ภายใต้การกระทำของกลุ่ม $\mathrm{SO}(\mathrm{d}, \mathrm{C})$

POINTWISE BOUND OF $S O(d, \mathbb{C})$-INVARIANT HOLOMORPHIC

FUNCTIONS WHICH ARE SQUARE-INTEGRABLE WITH RESPECT TO A
 GAUSSIAN MEASURE

 which are square-integrable with respect to a Gaussian measure
By : Miss Areerak Kaewthep

Field of Study : Mathematics
Thesis Advisor : Assistant Professor Wicharn Lewkeeratiyutkul, Ph.D.
Thesis Co-advisor : Professor Brian C. Hall, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

Dean of Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

(Associate Professor Kritsana Neammanee, Ph.D.)

Thesis Advisor
(Assistant Professor Wicharn Lewkeeratiyutkul, Ph.D.)

(Professor Brian C. Hall, Ph.D.)
Onelit Tesuantrion...... Member
29/(Assistant Professor Imchit Termwuttipong: Ph.D.) $\frac{C}{}$

(Assistant Professor Nataphan Kitisin, Ph.D.)

Member
(Paolo Bertozzini, Ph.D.)

> อารีรักษ์ แก้วเทพ : ขอบเขตรายจุดของฟังก์ชันโฮโลมอร์ฟักซึ่งกำลังสองอินทิเกรตได้เทียบ กับเมเชอร์เกาส์และไม่แปรเปลี่ยนภายใต้การกระทำของกลุ่ม $S O(d, \mathbb{C})$ (POINTWISE BOUND OF $S O(d, \mathbb{C})$-INVARIANT HOLOMORPHIC FUNCTIONS WHICH ARE SQUARE-INTEGRABLE WITH RESPECT TO A GAUSSIAN MEASURE) อ.ที่ปรึกษา: ผศ. ตร. วิชาญ สิ่วกีรติยุตกุล, อ.ที่ปรึกษาร่วม : PROF. BRIAN C. HALL 45-หน้า ISBN 974-53-2577-5

ปริภูิิิิกัก-บาร์กแมน $\mathcal{H} L^{2}\left(\mathbb{C}^{2}, \mu_{t}\right)$ เป็นปริกิภูที่ได้รับการศึกษาอย่างกว้างขวาง ในที่นี้เรา จะพิจารณา ปริภูมิ $\mathcal{H} L^{2}\left(\mathbb{C}^{2}, \mu_{t}\right)^{\text {so(d.C })}$ ซึ่งประกอบไปด้วยฟังก์ชัน F ใน $\mathcal{H} L^{2}\left(\mathbb{C}^{2}, \mu_{t}\right)$ ที่ไม่ แปรเปลี่ยนภายใต้การกระทำของกลุ่ม $\operatorname{SO}(d, \mathbb{C})$ ปริภูมิดังกล่าวนี้เป็นปริภิภูม่อยปิดของปริภูมิ $\mathcal{H} L^{2}\left(\mathbb{C}^{2}, \mu_{t}\right)$ ดังนั้นจึงเป็นปริภูมิธิลเบิรตตในงานวิจัยนี้เราจะทำการสร้างขอบเขตรายจุดของฟังก์ชัน ในปริภูมินี้

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

 ภาควิชาคณิตศาสตร์ \qquad กางขือชื่อนิิิ. Areerak สาขาวิชา \qquad คณิตศาสตร์ \qquad ..ลายมือชื่ออาจารย์ที่ปรึกษา.....ปีการศึกษา .2548 \qquad ลายมือชื่อนิสต....................... wha ha ปีรเายา. Aurá C.

\qquad
\# \# 4473852923 MAJOR : MATHEMATICS
KEY WORDS : SEGAL-BARGMANN SPACE/ $S O(d, \mathbb{C})$-INVARIANT HOLOMORPHIC FUNCTION / ORTHOGONAL GROUP/ GAUSSIAN MEASURE

AREERAK KAEWTHEP : POINTWISE BOUND OF $S O(d, \mathbb{C})$ INVARIANT HOLOMORPHIC FUNCTIONS WHICH ARE SQUAREINTEGRABLE WITH RESPECT TO A GAUSSIAN MEASURE. THESIS ADVISOR : ASST. PROF. WICHARN LEWKEERATIYUTKUL, Ph.D. THESIS CO-ADVISOR: PROF. BRIAN C. HALL, Ph.D., 45 pp. ISBN 974-53-2577-5

The Segal-Bargmann space $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$ has been extensively studied. Here, we consider the space $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, C)}$ consisting of all functions F in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$ which are invariant under the action of the complex special orthogonal group $S O(d, \mathbb{C})$. It is a closed subspace of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$, and hence is a Hilbert space. In this work, we establish a pointwise bound for a function in this space.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Acknowledgments

I feel very grateful to Assistant Professor Dr. Wicharn Lewkeeratiyutkul, my thesis advisor, and Professor Brian C. Hall for their untired offering me some thoughtful and helpful advice in preparing and writing my thesis. I also gratefully acknowledge the hospitality of Department of Mathematics, University of Notre Dame, during the elaboration of this thesis. I would like to thank to Associated Professor Dr. Kritsana Neammanee, Assistant Professor Dr. Imchit Termwuttipong, Assistant Professor Dr. Nataphan Kitisin and Dr. Paolo Bertozzini, my thesis committee, for their suggestions and comments to this thesis. Finally, I would like to express my gratitude to my parents for their encouragement during my study.
สถาบันวิทยบริการ

Table of Contents

Abstract in Thai iv
Abstract in English v
Acknowledgments vi
Table of Contents vii
1 Statements of the results 1
2 Orthogonal group 4
3 Holomorphic function spaces 11
4 Invariant measure on the complex sphere 16
5 Pointwise bound for a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ 22
6 Reproducing kernel formula 35
References 43
Vita 45

Chapter 1

Statements of the results

The Segal-Bargmann space $\mathcal{H} L^{2}\left(\overline{\mathbb{C}^{d}}, \mu_{t}\right)$ is the space of holomorphic functions on \mathbb{C}^{d} that are square-integrable with respect to the Gaussian measure $\mu_{t}(z) d z=$ $(\pi t)^{-d} e^{-|z|^{2} / t} d z$, where $|z|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}$. Here t is a fixed positive real number. See [B], [F1], [GM], [H1], [H3], [H4], [HM] for details about the importance of this space.

Various generalizations of the Segal-Bargmann space have been considered. An important part of the study of such generalizations is to obtain sharp pointwise bounds on the functions. (See, for examples, [CL], [E], [H2], [H5], [HL].) Such bounds amount to estimates for the reproducing kernel on the diagonal.

In this work, we consider the subspace of the standard Segal-Bargmann space that is invariantounder the special orthogonal group. The goal of the work is to compare two bounds for functions in this space, a simple bound obtained by minimizing the standard bounds in the full Segal-Bargmann space over the orbits of the group, and a sharp bound obtained by directly estimating the reproducing kernel for the subspace. We show that the sharp bounds are polynomially better than the simple bounds, with the difference between the two growing larger and
larger as the dimension d goes to infinity.
This analysis is motivated in part by a comparison of $[\mathrm{Dr}]$ and $[\mathrm{H} 2]$. In $[\mathrm{Dr}]$, Driver obtains (among other things) bounds for a generalized Segal-Bargmann space by representing it as the subspace of a certain infinite-dimensional standard Segal-Bargmann space that is invariant under a certain group action. (See also [GM], [HS], [H6].) Meanwhile, in [H2], Hall obtains sharp bounds for the relevant generalized Segal-Bargmann space by directly estimating the reproducing kernel. The difference between the two bounds is significant; the sharper bounds of [H 2$]$ are essential, for example, in the analysis in [HL].

