างที่เสถียร สามารถโด๊ปโลหะอื่นๆ ลงไปได้ ในงานวิจัยนี้มุ่งเน้นศึกษาการปรับปรุงและพัฒนาความสามารถ ในการผลิตไฮโครเจนของตัวเร่งปฏิกิริยาแบบใช้แสงร่วมสตรอนเทียมไททาเนียมเซอร์โคเนตและ ้สตรอนเทียมไททาเนียมซิลิเกตที่มีขนาคอนุภาคผลึกและรูพรุนในระดับนาโนเมตร ในการทคลอง ้นี้ตัวเร่งปฏิกิริยาแบบใช้แสงร่วมถูกสังเคราะห์ขึ้นโดยกระบวนการโซล-เจลร่วมกับการใช้สารลด แรงตึงผิวเป็นตัวกำหนดโครงสร้าง จากผลการทดลองพบว่าตัวเร่งปฏิกิริยาแบบใช้แสงร่วม สตรอนเทียมไททาเนียมเซอร์โคเนตและสทอนเทียมไททาเนียมซิลิเกต ที่ประกอบด้วยอัตราส่วน ของไททาเนียมและเซอร์โคเนียมเท่ากับ 0.93:0.0.7 และอัตราส่วนของไททาเนียมและซิลิกอน เท่ากับ 0.95:0.05 ตามลำดับ ซึ่งถูกเผาที่อุณหภูมิ 700 องศาเซลเซียส ให้ผลในการผลิตไฮโครเจน ดีกว่าตัวเร่งปฏิกิริยาสตรอนเทียมไททาเนียมเซอร์โคเนตและและสทอนเทียมไททาเนียมซิลิเกตตัว ้อื่น การใส่คอปเปอร์แบบใช้แสงร่วมด้วยวิธีการยึดเกาะด้วยกระบวนการเคมีในปริมาณที่เหมาะสม บนตัวเร่งปฏิกิริยาดังกล่าวพบว่า อัตราการการเกิดไฮโดรเจนมีค่าเพิ่มขึ้น

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College, and by the Center of Excellence on Petrochemical and Materials Technology, Thailand.

The author would like to express her sincere gratitude to Prof. Sumaeth Chavadej and Assoc. Prof. Pramoch Rangsunvigit for their invaluable guidance, understanding, and constant encouragement throughout the course of this research.

She would like to express special thanks to Assoc. Prof. Apanee Leungnaruemitchai and Dr. Tarawipa Puangpetch for kindly serving on her thesis committee. Their sincere suggestions are definitely imperative for accomplishing her thesis.

Her gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

Furthermore, she would like to take this important opportunity to thank all of her graduate friends for their unforgettable friendship.

Finally, she really would like to express her sincere gratitude to her parents and family for the love, understanding, and cheering.

TABLE OF CONTENTS

Title Page	i	
Abstract (in English)	iii	
Abstract (in Thai)	iv	
Acknowledgements	v	
Table of Contents	vi	
List of Tables	ix	
List of Figures	х	
CHAPTER		
I INTRODUCTION	1	

II	LITERATURE REVIEW	4
	2.1 Hydrogen: Fuel of the Future	4
	2.2 Water Splitting: Hydrogen Generation Using Solar	
	Energy	5
	2.2.1 Photocatalytic Reaction	5
	2.2.2 Splitting Water into Hydrogen	7
	2.2.3 Efficiency	9
	2.2.4 Semiconductor	9
	2.2.5 Types of Semiconductor Systems Proposed	
	for Solar Water Splitting	11
	2.2.5.1 Semiconductor Solid State Photovoltaic	
	Based Systems	11
	2.2.5.2 Semiconductor Electrode Systems	12
	2.2.5.3 Semiconductor Particle Systems	13
	2.2.6 The Principle of Water Splitting Using	
	Semiconductor Particle	14
	2.3 Photocatalyst	16

	2.4. Titanium Oxide Photocatalyst	17
	2.4.1 General Remarks	17
	2.4.2 Crystal Structure and Properties	18
	2.4.3 Semiconductor Characteristic and	
	Photocatalytic Activity	20
	2.5 Nano-Photocatalyst	22
	2.5.1 General Remarks	22
	2.5.2 Activity of Nano-Photocatalyst	22
	2.6 Chemical Additive for Enhancement of Photocatalytic	
	H ₂ Production	24
	2.7 Metal Loading for Enhancement of H ₂ Production	26
	2.8 Mixed Oxide System	27
	2.9 Porous Material	30
	2.10 Sol-Gel Process	31
III	EXPERIMENTAL	35
	3.1 Materials and equipment	35
	3.1.1 Chemicals	35
	3.1.2 Equipment	35
	3.2 Methodology	36
	3.2.1 Mesoporous-Assembled $SrTi_xZr_{1-x}O_3$ and	
	$SrTi_xSi_{1-x}O_3$ Nanocrystal Photocatalyst Synthesis	
	by a Sol-Gel Process with the Aid of	
	a Structure-Directing Surfactant	37
	3.2.2 Photocatalyst Characterizations	39
	3.2.3 Photocatalytic H ₂ Production System	41
IV	RESULTS AND DISCUSSION	43
	4.1 Photocatalyst Characteracterization Results	43
	4.1.1 TG–DTA Results	43

