CELLULOSE NANOCOMPOSITE AS AN EFFECTIVE SUBSTRATE FOR ORGANIC LIGHT EMITTTING DIODES (OLEDS)

Sarute Ummartyotin

A Thesis Submitted in Partial Fulfillment of the Requirement for the

Degree of Doctor of Philosophy

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

and Case Western Reserve University

2012

551763

Thesis Title:	Cellulose nanocomposite as an effective substrate for OLEDs
By:	Mr. Sarute Ummartyotin
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Hathaikarn Manuspiya
	Prof. Mohini Sain

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Prof. Mohini Sain)

Hathailian M.

(Asst. Prof. Hathaikarn Manuspiya)

R. Magaray

(Assoc. Prof. Rathanawan Magaraphan)

(Dr. Adisorn Tuantranont)

ABSTRACT

5292003063:	POLYMER SCIENCE PROGRAM
	Sarute Ummartyotin: Cellulose nanocomposite as an effective
	substrate for OLEDs
	Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya, Prof.
	Mohini Sain 230 pp.
Keywords:	cellulose nanocomposite / flexible display substrate / printed
	electronic / organic light emitting diodes

Nanocomposite film composed of bacterial cellulose (10 - 50 wt%) and polyurethane (PU) based resin was fabricated and utilized as a substrate for flexible organic light emitting diode (OLED) display. The performance of the nanocomposite satisfied the criteria for the substrate of OLED with an additional feature of flexibility. The visible light transmittance of the nanocomposite film was as high as 80 %. Its thermal stability was stable up to 150 °C while its dimensional stability in terms of coefficient of thermal expansion (CTE) was less than 20 ppm/K. Moreover, Si-O film and ferrofluid solution were employed to protect nanocomposite substrate from moisture and to reduce the surface roughness, respectively. Water vapor transmission rate (WVTR) and surface roughness must be lower than 10^{-6} g/m²/day and 5 nm, respectively. Consequently, in order to fabricate OLED circuit, we investigated PEDOT: PSS, silver nanoparticle and ZnS nanoparticle were investigated for being as anode, cathode and emissive layer, respectively. The use of desktop inkjet printer was employed to use as instrument in order to deposit OLED layer.

บทคัดย่อ

ศรุต อำมาตย์โยธิน : วัสคุกอมพอสิตของเซลลูโลส เพื่อการนำมาเป็นแผ่นซับสเตรทของ อุปกรณ์ไคโอคชนิคเปล่งแสง (Cellulose nanocomposite as an effective substrate for OLEDs) อ. ที่ปรึกษา: ผศ. คร. หทัยกานต์ มนัสปิยะ และ ศ. คร. โมหินี เซน 185 หน้า