It is well-known that for any function $F \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$, we have the pointwise bound

$$
\begin{equation*}
|F(z)|^{2} \leq e^{|z|^{2} / t}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2} \quad\left(z \in \mathbb{C}^{d}\right) . \tag{1.1}
\end{equation*}
$$

Now suppose that F is invariant under the action of $S O(d)$, and therefore, by analytic continuation, under the action of $S O(d, \mathbb{C})$. By minimizing (1.1) on each orbit, for any $S O(d)$-invariant function F in the Segal-Bargmann space, we obtain the preliminary estimate

where $(z, z)=z_{1}^{2}+\cdots+z_{d}^{2}$. Since $|(z, z)| \leq|z|^{2}$, this is already an improvement over the pointwise bound in (1.1). $9 / 9$? 9 ?

The $S O(d)$-invariance means that F is determined by its values on $\{(z, 0, \ldots, 0)\} \simeq \mathbb{C}^{1}$. (By holomorphicity, F is determined by its values on \mathbb{R}^{d}, then any point in \mathbb{R}^{d} can be rotated into \mathbb{R}^{1}.) Conversely, any even holomorphic function on \mathbb{C}^{1} has an extension to an $S O(d)$-invariant function on \mathbb{C}^{d}. Then the space of $S O(d)$-invariant functions in the Segal-Bargmann space over \mathbb{C}^{d} can be expressed as an L^{2}-space of holomorphic functions on \mathbb{C}^{1}, with some non-Gaussian
measure. By estimating the reproducing kernel for this space, we obtain a sharp bound for an $S O(d)$-invariant function F in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$, which will be polynomially better than (1.2). This bound is described in the following theorem.

Theorem 1.1. There exists a constant C, depending only on d and t, such that for each $S O(d)$-invariant function F in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$, we have

$$
|F(z)|^{2} \leq \frac{C e^{|(z, z)| / t}}{1+|(z, z)|^{(d-1) / 2}}\|F\|_{L\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2} \quad\left(z \in \mathbb{C}^{d}\right)
$$

In the last chapter, we obtain the formula of the reproducing kernel for the space of $S O(d)$-invariant functions in the Segal-Bargmann space which is given by

$$
K(z, z)=C \operatorname{Bessel}\left(\frac{d-2}{2}, \frac{|(z, z)|}{t}\right)\left(\frac{1}{|(z, z)|}\right)^{d / 2-1}
$$

for all $z \in \mathbb{C}^{d}$, where BesselI is the modified Bessel function of the first kind and C is a constant depending on d and t. The reproducing kernel for this space is asymptotically equal to the bound in Theorem 1.1 for a large argument. This implies that the bound in Theorem 1.1 is sharp.
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Chapter 2

Orthogonal group

In this chapter, we consider some properties of the non-degenerate bilinear form on a finite-dimensional vector space and the special complex orthogonal group that will be used in later chapters.

2.1 Bilinear Form

Definition 2.1. Let V be a vector space over \mathbb{C} and B a symmetric bilinear map on V.

1. For any subspace W of V, define $W^{\perp}=\{x \in V \mid B(x, y)=0 \forall y \in W\}$.
2. A subset S of V is called an orthonormalset if $B(v, v) \equiv 1$ for any $v \in S$ and $B(v, w)=0$ for $v, w \in S$ and $v \neq w$. © C C
3. We say that B is non-degenerate if for all $v \in V-\{0\}$ there is $w \in V$ such that $B(v, w) \neq 0$.

Remark. Let V be a vector space over \mathbb{C} and B a non-degenerate symmetric bilinear form on V. For any subspace W of V, if B is non-degenerate on W then $W \cap W^{\perp}=\{0\}$.

Lemma 2.2. Let V be a finite-dimensional vector space over \mathbb{C} and B a nondegenerate symmetric bilinear form on V. If W is a subspace of V such that B is non-degenerate on W, then V / W and W^{\perp} are linearly isomorphic.

Proof. Consider a linear map $x \mapsto x+V$ from W^{\perp} into V / W. It is injective, since $W \cap W^{\perp}=\{0\}$. Thus $\operatorname{dim} W^{\perp} \leq \operatorname{dim} V / W$. On the other hand, define a linear $\operatorname{map} \phi: V / W \rightarrow\left(W^{\perp}\right)^{*}$ by

$$
\phi(v+W)(x)=B(v, x)
$$

for all $x \in W^{\perp}$. For any $v_{1}, v_{2} \in V$, if $v_{1}+W=v_{2}+W$ then $v_{1}-v_{2} \in W$, so $B\left(v_{1}-v_{2}, x\right)=0$ for any $x \in W^{\downarrow}$. Thus $\phi\left(v_{1}\right)$ and $\phi\left(v_{2}\right)$ are equal. Hence ϕ is an injective map which implies that $\operatorname{dim} V / W \leq \operatorname{dim}\left(W^{\perp}\right)^{*}=\operatorname{dim} W^{\perp}$. So the lemma is proved.

Theorem 2.3. Let V be a finite-dimensional vector space over \mathbb{C} and B a nondegenerate symmetric bilinear form on V. Then B is non-degenerate on a subspace W of V if and only if $V=W \oplus W^{\perp}$.

Proof. Let W be a subspace of V. Assume that B is non-degenerate on W. The canonical map $\phi: V \rightarrow V / W$ is a linear map with kernel W. Then
$\operatorname{dim} V=\operatorname{dim} W-\operatorname{dim} V / W=\operatorname{dim} W+\operatorname{dim} W^{\perp} \rightleftharpoons \operatorname{dim}\left(W+W^{\perp}\right)+\operatorname{dim}\left(W \cap W^{\perp}\right)$. Using the fact that $W \cap W^{ \pm}=\{0\}$, we have $\vec{\sigma}=W \oplus W^{\perp}$. We hext assume that $V=W \oplus W^{\perp}$. Let $w \in W-\{0\}$. Then there is $v=x+y \in V$ such that $B(w, v) \neq 0$, where $x \in W$ and $y \in W^{\perp}$. Thus $B(w, x)=B(w, v) \neq 0$, so the theorem is proved.

Theorem 2.4. Let V be a finite-dimensional vector space over \mathbb{C} and B a nondegenerate symmetric bilinear form on V. Let W be a subspace of V. If B is non-degenerate on W, then it is non-degenerate on W^{\perp}.

Proof. Assume that the form B is non-degenerate on W. Then by Theorem 2.3 we have that $V=W \oplus W^{\perp}$. Let $w \in W^{\perp}-\{0\}$. Thus there exists $v=x+y \in V$ such that $B(w, v) \neq 0$, where $x \in W$ and $y \in W^{\perp}$. So $B(w, y)=B(w, v) \neq 0$. This implies that the form B is non-degenerate on W^{\perp}.

Lemma 2.5. Let V be a vector space over \mathbb{C}. If B is a symmetric non-degenerate symmetric bilinear form on V, then there is $v \in V$ such that $B(v, v) \neq 0$.

Proof. Suppose that for all $v \in V, B(v, v)=0$. Let $w \in V-\{0\}$. Since B is non-degenerate, there is $v \in V$ such that $B(w, v) \neq 0$. Then

$$
\begin{aligned}
0 & =B(w+v, \bar{w}+v) \\
& =B(w, w)+B(w, v)+B(v, w)+B(v, v) \\
& =B(w, v)+B(v, w)
\end{aligned}
$$

It follows that $2 B(v, w)=0$, contradiction. Hence there is $v \in V$ such that $B(v, v) \neq 0$.

Theorem 2.6. If V is a finite-dimensional vector space over \mathbb{C} and B a nondegenerate symmetric bilinear form on V, then V has an orthonormal basis.