	4.1.2 N ₂ Adsorption-Desorption Results	47
	4.1.3 XRD Results	52
	4.1.4 UV-Visible Spectroscopy Results	58
	4.1.5 SEM-EDX Results	63
	4.1.6 TEM-EDX Results	67
	4.1.7 Hydrogen Chemisorption Results	71
	4.2 Photocatalytic Hydrogen Production Activity	72
	4.2.1 Effect of Ti-to-Zr and Ti-to-Si Molar Ratio	72
	4.2.2 Effect of Calcination Temperature	73
	4.2.3 Effect of Cu Loadings	74
v	CONCLUSIONS AND RECOMMENDATIONS	77
	5.1 Conclusions	77
	5.2 Recommendations	77
	REFERENCES	78

CURRICULUM VITAE 85

LIST OF TABLES

TABLE

2.1	The band gap positions of some common semiconductor	
	photocatalysts	11
2.2	Definitions about porous solids	30
4.1	Thermal decomposition behavior results of the dried	
	synthesized SrTiO ₃ , SrZrO ₃ , SrSiO ₃ , SrTi _{0.93} Zr _{0.07} O ₃ and	
	SrTi _{0.95} Si _{0.05} O ₃ photocatalysts from TG–DTA analysis	46
4.2	N ₂ adsorption-desorption results of the synthesized	
	mesoporous-assembled $SrTi_xZr_{1-x}O_3$ and $SrTi_xSi_{1-x}O_3$	
	photocatalysts	51
4.3	N ₂ adsorption-desorption results of the synthesized Cu-	
	loaded mesoporous-assembled $SrTi_{0.93}Zr_{0.07}O_3$ and	
	SrTi _{0.95} Si _{0.05} O ₃ photocatalysts	52
4.4	Summary of XRD analysis of the synthesized mesoporous-	
	assembled $SrTi_{0.93}Zr_{0.07}O_3$ and $SrTi_{0.95}Si_{0.05}O_3$ photocatalysts	57
4.5	Summary of XRD analysis of the synthesized Cu-loaded	
	mesoporous-assembled $SrTi_{0.93}Zr_{0.07}O_3$ and $SrTi_{0.95}Si_{0.05}O_3$	
	photocatalysts	58
4.6	Absorption onset wavelength and band gap energy results	
	of the synthesized mesoporous-assembled $SrTi_xZr_{1-x}O_3$,	
	$SrTi_xSi_{1-x}O_3$ photocatalysts without and with Cu loadings	
	and calcined at various temperatures	62
4.7	Cu dispersion results over theCu-loaded mesoporous-assembled	
	$SrTi_{0.93}Zr_{0.07}O_3$, and $SrTi_{0.95}Si_{0.05}O_3$ photocatalysts calcined at 700 °C	71

LIST OF FIGURES

FIGURE

2.1	Relative emissions of greenhouse gases (expressed in carbon	
	units per km) for vehicles powered by today's internal	
	combustion engine using gasoline compared to vehicles	
	powered by fuel cells.	5
2.2	Types of photocatalytic reactions: (a) photoinduced reaction	
	and (b) photon energy conversion reaction.	6
2.3	Electrochemical cell, in which a TiO_2 electrode is connected	
	with a Pt electrode.	8
2.4	The structure of band gap energy.	10
2.5	Schematic of (a) solid state photovoltaic cell driving a water	
	electrolyzer and (b) cell with immersed semiconductor p/n	
	junction (or metal/semiconductor Schottky junction) as one	
	electrode.	12
2.6	Schematic of liquid junction semiconductor electrode cell.	13
2.7	Representation of semiconductor particulate systems for	
	heterogeneous photocatalysis.	14
2.8	Reaction schematic for water splitting reaction over	
	semiconductor photocatalysts.	15
2.9	Processes occurring in semiconductor photocatalyst under	
	photoexcitation for water splitting reaction.	16
2.10	Band gap energy of the photocatalyst.	17
2.11	Crystal structures of (a) anatase, (b) rutile, and (c) brookite.	18
2.12	Photocatalytic hydrogen production over anatase/rutile TiO_2 under	
	the mediation of I^{-}/IO_{3}^{-} .	25
2.13	A schematic of forming the BaTiO ₃ nanoparticles.	33
3.1	Synthesis procedure for mesoporous-assembled $SrTi_xZr_{1-x}O_3$ and	
	$SrTi_xSi_{1-x}O_3$ photocatalysts: (a) without and (b) with Cu loading	
	by PCD method.	38