วัสคุคอมพอสิตสามารถเตรียมได้จากการเสริมแรงของเซลลูโลสเข้าสู่พอลียูริเทรน สิ่ง ้สามารถเพิ่มในไปใช้เป็นแผ่นซับสเตรทในอุปกรณ์ไคโอคชนิคแปล่งแสง ซึ่งวัสคุดังกล่าวสามารถ เพิ่มความยืดหยุ่น แสงสามารถผ่านได้เกิน 80 % นอกจากนี้ยังสามารถทนความร้อนได้ถึง 150°C และมีการขยายตัวทางความร้อนต่ำกว่า 20 ppm/K ต่อจากนั้นวัสคุคอมพอสิตคังกล่าว ยังถูกนำไป เคลือบด้วยฟิล์มของซิลิกอนออกไซด์ ซึ่งมีความหนาในระดับนาโน ด้วยกระบวนการการเคลือบ ทางเคมี ซึ่งอาศัยพลาสมาเป็นตัวกระตุ้น เมื่อทำการเคลือบแล้ว พบว่า วัสดุคอมพอสิต สามารถลด การดูคซับน้ำได้ลดลงจาก 0.09 เหลือ 10^{-4} g/m²/day นอกจากนี้ยังพบว่า วัสดุดังกล่าวยังคงให้ ความโปร่งแสงได้เหมือนเดิม ต่อมาวัสคุดอมพอสิตที่ทำการเคลือบด้วยซิลิกอนออกไซด์ จะถูก นำมาขัดแบบละเอียดด้วยสารประกอบของเหล็ก ซึ่งมีขนาดเส้นผ่านศูนย์กลางประมาณ 30 นาโน เมตร เพื่อเป็นการลดระดับความสูงของพื้นผิวของชิ้นงานให้ต่ำกว่า 5 นาโนเมตร ซึ่งวัสดุดังกล่าว ้จะมีสมบัติโดยทั่วไปเหมือนแผ่นกระจก ซึ่งใช้กันแพร่หลายในแผ่นซับสเตรทของอุปกรณ์ไดโอด หลังจากนี้ จะเป็นการพัฒนา ชนิดแปล่งแสง แต่ยังคงมีความยืดหยุ่นเหมือนแผ่นพลาสติก แผ่นซับสเตรทให้สอดคล้องกับอุตสาหกรรมผลิตวงจรอิเล็กทรอนิกส์ด้วยเครื่องพิมพ์ โดยเริ่มจาก การเตรียมขั้วแอโนคจากสาร PEDOT:PSS เพื่อทำหน้าที่ในการให้ประจุลบ ขั้วแคโทคจาก สารละลายของเงินเพื่อให้ประจุบวก และสารที่ให้แสงจากสารประกอบซิงค์ซัลไฟค์เพื่อทำหน้าที่ ให้แสง ซึ่งสารทั้ง 3 ประเภทนี้ จะต้องถูกปรับปรุงสมบัติทางกายภาพให้สอคคล้องกับเครื่องพิมพ์ สุดท้ายนี้ความสำเร็จดังกล่าว ยังเป็นการเพิ่มประสิทธิภาพของวัสดุชีวภาพในอุตสาหกรรม อิเล็กทรอนิกส์ด้วย

ACKNOWLEDGEMENTS

The author would like to thank his supervisor, Assistant Professor Dr Hathaikarn Manuspiya, who gave him intensive recommendation, constructive criticism, suggestions, constant encouragement, inspiration, and the opportunity to study and have more experiences in The Petroleum and Petrochemical College, Chulalongkorn University, Thailand. Furthermore, he would like to express his appreciation to Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University for financial support.

He is deeply indebted to Professor Dr Mohini Sain and Associate Professor Dr Amr Helmy who gave valuable advice and discussion on the research including a financial support during carring out the experiments in Centre for Biocomposites and Biomaterials Processing, Faculty of Forestry, University of Toronto, Canada.

A deep gratitude is to express to Dr Julasak Juntaro, his postdoctoral researcher for the preparation of bacterial cellulose and its nanocomposite and long term mental support during period in Canada. The appreciation was also extended to Mr Natthaphon Bunnak for the CTE by dilatometer; trace metal element analysis by XRF and dielectric properties measurement by LCR precision meter at The Petroleum and Petrochemical College, Chulalongkorn University, Thailand.

He would like to thank all professors and friends at The Petroleum and Petrochemical College, Chulalongkorn University, Thailand and Faculty of Forestry, University of Toronto, Canada for giving him helps, good time and good memories during his stay.

Thus far, finally, he wishes to express his gratitude to his family for their love, understanding, encouragement, and for being a constant source of his inspiration.

TABLE OF CONTENTS

Title Page	i
Abstract	ii
Table of Contents	iii
List of Tables	iv
List of Figures	v

CHAPTER

I	INTRODUCTION	1
II	OBJECTIVE AND HYPOTHESIS	4
III	LITERATURE REVIEW	6
IV	EXPERIMENTAL	43
V	DEVELOPMENT OF TRANSPARENT	
	BACTERIAL CELLULOSE	
	NANOCOMPOSITE FILM AS SUBSTRATE	
	FOR FLEXIBLE ORGANIC LIGHT	
	EMITTING DIODE (OLED) DISPLAY	62
	5.1 Abstract	62
	5.2 Introduction	62
	5.3 Experimental	64
	5.4 Result and Discussion	65
	5.5 Conclusion	77
	5.6 Acknowledgement	78
	5.7 References	78

VI SI-O BARRIER TECHNOLOGY FOR

CHAPTER		PAGE
	BACTERIAL CELLULOSE	
	NANOCOMPOSITE FLEXIBLE DISPLAYS	82
	6.1 Abstract	82
	6.2 Introduction	82
	6.3 Experimental	84
	6.4 Result and Discussion	86
	6.5 Conclusion	100
	6.6 Acknowledment	100
	6.7 References	100
VII	THE ROLE OF FERROFLUID ON SURFACE	