Proof. We will prove by induction on dimension of V. If $\operatorname{dim} V=1$, then there exists $v \in V \curvearrowleft\{\theta\}$ such that $B(v, v) \neq 0$ anince B is a non-degenerate symmetric bilinear form. Hence $\{v / \sqrt{B(v, v)}\}$ is an orthonormal basis of V. Suppose $\operatorname{dim} V=n$. Assume the statement of this lemma is true for any vector space W with $\operatorname{dim} W \leq n-1$. Let $v \in V-\{0\}$ be such that $B(v, v) \neq 0$ and $V_{1}=\operatorname{span}\{v\}$. Then B is non-degenerate on V_{1} and V_{1}^{\perp}. By the induction hypothesis, there is an orthonormal basis $\left\{v_{2}, \ldots, v_{n}\right\}$ of V_{1}^{\perp}. By Theorem 2.3, $V=V_{1} \oplus V_{1}^{\perp}$, so we have that $\left\{\frac{v}{\sqrt{B(v, v)}}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis of V.

2.2 Special Complex Orthogonal Group

Let \mathbb{F} be the field \mathbb{R} or \mathbb{C}. For each $d \in \mathbb{N}$, denote by $M_{d}(\mathbb{F})$ the set of all $d \times d$ matrices with entries in \mathbb{F} and by $G L(d, \mathbb{F})$ the set of all invertible $d \times d$ matrices with entries in \mathbb{F}. We can regard $M_{d}(\mathbb{F})$ as the vector space $\mathbb{F}^{d^{2}}$, and hence it has an inherited topology from the usual topology on $\mathbb{F}^{d^{2}}$.

Consider the map $(\cdot, \cdot): \mathbb{F}^{d} \times \mathbb{F}^{d} \rightarrow \mathbb{F}$ given by

$$
(x, y)=x_{1} y_{1}+\cdots+x_{d} y_{d}
$$

for all $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{F}^{d}$. It is easy to see that this map is a symmetric non-degenerate bilinear form. If we write $x \in \mathbb{F}^{d}$ as a column matrix, then

$$
(x, y)=x^{t} y \quad \text { for all } x, y \in M_{d \times 1}(\mathbb{F}) \cong \mathbb{F}^{d} .
$$

From this, we have

$$
(A x, y)=(A x)^{t} y=x^{t} A^{t} y=\left(x, A^{t} y\right)
$$

for all $x, y \in \mathbb{F}^{d}$ and all $A \in M_{d}(\mathbb{F})$.
Definition 2.7. An invertible $\overparen{d} \times d$ matrix A which preserves the bilinear form (\cdot, \cdot), i.e.

$$
\text { จหฟา } \downarrow(A x, A y)=(x, y) \| \text { for all } x, y \in \mathbb{H}^{d}, \mid \text { Q }
$$

is called an orthogonal matrix. Denote by $O(d, \mathbb{F})$ the set of all $d \times d$ orthogonal matrices and by $S O(d, \mathbb{F})$ the set of all A in $O(d, \mathbb{F})$ with $\operatorname{det} A=1$.

Definition 2.8. The set of all $d \times d$ complex orthogonal matrices is called the complex orthogonal group $O(d, \mathbb{C})$ and the set of all $d \times d$ complex orthogonal matrices with determinant one is called the special complex orthogonal group
$S O(d, \mathbb{C})$. The set of $d \times d$ real orthogonal matrices is called the (real) orthogonal group $O(d)$. The set of $d \times d$ real orthogonal matrices with determinant one is called the special (real) orthogonal group $S O(d)$. Then $O(d)$ and $S O(d)$ are subgroups of $O(d, \mathbb{C})$, and hence of $G L(d, \mathbb{C})$. Moreover, they are closed subgroups of $G L(d, \mathbb{C})$. Geometrically, an element of $O(d)$ is either a rotation, or a combination of rotation and reflection. An element of $S O(d)$ is just a rotation.

For each $w \in \mathbb{C}$, we define

$$
S_{w}=\left\{z \in \mathbb{C}^{d} \mid(z, z)=w^{2}\right\} .
$$

In particular, S_{1} is the complex unit sphere. Then $S O(d, \mathbb{C})$ acts on \mathbb{C}^{d} by left multiplication. Under this action an orbit for each $z \in \mathbb{C}^{d}$ is a subset of $S_{\sqrt{(z, z)}}$. We next show that for each $d \geq 2$ if $(z, z) \neq 0$, then the orbit of z is equal to $S_{\sqrt{(z, z)}}$.

Definition 2.9. Let $\eta: G \times M \rightarrow M$ be an action of G on M on the left. The action is called transitive if whenever m and n belong to M there is g in G such that $\eta(g, m)=n$. For $m_{0} \in M$, the set

$$
\text { ถดา } G_{m_{p}}=\left\{g \in / G Q \eta\left(g, m_{0}\right)=m_{0}\right\} \sigma
$$

is called the isotropy group at σ_{0}. If G is a Lie group, then $G_{m_{\overline{0}}}$ is a closed subgroup of G.

Theorem 2.10. For any $d \geq 2, S O(d, \mathbb{C})$ acts transitively on S_{w} for all $w \in \mathbb{C}^{*}$.

Proof. Let $w \in \mathbb{C}^{*}$ and $z \in S_{w}$. Then a bilinear form (\cdot, \cdot) is non-degenerate on $U=\operatorname{span}\{z\}^{\perp}$. By Lemma 2.6, we can find an orthonormal basis of \mathbb{C}^{d} with a normalized z as its first element, denoted by $B_{1}=\left\{\frac{z}{\sqrt{(z, z)}}, z_{2}, \ldots, z_{d}\right\}$. If $x \in S_{w}$
then choose an orthonormal basis $B_{2}=\left\{\frac{x}{\sqrt{(x, x)}}, x_{2}, \ldots, x_{d}\right\}$ of \mathbb{C}^{d} and define a linear map $g: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ by

$$
g\left(\frac{z}{\sqrt{(z, z)}}\right)=\frac{x}{\sqrt{(x, x)}} \quad \text { and } g\left(z_{i}\right)=x_{i}
$$

for any $i=2,3, \ldots, d$. Then we have $[g]_{B_{2}, B_{1}} z=x$ and $\operatorname{det}[g]_{B_{2}, B_{1}}= \pm 1$. If $\operatorname{det}[g]_{B_{2}, B_{1}}=-1$, define a linear map $g^{\prime}: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ by

$$
g\left(\frac{z}{\sqrt{(z, z)}}\right)=\left(\frac{x}{\sqrt{(x, x)}}\right), \quad g\left(z_{2}\right)=-x_{2} \text { and } g\left(z_{i}\right)=x_{i}
$$

for any $i=3, \ldots, d$. Then $[g]_{B_{2}, B_{1}} z=x$ and $\operatorname{det}[g]_{B_{2}, B_{1}}=1$.

Next we will show that the smooth complex manifold S_{1} is diffeomorphic to a homogeneous manifold $S O(d, \mathbb{C}) / S O(d-1, \mathbb{C})$. Let us recall some theorem about homogeneous manifolds first.

If G is a Lie group and H is a closed subgroup of G, then we can define a differentiable structure on the quotient space G / H so that it is a smooth manifold, called a homogeneous manifold. Moreover, there is a natural transitive leftaction of G on G / H. Conversely, if M is a smooth manifold and there is a transitive left-action by a Lie group G on M, then M can be identified with the quotient manifold $G / G_{m_{0}}$, where m_{0} is a point in M. This is summarized in the following theorem.

Theorem 2.11 ([War] Theorem 3.62). Let $\eta: G \times M \rightarrow M$ be a transitive left-action of the Lie group G on the manifold M. Let $m_{0} \in M$, and let H be the isotropy group at m_{0}. Define a mapping $\beta: G / H \rightarrow M$ by $\beta(g H)=\eta\left(g, m_{0}\right)$. Then β is a diffeomorphism.