FIGURE

3.2	Setup of photocatalytic H ₂ production system.	42
4.1	TG-DTA curves of the dried synthesized (a) $SrTiO_3$,	
	(b) $SrZrO_3$, (c) $SrSiO_3$, (d) $SrTi_{0.93}Zr_{0.07}O_3$ and (e) $SrTi_{0.95}Si_{0.05}O_3$	
	photocatalysts.	44
4.2	N_2 adsorption-desorption isotherms and pore size distributions	
	(inset) of the synthesized (a) $SrTiO_3$, (b) $SrTi_{0.93}Zr_{0.07}O_3$,	
	(c) $SrTi_{0.95}Si_{0.05}O_3$, (d) 0.25 wt.% Cu loaded $SrTi_{0.93}Zr_{0.07}O_3$,	
	and (e) 0.75 wt.% Cu loaded $SrTi_{0.95}Si_{0.05}O_3$ photocatalysts calcined	
	at 700 °C.	48
4.3	XRD patterns of the synthesized (a) $SrTi_xZr_{1-x}O_3$ and	
	(b) SrTi _x Si _{1-x} O ₃ photocatalysts calcined at 700 °C for 4 h.	54
4.4	XRD patterns of the synthesized $SrTi_{0.95}Si_{0.05}O_3$ photocatalysts	
	calcined at various temperatures for 4 h.	55
4.5	XRD patterns of the Cu-loaded synthesized (a) $SrTi_{0.93}Zr_{0.07}O_3$ and	
	(b) SrTi _{0.95} Si _{0.05} O ₃ photocatalysts with various Cu loadings calcined	
	at 700°C for 4 h.	56
4.6	UV-visible spectra of the synthesized mesoporous-assembled	
	photocatalysts calcined at 700 °C: (a) SrTiO ₃ and (b)-(f) SrTi _x Zr _{1-x} O ₃ .	60
4.7	UV-visible spectra of the synthesized mesoporous-assembled	
	photocatalysts calcined at 700 °C: (a) $SrTiO_3$ and (b)-(f) $SrTi_xSi_{1-x}O_3$.	60
4.8	UV-visible spectra of the synthesized mesoporous-assembled	
	SrTi _{0.95} Si _{0.05} O ₃ photocatalysts calcined at various temperatures.	61
4.9	UV-visible spectra of the synthesized mesoporous-assembled	
	photocatalysts calcined at 700 °C: (a) SrTi _{0.93} Zr _{0.07} O ₃ ,	
	(b) SrTi _{0.95} Si _{0.05} O ₃ , (c) 1.25 wt.% Cu-loaded SrTi _{0.93} Zr _{0.07} O ₃ ,	
	and (d) 0.75 wt.% Cu-loaded SrTi _{0.95} Si _{0.05} O ₃ .	61
4.10	SEM images of the synthesized mesoporous-assembled photocatalysts	
	calcined at 700 °C: (a) SrTi _{0.93} Zr _{0.07} O ₃ , (b) 0.25 wt.% Cu-loaded	
	SrTi _{0.93} Zr _{0.07} O ₃ , (c) SrTi _{0.95} Si _{0.05} O ₃ and (d) 0.75 wt.% Cu-loaded	
	$SrTi_{0.95}Si_{0.05}O_3$.	64

FIGURE

4.11	SEM image and EDX area mappings of the synthesized 0.25 wt.%	
	Cu-loaded mesoporous-assembled SrTi _{0.93} Zr _{0.07} O ₃ photocatalyst	
	calcined at 700 °C.	65
4.12	SEM image and EDX area mappings of the synthesized 0.75 wt.%	
	Cu-loaded mesoporous-assembled SrTi _{0.95} Si _{0.05} O ₃ photocatalyst	
	calcined at 700 °C.	66
4.13	TEM images of the synthesized mesoporous-assembled photocatalysts	
	calcined at 700 °C: (a) SrTiO ₃ , (b) SrTi _{0.93} Zr _{0.07} O ₃ , and	
	(c) $SrTi_{0.95}Si_{0.05}O_3$.	68
4.14	TEM image and EDX point mapping of the synthesized 0.25 wt.%	
	Cu-loaded mesoporous-assembled $SrTi_{0.93}Zr_{0.07}O_3$ photocatalyst	
	calcined at 700 °C.	69
4.15	TEM image and EDX point mapping of the synthesized 0.75 wt.%	
	Cu-loaded mesoporous-assembled $SrTi_{0.95}Si_{0.05}O_3$ photocatalyst	
	calcined at 700 °C.	70
4.16	Effect of Ti-to-Zr and Ti-to-Si molar ratio on specific hydrogen	
	production rate over the synthesized mesoporous-assembled	
	$SrTi_{x}Zr_{1-x}O_{3}$ and $SrTi_{x}Si_{1-x}O_{3}$ photocatalysts calcined at 700 °C.	73
4.17	Effect of calcination temperature on specific hydrogen production rate	
	over the synthesized mesoporous-assembled $SrTi_{0.95}Si_{0.05}O_3$	
	photocatalysts.	74
4.18	Effect of Cu loading on specific hydrogen production rate over	
	the synthesized mesoporous-assembled $SrTi_{0.93}Zr_{0.07}O_3$ and	
	SrTi _{0.95} Si _{0.05} O ₃ photocatalysts.	76