CHAPTER IV RESULTS AND DISCUSSION

4.1 Silicone Rubber Membrane

Permeances were determined from steady-state permeation rates of CO_2 , C_2H_6 , H_2 and N_2 through the multicomponent membranes. The permeation rate measurements were made with all gases at room temperature and calculated using Equation 2.1. The properties of gas studied are presented in Table 4.1 and the experimental results are presented in Table 4.2.

	Critical temperature (K)	Kinetic diameter (Å)
C ₂ H ₆	305.4	4.443
CO ₂	304.2	3.941
N ₂	126.2	3.798
H ₂	33.3	2.827

Backing	Permeancea			
	CO ₂	C ₂ H ₆	H ₂	N ₂
Ultem-1000	4.46	1.45	1.05	0.35
20% wt polyacrylonitrile	5.17	1.55	1.07	0.45
17% wt polyacrylonitrile	4.49	1.3	0.84	0.38
Polysulfone	1.27	0.78	0.39	0.13
6F-Polysulfone with silicone	6.07	1.87	1.21	0.5

Table 4.2 Gas Permeance for Silicone Rubber Membrane

a * 10-5 (cm³STP / cm²-sec-cm Hg)

It is seen that the values of permeance for the penetrant gases in all membranes decrease in the order: $CO_2 > C_2H_6 > H_2 > N_2$. The values of permeance for the above mentioned four gases do not correlated either with the kinetic diameter of the gas molecules, or with the critical temperature of these gases. This indicates that the permeance of silicone rubber to four gases studied is not controlled either by the gas diffusivity or the gas solubility in the polymer, but depends to different extents on both the diffusivity and solubility. Silicone rubber membrane exhibits a markedly higher permeance to CO_2 than to the other three gases. CO_2 has a high critical temperature and hence the high solubility in the silicone rubber membrane. The high permeance of silicone rubber membrane to CO_2 is due primarily to the high solubility of this gas in the silicone rubber membrane, since T_c is a scaling factor for the solubility

(Shah *et al.*, 1986). In contrast, the high permeance of silicone rubber membrane to H_2 is due to the small kinetic diameter of H_2 . The solubility of H_2 in silicone rubber membrane is very low, as is expected from its low critical temperature, and therefore it contributes only little to the permeance of silicone rubber membrane to this gas. The permeance of silicone rubber to C_2H_6 and N_2 appears to depend more on the solubility than on the diffusivity of these gases.

These results showed membranes that were more permeable to larger penetrant gases than to smaller penetrant. In general, increasing penetrant size results in lower diffusion coefficient that is in contrast with solubility coefficient. The solubility coefficients increase with penetrant size because large molecule are normally more condensable than smaller ones. This is probable due to their higher critical temperature and lower vapor pressure at ambient condition, which made them more susceptible to exist as liquids.

For comparison, selectivities, calculated by using Equation 2.3, of multicomponent membrane are presented in Table 4.3.

Backing	Selectivity of	Selectivity of	Selectivity of
	CO_2/N_2	CO_2/H_2	CO_2/C_2H_6
Ultem-1000	12.59	4.25	3.07
20% wt polyacrylonitrile	11.45	4.85	3.34
17% wt polyacrylonitrile	11.94	5.36	3.46
Polysulfone	9.59	3.24	1.60
6F-Polysulfone with silicone	12.12	5.01	3.24

Table 4.3 Gas Selectivity for Silicone Rubber Membrane

The obtained results showed the selectivities for CO_2/N_2 were greater than CO_2/H_2 and CO_2/C_2H_6 , respectively. The selectivities of these membranes were improved when compared with porous support alone having no separation at all. It is found that the selectivities of all membranes are almost the same. This implied that there was no interaction between silicone rubber and backing and selectivity of the multicomponent was mainly controlled by the thin selective surface layer of silicone rubber on porous support.

4.2 Mixed Matrix Membrane of Silicone Rubber and Polyethylene Glycol

The gas permeances decrease in the following order of $CO_2 > C_2H_6 > H_2$ > N₂ as illustrated in Table 4.4. In comparison with silicone rubber without PEG membrane, it is found that membranes with PEG exhibit lower gas permeances than membranes without PEG. This may be believed that PEG normally being plasticizer not only has the capacity of altering the permeability of silicone rubber with which it is mixed, but it also acts on the polymeric support material by softening it and causing its pore to shrink (Kulprathipanja, 1986).