Proposition 2.12. The complex unit sphere S_{1} is diffeomorphic to $S O(d, \mathbb{C}) / S O(d-1, \mathbb{C})$.

Proof. The Lie group $S O(d, \mathbb{C})$ acts transitively on S_{1} with the isotropy group at $(1,0, \ldots, 0)$ being the set of matrices in $S O(d, \mathbb{C})$ of the form

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right)
$$

where the matrix A is a matrix in $S O(d-1, \mathbb{C})$. Hence, we identify the isotropy group at $(1,0, \ldots, 0)$ with $S O(d-1, \mathbb{C})$. It follows from Theorem 2.11 that the homogeneous manifold $S O(d, \mathbb{C}) / S O(d-1, \mathbb{C})$ is diffeomorphic to S_{1}.

สถาบันวิทยบริการ

Chapter 3

Holomorphic function spaces

In this chapter, we provide some results about a space of holomophic functions. First, we discuss a reproducing kernel, which exists on any Hilbert space such that each pointwise evaluation is bounded. After that is we consider the SegalBargmann space that is invariant under the action of $S O(d, \mathbb{C})$.

3.1 Basic properties of the holomorphic function

spaces

In this section, we review some definitions and theorems about the holomorphic

Definition 3.1. Let U be a non-empty open set in \mathbb{C}^{d}. A function $f: U \rightarrow \mathbb{C}$ is holomorphic if f is continuous and holomorphic in each variable with the other variables fixed. Let $\mathcal{H}(U)$ be the space of holomorphic functions on U.

Definition 3.2. Let α be a continuous strictly positive function on a non-empty open set U in \mathbb{C}^{d}. Denote by $\mathcal{H} L^{2}(U, \alpha)$ the space of L^{2}-holomorphic functions
with respect to the weight α. In other words,

$$
\mathcal{H} L^{2}(U, \alpha)=\left\{\left.F \in \mathcal{H}(U)\left|\int_{U}\right| F(z)\right|^{2} \alpha(z) d z<\infty\right\}
$$

Theorem 3.3. 1. For all $z \in U$, there exists a constant c_{z} such that

$$
|F(z)|^{2} \leq c_{z}\|F\|_{L^{2}(U, \alpha)}^{2}
$$

for all $F \in \mathcal{H} L^{2}(U, \alpha)$.
2. $\mathcal{H} L^{2}(U, \alpha)$ is a closed subspace of $L^{2}(U, \alpha)$, and therefore a Hilbert space.

Theorem 3.4. There exists a complex-valued function K on $U \times U$, with the following properties

1. $K(z, u)$ is holomorphic in z and anti-holomorphic in u, and satisfies

$$
K(z, u)=\overline{K(u, z)} \quad(z, u \in U) .
$$

2. For all $z, u \in U$,

$$
\int_{U} K(z, w) K(w, u) \alpha(w) d w=K(z, u) .
$$

3. For each fixed $z \in U$ and for all $F \in \mathcal{H}\left(L^{2}(U, \alpha) \prod \delta\right.$

4. For all $z \in U$

$$
|F(z)|^{2} \leq K(z, z)\|F\|^{2}
$$

and the constant $K(z, z)$ is optimal in the sense that for each $z \in U$ there is a non-zero $F_{z} \in \mathcal{H} L^{2}(U, \alpha)$ for which equality holds.

Theorem 3.5. Let $\left\{e_{n}\right\}$ be an orthonormal basis for $\mathcal{H} L^{2}(U, \alpha)$. Then for all $z, u \in U$

$$
\sum_{n}\left|e_{n}(z) \overline{e_{n}(u)}\right|<\infty
$$

and

$$
K(z, u)=\sum_{n} e_{n}(z) \overline{e_{n}(u)} .
$$

Definition 3.6. The Segal-Bargmann space is the holomorphic function space $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$, where

$$
\mu_{t}(z)=(\pi t)^{-d} e^{-|z|^{2} / t}
$$

Here, $|z|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}$ and t is a positive number.

Theorem 3.7. The reproducing kernel of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$ is given by

$$
K(z, \underline{u})=e^{\langle u, z\rangle / t} \quad\left(z, u \in \mathbb{C}^{d}\right)
$$

where $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{C}^{d}. Hence, we have the pointwise bound

$$
\begin{equation*}
|F(z)|^{2} \leq e^{|z|^{2} / t}\|F\|^{2} \quad\left(z, u \in \mathbb{C}^{d}\right) \tag{3.1}
\end{equation*}
$$

for any $F \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$.

3.2 $S O(d)$-invariant holomorphic function spaces

Definition 3.8. Let F be a holomorphic functionon \mathbb{C}^{d}. We say that F is $S O(d)$ invariant if

$$
F(A z)=F(z) \quad \text { for all } A \in S O(d) \text { and all } z \in \mathbb{C}^{d} .
$$

In particular, if F is an $S O(d)$-invariant holomorphic function, then by analytic continuation it is $S O(d, \mathbb{C})$-invariant, i.e., $F(A z)=F(z)$ for all $A \in S O(d, \mathbb{C})$ and all $z \in \mathbb{C}^{d}$.

Notation. Denote by $\mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}$ the set of all $S O(d, \mathbb{C})$-invariant holomorphic functions on \mathbb{C}^{d}, i.e.,

$$
\mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}=\left\{f \in \mathcal{H}\left(\mathbb{C}^{d}\right) \mid f \text { is } S O(d, \mathbb{C}) \text {-invariant }\right\} .
$$

Then it is a linear subspace of $\mathcal{H}\left(\mathbb{C}^{d}\right)$.
Denote by $\mathcal{H}(\mathbb{C})^{e}$ the set of all holomorphic even functions on \mathbb{C}, i.e.,

$$
\mathcal{H}(\mathbb{C})^{e}=\{g \in \mathcal{H}(\mathbb{C}) \mid g(w)=g(-w), \forall w \in \mathbb{C}\} .
$$

Proposition 3.9. For any $d \geq 2$, the map $\phi: \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})} \rightarrow \mathcal{H}(\mathbb{C})^{e}$ defined by

$$
\phi(f) \overline{(x)}=f(x, 0, \ldots, 0)
$$

for all $f \in \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}$ and all $x \in \mathbb{C}$, is a linear isomorphism whose inverse is given by

$$
\psi(g)(z)=g(\sqrt{(z, z)})
$$

for all $g \in \mathcal{H}(\mathbb{C})^{e}$ and all $z \in \mathbb{C}^{d}$.

Note that since g is even, the value of $\phi(g)(z)$ is independent of choice of square root of (z, z).

Proof. It is clear that ϕ is a linear map and $\phi(f)$ is a holomorphic function on \mathbb{C} for any $f \in \mathcal{H}\left(\mathbb{C}_{6}^{d}\right)^{S O(d, \mathbb{C})}$. Moreover, $\omega(f)$ is even since $\mathfrak{C l}$.

$$
\begin{aligned}
\phi(f)(w) & =f(w, 0, \ldots, 0) \\
& =f(A(w, 0, \ldots, 0)) \\
& =f(w, 0, \ldots, 0)
\end{aligned}
$$

where $A=\operatorname{diag}(-1,-1,1,1, \ldots, 1)$. On the other hand, ψ is a linear map. Since g is even, $\psi(g)$ is given by a convergent power series in integer powers of (z, z), where
$(z, z)=z_{1}^{2}+\cdots+z_{d}^{2}$, and therefore $\psi(g)$ is holomorphic on \mathbb{C}^{d} for each $g \in \mathcal{H}(\mathbb{C})^{e}$. Moreover, $\psi(g)$ is $S O(d, \mathbb{C})$-invariant because the bilinear form is preserved under the action of the orthogonal group. It is easy to see that $\phi \circ \psi=\operatorname{id}_{\mathcal{H}(\mathbb{C})^{e}}$ and by analytic continuation we have $\psi \circ \phi=\operatorname{id}_{\mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}}$, so the theorem is proved.