THE ROLE OF FERROFLUID ON SURFACE		
SMOOTHNESS OF BACTERIAL		
CELLULOSE NANOCOMPOSITE DISPLAY	105	
7.1 Abstract	105	
7.2 Introduction	105	
7.3 Experimental	106	
7.4 Result and Discussion	110	
7.5 Conclusion	117	
7.6 Acknowledgement	117	
7.7 References	117	

VIII	DEPOSITION OF PEDOT:PSS
	NANOPARTICLES AS A CONDUCTIVE
	MICRO-LAYER ANODE IN OLEDS DEVICE
	BY DESKTOP INKJET PRINTER

BY DESKTOP INKJET PRINTER	121
8.1 Abstract	121
8.2 Introduction	121
8.3 Experimental	123
8.4 Result and Discussion	126

CHAPTER

PAGE

140

8.5 Conclusion	134
8.6 Acknowledgement	134
8.7 References	134

IX SYNTHESIS OF COLLOIDAL SILVER NANOPARTICLE FOR PRINTED ELECTRONIC

9.1 Abstract	140
9.2 Introduction	140
9.3 Experimental	142
9.4 Result and Discussion	144
9.5 Conclusion	152
9.6 Acknowledgement	152
9.7 References	152

X

SYNTHESIS AND LUMINESCENCE

PROPERTIES OF ZNS AND METAL		
(MN,CU)-DOPED-ZNS CERAMIC POWDER	155	
10.1 Abstract	155	
10.2 Introduction	155	
10.3 Experimental	156	
10.4 Result and Discussion	159	
10.5 Conclusion	169	
10.6 Acknowledgement	170	
10.7 References	170	

XI HYBRID ORGANIC-INORGANIC OF ZNS

EMBEDDED PVP NANOCOMPOSITE FILM	
FOR PHOTOLUMINESCENT APPLICATION	174
11.1 Abstract	174
11.2 Introduction	174
11.3 Experimental	175
11.4 Result and Discussion	178
11.5 Conclusion	184
11.6 Acknowledgement	184
11.7 References	185
CONCLUSIONS AND RECOMMENDATION	188
REFERENCES	190
CURRICULUM VITAE	211

LIST OF TABLES

TABLE		PAGE
	CHAPTER III	
3.1	Composition and comparative properties of	
	natural and man-made fibers	7
3.2	A classification of the bacteria's capability	
	to produce cellulose	8
3.3	Properties of bacterial cellulose	13
3.4	The basic properties of OLED materials	25
	CHAPTER V	
5.1	Thermal and optical properties of bacterial	
	cellulose, neat PU resin, and	
	nanocomposite	70
	CHAPTER VI	
6.1	WTVR properties of the nanocomposites	
	in comparison to the OLED requirement	
	and conventional polymers	97
	CHAPTER VII	
7.1	Formulation of magnetic compound fluid	
	(MCF)	108
	CHAPTER VIII	
8.1	Contact angle, viscosity, surface tension	
	and conductivity of PEDOT: PSS Ink	
	formulation	127
8.2	The numbers of layer and film thickness	
	measured by profilometer	129

TABLE

PAGE

8.3	The relationship of numbers of layer and	
	resistivity and conductivity	130
	CHAPTER X	

10.1	Crystallite size and lattice parameter of	
	ZnS, and ZnS doped with Cu and Mn	163
10.2	XRF quantitative analysis of ZnS and	
	metal-doped ZnS ceramic	165

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER III	
3.1	Chemical structure of cellulose	6
3.2	Scheme for the formation of bacterial cellulose.	
	Reproduced from Jonas and Farah	12
3.3	Proposed biochemical pathway for cellulose synthesis in	
	Acetobacter xylinum. Reproduced from Cannon and	
	Anderson	13
3.4	Renewability and Biodegradability cycle of bacterial	
	cellulose	14
3.5	Deformable sheet with embedded bacterial cellulose: the	
	lines show deformation of the sheet when stretched.	
	Reproduced from Bunsell and Renard	17
3.6	Solid particles layout in forming a cell inside the porous	
	layer	19
3.7	Representative volume elements in composite	20
3.8	SEM of fracture surfaces of epoxy composites based on	
	long viscous fibers (a) without treatment (b) after	
	treatment with silane	22
3.9	OLED structures. The total organic thin film thickness is	
	typically ~ 100 nm.	24
3.10	Structure of some molecular semiconductors that have	
	been used in OLEDs. Alq is used as an electron transport	
	and emissive layer, TPD or NPB is used as a hole	
	transport layer	25
3.11	Schematic energy level diagram of OLEDs under forward	
	bias	26