Table 4.4 Gas Permeance for Mixed Matrix Membrane of SiliconeRubber and Polyethylene Glycol

Backing	Permeancea			
	CO ₂	C ₂ H ₆	H ₂	N ₂
Ultem-1000	1.34	0.51	0.25	0.03
20% wt polyacrylonitrile	1.38	0.54	0.22	0.04
17% wt polyacrylonitrile	1.40	0.32	0.14	0.03
Polysulfone	0.42	0.09	0.04	0.01
6F-Polysulfone with silicone	2.15	0.55	0.22	0.08

a * 10-5 (cm³STP / cm²-sec-cm Hg)

The selectivities of membrane with PEG are presented in Table 4.5. It can be seen that the selectivities are significantly improved. For this study, polyethylene glycol enhances solubility coefficient by passing CO_2 in more rapid rate than membrane without polyethylene glycol. It is found that the hydroxyl groups, which present in each of the polyethylene glycol molecules, is the major determiner of solubility of CO_2 into a membrane. The O-H bond is strongly polar. This polarity induces the formation of London force arised from temporary dipole moment. Hence CO_2 molecules, which are more polar with relatively large molecule than H₂, selectivity be sorbed into the membrane and diffuse through the polymeric matrix. This is in contrast with the gas permeation characteristic of the most membrane where relatively small molecules of a gas is selectively permeated from high to low pressure side. Table 4.5 Gas Selectivity for Mixed Matrix Membrane of Silicone Rubber and Polyethylene Glycol

Backing	Selectivity of	Selectivity of	Selectivity of
	CO_2/N_2	CO_2/H_2	CO_2/C_2H_6
Ultem-1000	47.82	5.41	2.64
		2.4	
20% wt	35.91	6.39	2.53
polyacrylonitrile			
17% wt	42.27	10.09	4.35
polyacrylonitrile			
Polysulfone	42.35	10.36	4.51
6F-Polysulfone	25.50	9.66	3.89
with silicone			

4.3 The Dependence of Selectivity on Polyethylene Glycol Composition

The CO₂/H₂ selectivity and CO₂/N₂ selectivity for polysulfone and 20% weight polyacrylonitrile backing are shown in Figures 4.1 – 4.2. It is found that the CO₂/H₂ selectivity and CO₂/N₂ selectivity is similar for both backings. The CO₂/N₂ selectivity is presented as a function of percent weight of PEG while the CO₂/H₂ selectivity is quite constant. The CO₂/N₂ selectivity is observed to increase as the concentration of polar group in PEG increases. This is probably due to dipole-induced dipole interaction between polar group and CO₂. CO₂, polar molecule, can favor in this interaction while N₂, being non-polar, cannot.

In case of the CO_2/H_2 selectivity, we may consider in terms of diffusivity selectivity and solubility selectivity. Diffusion coefficient decreases

with increasing penetrant size. Therefore, for a polar-non-polar gas separation, diffusivity selectivity is always less than 1 (Diffusivity of $CO_2/Diffusivity$ of $H_2 < 1$). For overall selectivity to be greater than 1, the solubility selectivity must be significantly greater than one to offset the unfavorable diffusivity selectivity. This indicates that PEG not only enhances solubility of CO_2 but also makes polymer soften resulting in higher diffusivity for H_2 .

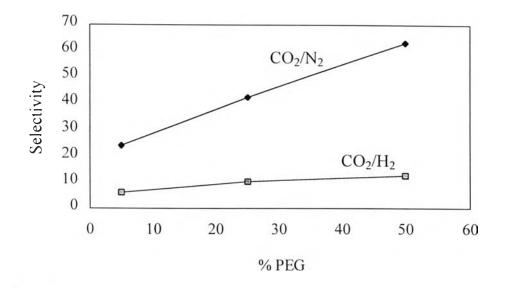


Figure 4.1 The Dependence of Selectivity on PEG Composition for Polysulfone

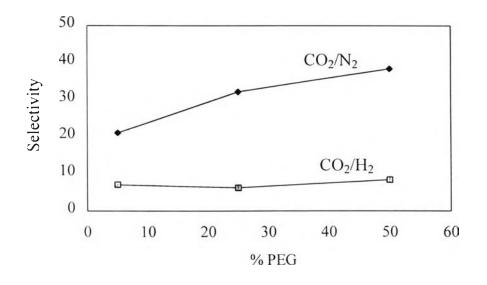


Figure 4.2 The Dependence of Selectivity on PEG Composition for 20% Weight Polyacrylonitrile