Corollary 3.10. For each $f \in \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, C)}$ and each $w \in \mathbb{C}$, if $x, y \in S_{w}$, then $f(x)=f(y)$.

Proof. Let $f \in \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}$ and $w \in \mathbb{C}$. By Proposition 3.9, there exists a function $g \in \mathcal{H}(\mathbb{C})^{\text {even }}$ such that

$$
f(z)=g(\sqrt{(z, z)}) \quad \text { for all } z \in \mathbb{C}^{d}
$$

Hence, for all $x, y \in S_{w}$,

$$
f(x)=g(\sqrt{(x, x)})=g(\sqrt{(y, y)})=f(y)
$$

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Chapter 4

Invariant measure on the complex sphere

In this chapter, we construct a rotation-invariant Borel measure α on the complex unit sphere. It will be shown that Lebesgue measure on \mathbb{C}^{d} can be factored as a product of a measure on the open right-half plane of \mathbb{C} and the rotation-invariant measure α on the complex unit sphere. We can give an explicit formula for α via the identification between the complex unit sphere and the cotangent bundle on the real unit sphere.

Notation. Let S be the set of all elements on \mathbb{C}^{d} such that the argument of their bilinear forms lie on the negative real axis, including zero, i.e., $?$

$$
S=\left\{z \in \mathbb{C}^{d} \mid(z, z) \in(-\infty, 0]\right\}
$$

Recall that $S_{0}=\left\{z \in \mathbb{C}^{d} \mid(z, z)=0\right\}$. Next we show that S is a subset of \mathbb{C}^{d} with Lebesgue measure zero. Let $U \subset \mathbb{R}^{n}$ be an open set, and let $F: U \rightarrow \mathbb{R}^{k}$ be a smooth function. The graph of F is the subset of $\mathbb{R}^{n} \times \mathbb{R}^{k}$ defined by

$$
\Gamma(F)=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{k} \mid x \in U \text { and } y=F(x)\right\}
$$

Theorem 4.1 (Implicit Function Theorem). Let $U \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ be an open set, and let $(x, y)=\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{k}\right)$ denote the standard coordinates on U. Suppose $\Phi: U \rightarrow \mathbb{R}^{k}$ is a smooth map, $(a, b) \in U$, and $c=\Phi(a, b)$. If the $k \times k$ matrix

$$
\left(\frac{\partial \Phi^{i}}{\partial y^{j}}(a, b)\right)
$$

is nonsingular, then there exist neighborhoods V_{0} of a and W_{0} of b and a smooth map $F: V_{0} \rightarrow W_{0}$ such that $\Phi^{-1}(c) \cap\left(V_{0} \times W_{0}\right)$ is the graph of F, and hence it is an embedded n-dimensional submanifold of \mathbb{R}^{n+k}.

Proposition 4.2. $S_{0}-\{0\}$ and $S-S_{0}$ are submanifolds of \mathbb{C}^{d} with dimension $d-1$.

Proof. Let $z \in \mathbb{C}^{d}-\{0\}$. Then $z_{j} \neq 0$ for some $1 \leq j \leq d$, so $\frac{\partial(z, z)}{\partial z_{j}}=2 z_{j} \neq 0$. By Implicit Function Theorem $S_{0}-\{0\}=(\cdot, \cdot)^{-1}\{0\}-\{0\}$ is a smooth $(d-1)$ dimensional submanifold of \mathbb{C}^{d}. Since

$$
\begin{aligned}
(z, z) & =z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2} \\
& =x_{1}^{2}-y_{1}^{2}+2 i x_{1} y_{1}+\cdots+x_{d}^{2}-y_{d}^{2}+2 i x_{d} y_{d}
\end{aligned}
$$

$$
\begin{aligned}
\text { ค9Mค } \tan (\arg (z, z)) & =\frac{\operatorname{mg}(z, z)}{\operatorname{Re}(z, z)} \\
& =\frac{2 x_{1} y_{1}+\cdots+2 x_{d} y_{d}}{x_{1}^{2}-y_{1}^{2}+\cdots+x_{d}^{2}-y_{d}^{2}}
\end{aligned}
$$

Thus for any $z^{\prime} \in S-S_{0}, \arg \left(z^{\prime}, z^{\prime}\right)=\pi, \operatorname{Im}\left(z^{\prime}, z^{\prime}\right)=2 x^{\prime}{ }_{1} y^{\prime}{ }_{1}+\cdots+2 x^{\prime}{ }_{d} y^{\prime}{ }_{d}=0$ and $\operatorname{Re}\left(z^{\prime}, z^{\prime}\right)=x^{\prime 2}-y_{1}^{\prime 2}+\cdots+x^{\prime 2}-y_{d}^{\prime 2}<0$. Therefore $y_{j}^{\prime} \neq 0$ for some $1 \leq j \leq d$
which implies

$$
\begin{aligned}
\left.\frac{\partial \tan (\arg (z, z))}{\partial z_{j}}\right|_{z=z^{\prime}} & =\left.\frac{1}{2} \frac{\partial\left(\frac{\operatorname{mg}(z, z)}{\operatorname{Re}(z, z)}\right)}{\partial x_{j}}\right|_{z=z^{\prime}}-\left.\frac{i}{2} \frac{\partial\left(\frac{\operatorname{Im}(z, z)}{\operatorname{Re}(z, z)}\right)}{\partial y_{j}}\right|_{z^{\prime}=z} \\
& =\frac{y_{j}^{\prime}}{\operatorname{Re}\left(z^{\prime}, z^{\prime}\right)}-\frac{i x_{j}^{\prime}}{\operatorname{Re}\left(z^{\prime}, z^{\prime}\right)} \\
& \neq 0 .
\end{aligned}
$$

Applying the chain rule we have that $\left.\frac{\partial \arg (z, z)}{\partial z_{j}}\right|_{z=z^{\prime}} \neq 0$. Hence we can conclude that $S-S_{0}=(\arg (\cdot, \cdot))^{-1}\{\pi\}$ is a submanifold of \mathbb{C}^{d} with dimension $d-1$.

Corollary 4.3. The set $S \subset \mathbb{C}^{d}$ has Lebesgue measure zero.

Denote by $\mathbb{H}^{+}=\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$ the open right-half plane of \mathbb{C}. Define $\Psi: \mathbb{C}^{d}-S \rightarrow \mathbb{H}^{+} \times S_{1}$ by

$$
\Psi(z)=\left(w, z^{\prime}\right)
$$

where $w=|(z, z)|^{1 / 2} e^{i \frac{\theta}{2}}, \theta$ is the principal value of $\arg (z, z), \theta \in(-\pi, \pi)$, and $z^{\prime}=\frac{z}{w}$. Then Ψ is a continuous bijection map whose inverse is $\Psi^{-1}\left(w, z^{\prime}\right)=w z^{\prime}$. We can think of this map as a "complex polar form" of an element in \mathbb{C}^{d} whose bilinear form is nonzero.

Let m be Lebesgue measure on \mathbb{C}^{d} and m_{*} the Borel measure on $\mathbb{H}^{+} \times S_{1}$ such that $m_{*}(E)=m\left(\Psi^{-1}(E)\right)$. The next theorem shows that the push-forward measurecm* on $\mathbb{H}^{+} \times S_{1}$ can be written as a product measure $m_{*} \neq p \times \alpha$, where ρ is a measure on \mathbb{H}^{+}defined by

$$
\rho(A)=\int_{A}|w|^{2 d-2} d w
$$

and α is an $S O(d, \mathbb{C})$-invariant Borel measure on S_{1}.