FIGURE

OLED working principles, J_h ', J_e ' stand for leakage	
current in ETL and HTL respectively	27
Measured μ vs T for three α -6T TFT' A, B and C	31
Variation of the hole mobility of a 6T poly-crystalline	
film as a function of gate bias. Data were recorded at	
300K. Closed circles correspond to uncorrected data, and	
open circles to data corrected for the contact series	
resistance	31
Electroluminescence spectra at normal directions in	
ITO/TPD (50 nm)/Alq/MgAg devices	34
Schematic layer structure of a patterned planar	
microcavity in which the Si ₃ N ₄ filler layer is etched to	
three different thicknesses to change the optical properties	35
Electroluminescence spectrums from a three-mode	
microcavity LED, in which the three peaks are at 488,	
543, and 610 nm	35
Market prospect for flexible displays	37
Potential candidate polymers for flexible display substrate	38
Glass transition temperature (Tg) of commercially	
available polymer	39
Cross-sectional structure of flexible displays	41
Requirement of WVTR and OTR for electronic devices	42
	 OLED working principles, J_h', J_e' stand for leakage current in ETL and HTL respectively Measured μ vs T for three α-6T TFT' A, B and C Variation of the hole mobility of a 6T poly-crystalline film as a function of gate bias. Data were recorded at 300K. Closed circles correspond to uncorrected data, and open circles to data corrected for the contact series resistance Electroluminescence spectra at normal directions in ITO/TPD (50 nm)/Alq/MgAg devices Schematic layer structure of a patterned planar microcavity in which the Si₃N₄ filler layer is etched to three different thicknesses to change the optical properties Electroluminescence spectrums from a three-mode microcavity LED, in which the three peaks are at 488, 543, and 610 nm Market prospect for flexible displays Potential candidate polymers for flexible display substrate Glass transition temperature (Tg) of commercially available polymer Cross-sectional structure of flexible displays Requirement of WVTR and OTR for electronic devices

CHAPTER V

5.1	Optical transparency of bacterial cellulose nanocomposite	
	film and bacterial cellulose sheet	66
5.2	Refractive indices of neat PU based resin and bacterial	
	cellulose nanocomposite as a function of wavelength	67
5.3	AFM investigation of (A) bacterial cellulose sheet and	

FIGURE		PAGE
	(B) bacterial cellulose nanocomposite	69
5.4	Regular transmittance spectra of PU based resin and	
	bacterial cellulose nanocomposite	71
5.5	TGA thermogram of neat PU based resin and bacterial	
	cellulose nanocomposite	72
5.6	Heat flow curve of neat PU based resin and bacterial	
	cellulose nanocomposite	73
5.7	Organic light emitting diodes (OLED) on bacterial	
	cellulose nanocomposite	75
5.8	I-V-L characteristic of OLED	76
5.9	Efficiency vs luminance characteristic of OLED	77

CHAPTER VI

6.1	Refractive indices of nanocomposites after the deposition	
	of Si-O layer at difference thicknesses	87
6.2	ATR-FTIR spectra of Si-O film deposited via PECVD	
	process	88
6.3	XPS survey spectra for Si-O layer deposited on bacterial	
	cellulose nanocomposite	89
6.4	High resolution XPS peak of Si1s region of Si-O layer	
	deposited on bacterial cellulose nanocomposite	90
6.5	Depth profile analysis of Si-O deposited bacterial	
	cellulose nanocomposite (A) Thickness ~50 nm (B)	
	Thickness ~100 nm (C) Thickness ~200 nm	91
6.6	Top view AFM image of (a) bacterial cellulose sheet and	
	(b) nanocomposite	93
6.7	Top view AFM image of Si-O barrier deposited on	
	cellulose nanocomposite substrate with Fourier	
	transformed pattern	94

