

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this research, the mesoporous-assembled $SrTi_xZr_{1-x}O_3$ and $SrTi_xSi_{1-x}O_3$ nanocrystal photocatalysts with various Ti-to-Zr and Ti-to-Si molar ratios (as expressed by x in the $SrTi_{x}Zr_{1-x}O_{3}$ and $SrTi_{x}Si_{1-x}O_{3}$ where x = 0.89, 0.91, 0.93, ..., 1) were synthesized by a sol-gel process with the aid of a structure-directing surfactant and were used to investigate the hydrogen production from an aqueous solution of methanol (50 vol.%) under UV light irradiation. The Cu loading on the $SrTi_xZr_{1-x}O_3$ and SrTi_xSi_{1-x}O₃ photocatalysts was performed by the photochemical deposition (PCD) method with the aim of photocatalytic activity enhancement. The synthesized mesoporous-assembled SrTi_{0.93}Zr_{0.07}O₃ and SrTi_{0.95}Si_{0.05}O₃ photocatalysts calcined at 700 °C possessed the highest photocatalytic hydrogen production activity than the other $SrTi_xZr_{1-x}O_3$ and $SrTi_xSi_{1-x}O_3$ photocatalysts. Moreover, the 0.25 wt.% and 0.75 wt.% Cu loadings on the mesoporous-assembled SrTi_{0.93}Zr_{0.07}O₃ and SrTi_{0.95}Si_{0.05}O₃ photocatalysts significantly enhanced the photocatalytic hydrogen production activity, respectively. In comparison, the 0.75 wt.% Cu-loaded SrTi_{0.95}Si_{0.05}O₃ photocatalyst provided much higher hydrogen production activity than the 0.25 wt.% Cu-loaded $SrTi_{0.93}Zr_{0.07}O_3$ photocatalyst.

5.2 Recommendations

In order to enhance the hydrogen production activity, the other types of mixed oxide photocatalysts, such as TiO_2 -In₂O₃ and TiO_2 -ZnO, with other loaded metals, such as Ag, Cr, La, Ni, and Pt, are also interesting to be investigated in a further study.