Theorem 4.4. There is an $S O(d, \mathbb{C})$-invariant Borel measure α on S_{1} such that $m_{*}=\rho \times \alpha$. If f is a Borel measurable function on \mathbb{C}^{d} such that $f \geq 0$ or $f \in L^{1}\left(\mathbb{C}^{d}, m\right)$, then

$$
\begin{equation*}
\int_{\mathbb{C}^{d}} f(z) d z=\int_{\mathbb{C}} \int_{S_{1}} f\left(w z^{\prime}\right) d \alpha\left(z^{\prime}\right)|w|^{2 d-2} d w \tag{4.1}
\end{equation*}
$$

where dw denotes the two-dimensional Lebesgue measure on $\mathbb{C}=\mathbb{R}^{2}$.

Proof. Since S has Lebesgue measure zero, (4.1) is equivalent to

$$
\begin{equation*}
\int_{\mathbb{C}^{d}-S} f(z) d z=\int_{\mathbb{C}} \int_{S_{1}} f\left(w z^{\prime}\right) d \alpha\left(z^{\prime}\right)|w|^{2 d-2} d w \tag{4.2}
\end{equation*}
$$

First, we need to construct α. Let E be a Borel set in S_{1}. For any $a>0$, define $D_{a}=\{w \in \mathbb{C}| | w \mid<a\}$ and

$$
E_{a}=\Psi^{-1}\left(D_{a} \cap \mathbb{H}^{+} \times E\right)=\left\{w z^{\prime} \mid w \in D_{a} \cap \mathbb{H}^{+}, z^{\prime} \in E\right\} .
$$

If (4.2) is to hold when $f=\chi_{E_{1}}$, we must have

$$
m\left(E_{1}\right)=\frac{1}{2} \int_{D_{1}} \int_{E} d \alpha\left(z^{\prime}\right)|w|^{2 d-2} d w=\frac{\pi}{2 d} \alpha(E)
$$

Hence, for any Borel set E in S_{1}, we define

$$
66 \rightarrow 2 \cdot \alpha(E)=\frac{2 d}{\pi} m\left(E_{1}\right)
$$

Sincethe map $E \rightarrow E_{1}$ takes Borel sets to Borel sets and commutes with unions, intersections and complements, it is clear that α is a Borel measure on S_{1}. If E is a Borel set in S_{1} and $A \in S O(d, \mathbb{C})$ then

$$
\begin{aligned}
(A E)_{1} & =\left\{w z^{\prime}\left|w \in \mathbb{H}^{+},|w|<1, z^{\prime} \in A E\right\}\right. \\
& =\left\{w A z^{\prime}\left|w \in \mathbb{H}^{+},|w|<1, z^{\prime} \in E\right\}\right. \\
& =A E_{1} .
\end{aligned}
$$

Consequently,

$$
\alpha(A E)=\frac{2 d}{\pi} m\left((A E)_{1}\right)=\frac{2 d}{\pi} m\left(A(E)_{1}\right)=\frac{2 d}{\pi} \operatorname{det}(A) m\left(E_{1}\right)=\alpha(E),
$$

where $\operatorname{det}(A)$ is the determinant of A over \mathbb{R} which is 1 . Hence α is $S O(d, \mathbb{C})$ invariant. Moreover, $E_{a}=a E_{1}$, so $m\left(E_{a}\right)=a^{2 d} m\left(E_{1}\right)$. Following this we have that

$$
\begin{aligned}
m_{*}\left(\left(D_{a} \cap \mathbb{H}^{+}\right) \times E\right) & =m\left(E_{a}\right) \\
& =\frac{2 \pi}{d}\left(a^{2 d}\right) \alpha(E) \\
& =\alpha(E) \frac{1}{2} \int_{D_{a}}|w|^{2 d-2} d w \\
& =\rho \times \alpha\left(\left(D_{a} \cap \mathbb{H}^{+}\right) \times E\right) .
\end{aligned}
$$

Fix $E \in \mathcal{B}_{S_{1}}$ and let \mathcal{A}_{E} be the collection of finite disjoint unions of sets of the form $\left(D_{a} \cap \mathbb{H}^{+}\right) \times E$. Then \mathcal{A}_{E} is an algebra on $\mathbb{H}^{+} \times E$ that generates the σ-algebra $\mathcal{M}_{E}=\left\{D \times E \mid D \in \mathcal{B}_{\mathbb{H}^{+}}\right\}$. Since $m_{*}=\rho \times \alpha$ on $\mathcal{A}_{E}, m_{*}=\rho \times \alpha$ on \mathcal{M}_{E}. But $\bigcup\left\{\mathcal{M}_{E} \mid E \in \mathcal{B}_{S_{1}}\right\}$ is a set of all Borel rectangles on $\mathbb{H}^{+} \times S_{1}$. Thus $m_{*}=\rho \times \alpha$ on all Borel sets. Hence equation (4.2) holds when f is a characteristic function of a Borel set and it follows for general f by the usual linearity and approximation argument.

The measure α im Theorem -4.4 is uniquely determined and can be given explicitly. First, let us recall some definition and theorem about Lie groups and the complex unit sphere S_{1}.

Theorem 4.5 ([Kn] Theorem 8.36). Let G be a Lie group, let H be a closed subgroup, and let Δ_{G} and Δ_{H} be the respective modular functions. Then a necessary and sufficient condition for G / H to have a nonzero G-invariant Borel measure is that the restriction to H of Δ_{G} equal Δ_{H}. In this case such a measure $d \mu(g H)$ is
unique up to a scalar, and it can be normalized so that

$$
\begin{equation*}
\int_{G} f(g) d_{l} g=\int_{G / H}\left[\int_{H} f(g h) d_{l} h\right] d \mu(g H) \tag{4.3}
\end{equation*}
$$

for all $f \in C_{c}(G)$ where d_{l} is a left-Haar measure on G.
Notation. Denote by $T^{*}\left(S^{d-1}\right)$ the cotangent bundle of the real unit sphere S^{d-1}, which we can think of as

$$
T^{*}\left(S^{d-1}\right)=\left\{(\mathbf{x}, \mathbf{p}) \in \mathbb{R}^{d} \times \mathbb{R}^{d}| | \mathbf{x} \mid=1, \mathbf{x} \cdot \mathbf{p}=0\right\} .
$$

There is a diffeomorphism between $T^{*}\left(S^{d-1}\right)$ and the complex unit sphere S_{1} given by the formula

$$
\mathbf{a}(\mathbf{x}, \mathbf{p})=\cosh (p) \mathbf{x}+\frac{i}{p} \sinh (p) \mathbf{p}
$$

for any $\mathbf{x} \in S^{d-1}$ and $\mathbf{x} \cdot \mathbf{p}=0$, where $p=|\mathbf{p}|$. See $[H M]$ for more details.
Lemma 4.6. The measure

$$
\left(\frac{\sinh 2 p}{2 p}\right)^{d-2} 2^{d-1} d \mathbf{p} d \mathbf{x}
$$

is invariant under the action of $S O(d, \mathbb{C})$ on $S_{1} \cong T^{*}\left(S^{d-1}\right)$.
Proof. See [HM], Lemma 3.
Using this coordinate, we can write the measure α explicitly as follows:

$$
\text { Lemma 4.7. The measure } \alpha \text { is given by }
$$

where a_{0} is a constant which is unique. Here $z=\mathbf{a}(\mathbf{x}, \mathbf{p}), d \mathbf{x}$ is the surface area measure on S^{d-1} and $d \mathbf{p}$ is Lebesgue measure on \mathbb{R}^{d}.

Proof. The measure α and the measure $\left(\frac{\sinh 2 p}{2 p}\right)^{d-2} 2^{d-1} d \mathbf{p} d \mathbf{x}$ are both $S O(d, \mathbb{C})$ invariant and finite on compact sets. Thus, by Proposition 2.12 and Theorem 4.5, these two measures must agree up to a constant.