FIGURE

6.8	Typical FCP of ~100 nm-thick Si-O barrier deposited on	
	cellulose nanocomposite substrate in ambient air	95
6.9	WVTR of ~100 nm-thick Si-O deposited on cellulose	
	nanocomposite substrate versus deposition chamber	
	pressure	98
6.10	WVTR of ~100 nm-thick Si-O deposited on cellulose	
	nanocomposite substrate versus RF power	99

CHAPTER VII

7.1	Schematic drawing of processing principle	108
7.2	XRD pattern of ferrofluid nanoparticle in solid state	111
7.3	TEM investigation of ferrofluid solid nanoparticle	
	(A) magnification 50000X (B) magnification 100000X	112
7.4	Histogram of magnetic nanoparticle in aqueous solution	113
7.5	Shear stress versus shear rate of ferrofluid	113
7.6	Shear thinning behavior of the ferrofluid	114
7.7	Top view AFM image of polishing condition A	115
7.8	Top view AFM image of (A) Non-polishing (B) Polishing	
	with ferrofluid condition A (C) Polishing with ferrofluid	
	condition B	116

CHAPTER VIII

8.1	TEM image of PEDOT: PSS nano-particle in aqueous	
	solution	126
8.2	Schematic diagram of test circuit for measuring bar	
	specimen resistivity with the four-point probe method	130
8.3	The linear relationship between number of layer and	
	conductivity value	131
8.4	The photograph of PEDOT: PSS as anode by Desktop	

FIGURE		PAGE
	inkjet printer	132
8.5	AFM investigation of PEDOT: PSS coated on resin in (a)	
	3 and (b) 5 layers, respectively	133

CHAPTER IX

9.1	Illustration of direct chemical synthetic route of silver	
	nanoparticle from the reaction of silver nitrate and PVP	
	solution	143
9.2	FTIR spectra of pure silver, PVP solution, mixture of	
	pure silver nanoparticle and PVP solution	146
9.3	Transmission electron microscope of silver nanoparticle	
	(A) silver nanoparticle prepared from PVP (Mw~40000)	
	(B) silver nanoparticle prepared from PVP (Mw~10000)	
	at 60000 X magnifications	147
9.4	Transmission electron microscope of silver nanoparticle	
	prepared from PVP (Mw~40000) at 150000X	
	magnification	148
9.5	X-ray diffraction of silver nanoparticle	148
9.6	Schematic drawing of ideal arrangement of small and	
	large particles in printed silver lines particles in printed	
	silver lines	150
9.7	SEM image of silver nanoparticle	150
9.8	Current density (J/cm ²) vs Applied voltage (V) for	
	synthesis of silver thin film	151

CHAPTER X

10.1	FTIR spectra of ZnS, and Mn doped ZnS, Cu doped ZnS	
	and Mn-Cu codoped ZnS	160
10.2	XRD pattern of ZnS, and metal (Mn, Cu)-doped-ZnS	162

FIGURE

PAGE

10.3	Field emission scanning electron microscope (FESEM)	
	and energy dispersion analysis (A) ZnS (B) Mn-doped-	
	ZnS (C) Cu-doped-ZnS (D) Mn-Cu-codoped-ZnS	164
10.4	The fluorescence image of ZnS particle without excitation	
	and the fluorescence image of ZnS particle with	
	excitation (A) ZnS (B) Mn-doped-ZnS (C) Cu-doped-ZnS	
	(D) Mn-Cu-codoped-ZnS	166
10.5	Photoluminescence spectra of ZnS and metal-doped ZnS	
	particle (A) ZnS (B) Mn-doped-ZnS (C) Cu-doped-ZnS	
	(D) Mn-Cu-codoped-ZnS	168
10.6	Energy level of ZnS, Mn-doped ZnS and Cu-doped ZnS	169

CHAPTER XI

11.1	FTIR spectra of ZnS/PVP solution and ZnS/PVP hybrid	
	nanocomposite film	179
11.2	XRD spectra of neat PVP film, ZnS embedded PVP film	
	and bulk ZnS particle	180
11.3	TEM and SEM image of ZnS nanoparticle	181
11.4	SEM image of printed hybrid organic-inorganic ZnS	
	embedded PVP film	182
11.5	Photoluminescent image of ZnS embedded	
	nanocomposite (A) without excitation (B) with excitation	183
11.6	PL spectra of ZnS embedded PVP hybrid nanocomposite	184