Chapter 5

Pointwise bound for a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right) S O(d, \mathbb{C})$

In this chapter, we consider the subspace of the Segal-Bargmann space which is invariant under the action of the special complex orthogonal group. Our objective is to find a pointwise bound of a function in this space.

Notation. We write

$$
\mathcal{H} L^{2}\left(\mathbb{C}^{d}{ }_{d} \mu_{t}\right)^{S O(d, \mathbb{C})}=\mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})} \cap L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)
$$

$\mathcal{H} L^{2}\left(\mathbb{C}^{d} \mu_{t}\right)^{S O(d, \mathbb{C})}=\mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})} \cap L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)$.
It is easy to see that it is a closed subspace of $\mathcal{H L ^ { 2 }}\left(\mathbb{C}^{d}, \mu_{t}\right)$, cand hence is a Hilbert spae$ฬ า ล ง ก ร ณ ์ ม ห า ว ิ ท ย า ล ั ย ~$

By averaging over each orbit, we obtain the following pointwise bound:
Proposition 5.1. For any $F \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ and for any $z \in \mathbb{C}^{d}$

$$
\begin{equation*}
|F(z)|^{2} \leq e^{|(z, z)| / t}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2} \tag{5.1}
\end{equation*}
$$

Proof. Note that $|(z, z)|=|(A z, A z)| \leq|A z|^{2}$ for any $z \in \mathbb{C}^{d}$ and $A \in S O(d, \mathbb{C})$. If $z \notin S_{0}$, we have that $(\sqrt{(z, z)}, 0, \ldots, 0) \in\{A z \mid A \in S O(d, \mathbb{C})\}$, because $S O(d, \mathbb{C})$
acts transitively on S_{w} where $w=\sqrt{(z, z)}$, and thus

$$
|(z, z)|=\inf \left\{|A z|^{2}: A \in S O(d, \mathbb{C})\right\} .
$$

But S_{0}^{c} is dense in \mathbb{C}^{d}, so this equation is also true for all $z \in \mathbb{C}^{d}$. This immediately gives (5.1).

This simple technique yields an improvement from the Bargmann's pointwise bound (3.1). However, we will establish a polynomially-better bound than the bound in (5.1). Our strategy is to construct a non-Gaussian measure λ on \mathbb{C} so that we can express $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ in terms of the space $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$ of holomophic even functions on \mathbb{C} that are square-integrable with respect to λ and then estimate the reproducing kernel of the latter space.

Henceforth, we will write each nonzero complex number w in a general exponential form $w=|w| e^{i \theta}$ where θ is the principal value of $\arg (w)(-\pi<\theta \leq \pi)$. Denote by \mathcal{B}_{d} the Borel σ-aIgebra in \mathbb{C}^{d} and by \mathcal{B} the Borel σ-algebra in \mathbb{C}. Define $\Phi_{i}:\left(\mathbb{C}^{d}, \mathcal{B}_{d}, \mu_{t}\right) \rightarrow(\mathbb{C}, \mathcal{B}), i=1,2$ to be the branch of $\sqrt{(z, z)}$ with a smaller and larger argument respectively and for each $E \in \mathcal{B}$ define

$$
\text { 6. } 6 \rightarrow \cos _{i} \quad \lambda_{i}(E)=\mu_{t}\left(\Phi_{i}^{-1}(E)\right) \text {. }
$$

Then define $\lambda=\left(\lambda_{1}+\lambda_{2}\right) / 2$. It is easy to check that λ is a Borel measure on \mathbb{C} and for any measurable function g and any $E \in \mathcal{B} 9 ? \rightarrow$ GU

$$
\int_{E} g d \lambda=\frac{1}{2} \int_{\Phi_{1}^{-1}(E)} g \circ \Phi_{1} d \mu_{t}+\frac{1}{2} \int_{\Phi_{2}^{-1}(E)} g \circ \Phi_{2} d \mu_{t} .
$$

Theorem 5.2. $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ and $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$ are unitarily equivalent.

Proof. From Proposition 3.9 we have that the function

$$
\psi: \mathcal{H}(\mathbb{C})^{e} \rightarrow \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}
$$

is a linear isomorphism. We consider the restriction of ψ to the space $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. Let $g \in \mathcal{H}(\mathbb{C})^{e}$ and $f \in \mathcal{H}\left(\mathbb{C}^{d}\right)^{S O(d, \mathbb{C})}$ be such that $f=\psi(g)$. Thus

$$
\begin{aligned}
\int_{\mathbb{C}}|g|^{2} d \lambda & =\frac{1}{2} \int_{\Phi_{1}^{-1}(\mathbb{C})}\left|g \circ \Phi_{1}(z)\right|^{2} \mu_{t}(z) d z+\frac{1}{2} \int_{\Phi_{2}^{-1}(\mathbb{C})}\left|g \circ \Phi_{2}(z)\right|^{2} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}|g(\sqrt{(z, z)})|^{2} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}|\psi(g)(z)|^{2} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}|f(z)|^{2} \mu_{t}(z) d z .
\end{aligned}
$$

So we have $\|g\|_{L^{2}(\mathbb{C}, \lambda)}=\|f\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}$. Hence, $f \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ if and only if $g \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. This shows that ψ is a unitary map from $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$ onto $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$.

We next show that the measure λ is absolutely continuous with respect to Lebesgue measure and then we approximate the density of λ. This will yield a pointwise bound for a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \lambda\right)^{e}$. Then a pointwise bound for a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, C)}$ is obtained by a unitary map.

Theorem 5.3. The measure λ is absolutely continuous with respect to Lebesgue measure on \mathbb{C} with density given by

Proof. Let E be a complex Borel set in \mathbb{C}. For any $z \in \mathbb{C}$ with $z=w z^{\prime}, w \in \mathbb{C}$ and $z^{\prime} \in S_{1}$, we have that $z \in \Phi_{1}^{-1}(E)$ if and only if $w \in E$. Similarly $z \in \Phi_{2}^{-1}(E)$
if and only if $-w \in E$. Therefore by Theorem 4.4

$$
\begin{aligned}
\lambda(E) & =\frac{1}{2} \int_{\Phi_{1}^{-1}(E)} \frac{e^{-|z|^{2} / t}}{(\pi t)^{d}} d z+\frac{1}{2} \int_{\Phi_{2}^{-1}(E)} \frac{e^{-|z|^{2} / t}}{(\pi t)^{d}} d z \\
& =\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{\Phi_{1}^{-1}(E)}\left(w z^{\prime}\right) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& +\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{\Phi_{2}^{-1}(E)}\left(w z^{\prime}\right) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& =\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{E}(w) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& +\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{E}(-w) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& =\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{E}(w) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& +\frac{1}{2} \int_{\mathbb{C}} \int_{S_{1}} \chi_{E}(w) \frac{|w|^{2 d-2}}{(\pi t)^{d}} e^{-\left|w z^{\prime}\right|^{2} / t} d \alpha\left(z^{\prime}\right) d w \\
& =\int_{E} \frac{|w|^{2 d-2}}{(\pi t)^{d}} \int_{S_{1}} \frac{e^{-\left|w z^{\prime}\right|^{2} / t}}{} d \alpha\left(z^{\prime}\right) d w \\
& =\int_{E} \Lambda(w) d w^{2}
\end{aligned}
$$

where Λ is given by (5.2).

Next, we will approximate the density Λ of λ and show that on holomorphic functions, the L^{2}-norm with respect to λ is equivalent to the L^{2}-norm with respect

for all $w \in \mathbb{C}$.

Proposition 5.4. There exist constants $m, M>0$, depending on d and t, such that the density function Λ of λ satisfies

$$
\begin{equation*}
m \beta(w) \leq \Lambda(w) \leq M \beta(w) \tag{5.3}
\end{equation*}
$$

for all $w \in C$ with $|w| \geq 1$.

Proof. From Lemma 4.7, for any $w \in \mathbb{C}$

$$
\begin{align*}
\int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) & =a_{0} \int_{S^{d-1}} \int_{\left\{\mathbf{p} \in \mathbb{R}^{d} \mid \mathbf{x} \cdot \mathbf{p}=\mathbf{0}\right\}} e^{-|w \mathbf{a}(\mathbf{x}, \mathbf{p})|^{2} / t}\left(\frac{\sinh (2 p)}{2 p}\right)^{d-2} 2^{d-1} d \mathbf{p} d \mathbf{x} \\
& =a_{0} \sigma\left(S^{d-1}\right) \int_{\mathbb{R}^{d-1}} e^{-\cosh (2 p)|w|^{2} / t}\left(\frac{\sinh (2 p)}{2 p}\right)^{d-2} 2^{d-1} d \mathbf{p} \\
& =a_{d} \int_{0}^{\infty} e^{-\cosh (2 r)|w|^{2} / t}\left(\frac{\sinh (2 r)}{2 r}\right)^{d-2} 2^{d-1} r^{d-2} d r \\
& =a_{d} \int_{0}^{\infty} e^{-\cosh (2 r)|w|^{2} / t} \sinh ^{d-2}(2 r) 2 d r \\
& =a_{d} \int_{0}^{\infty} e^{-\cosh (u)|w|^{2} / t} \sinh ^{d-2} u d u \\
& =a_{d} e^{-|w|^{2} / t} \int_{0}^{\infty} e^{-(\cosh (u)-1)|w|^{2} / t}\left(\cosh ^{2} u-1\right)^{(d-3) / 2} d(\cosh u) \\
& =a_{d} e^{-|w|^{2} / t} \int_{0}^{\infty} e^{-|w|^{2} x / t}\left(x^{2}+2 x\right)^{(d-3) / 2} d x \tag{5.4}
\end{align*}
$$

with $a_{d}=a_{0} \sigma\left(S^{d-1}\right) \sigma\left(S^{d-2}\right)$ where σ is the surface measure. The last equality follows from the change of variables $\cosh (u)=x+1$. But then

$$
\begin{equation*}
\left(x^{2}+2 x\right)^{(d-3) / 2}=\left\{\sum_{k=0}^{d-3}\left(\frac{d-3}{k}\right) 2^{d-3-k} x^{d-3+k}\right\}^{1 / 2}=\left\{\sum_{k=0}^{d-3} a_{k} x^{d-3+k}\right\}^{1 / 2}, \tag{5.5}
\end{equation*}
$$

where

$$
a_{k}=\binom{d-3}{k} 2^{d-3-k}
$$

Now let us consider the case $d \geq 3$, Applying the inequality

$$
\frac{1}{\sqrt{n}}\left(\sqrt{a_{1}}+\sqrt{a_{2}}+\cdots+\sqrt{a_{n}}\right) \leq \sqrt{a_{1}+a_{2}+\cdots+a_{n}} \leq \sqrt{a_{1}}+\sqrt{a_{2}}+\cdots+\sqrt{a_{n}},
$$

for any $a_{1}, a_{2}, \ldots, a_{n} \geq 0$, we see that

$$
\frac{1}{\sqrt{d-2}} \sum_{k=0}^{d-3} a_{k}^{1 / 2} x^{(d-3+k) / 2} \leq\left\{\sum_{k=0}^{d-3} a_{k} x^{d-3+k}\right\}^{1 / 2} \leq \sum_{k=0}^{d-3} a_{k}^{1 / 2} x^{(d-3+k) / 2}
$$

Thus

$$
\begin{equation*}
\frac{1}{\sqrt{d-2}} \sum_{k=0}^{d-3} a_{k}^{1 / 2} x^{(d-3+k) / 2} \leq\left(x^{2}+2 x\right)^{(d-3) / 2} \leq \sum_{k=0}^{d-3} a_{k}^{1 / 2} x^{(d-3+k) / 2} . \tag{5.6}
\end{equation*}
$$

By using the formula for the Gamma function we have that

$$
\int_{0}^{\infty} e^{-|w|^{2} x / t} x^{(d-3+k) / 2} d x=\Gamma\left(\frac{d-3+k}{2}+1\right)\left(\frac{t}{|w|^{2}}\right)^{(d-1+k) / 2}
$$

It follows that

$$
\frac{1}{\sqrt{d-2}} P\left(\frac{\sqrt{t}}{|w|}\right) \leq \int_{0}^{\infty} e^{-|w|^{2} x / t}\left(x^{2}+2 x\right)^{(d-3) / 2} d x \leq P\left(\frac{\sqrt{t}}{|w|}\right),
$$

where

$$
P(x)=\sum_{k=0}^{d-3} a_{k}^{1 / 2} \Gamma\left(\frac{\overline{d-1+k}}{2}\right) x^{d-1+k}
$$

This shows that

$$
\frac{a_{d}}{\sqrt{d-2}} P\left(\frac{\sqrt{t}}{|w|}\right) e^{-|w|^{2} / t} \leq \int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) \leq a_{d} P\left(\frac{\sqrt{t}}{|w|}\right) e^{-|w|^{2} / t} .
$$

It follows from (5.2) that

$$
\begin{equation*}
\frac{e^{-|w|^{2} / t}}{t \pi \sqrt{d-2}} Q\left(\frac{|w|}{\sqrt{t}}\right) \leq \Lambda(w) \leq \frac{e^{-|w|^{2} / t}}{t \pi} Q\left(\frac{|w|}{\sqrt{t}}\right) \tag{5.7}
\end{equation*}
$$

where

$$
\left.Q(x)=\frac{a_{d}}{\pi^{d-1}} \sum_{k=0}^{d-3} a_{k}^{1 / 2} \Gamma\left(\frac{d-1+k}{2}\right) x^{d-1-k}\right)=\sum_{k=2}^{d-1} b_{k} x^{k} .
$$

Since we are interested in the behavior of Λ, we will keep only the monomials of the highest degrees x^{d-1} of Q in our estimate. Hence we establish (5.3) for the

$$
\begin{aligned}
& \text { Meanwhile in the } d=2 \text { case we have } \\
& \begin{aligned}
\int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) & =a_{2} e^{-|w|^{2} z t} \int_{0}^{\infty} \frac{\mid e^{-x|w|^{2} / t}}{\sqrt{x^{2}+2 x}} d x \\
& =\frac{a_{2}}{\sqrt{2}} e^{-|w|^{2} / t} \int_{0}^{\infty} e^{-u} \sqrt{\left(\frac{|w|^{2}}{t u}-\frac{|w|^{2}}{2|w|^{2}+t u}\right)} \frac{t}{|w|^{2}} d u \\
& \geq \frac{a_{2} \sqrt{t}}{\sqrt{2}|w|} e^{-|w|^{2} / t}\left(\int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} d u-\int_{0}^{\infty} \frac{e^{-u}}{\sqrt{2|w|^{2} / t+u}} d u\right) .
\end{aligned} .
\end{aligned}
$$

The function

$$
\phi(r)=\int_{0}^{\infty} \frac{e^{-u}}{\sqrt{r+u}} d u \quad(r \geq 0)
$$

is a strictly decreasing function. Hence, if we let $\delta=2 / t$ and $\varepsilon=\phi(0)-\phi(\delta)$, then $\phi(0)-\phi\left(2|w|^{2} / t\right) \geq \phi(0)-\phi(\delta)=\varepsilon$ for any w with $2|w|^{2} / t \geq \delta$. It follows that

$$
\begin{aligned}
\Lambda(w) & =\frac{|w|^{2}}{(\pi t)^{2}} \int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) \\
& \geq \frac{\varepsilon a_{2}}{\pi \sqrt{2 t}} \frac{e^{-|w|^{2} / t}}{\pi t}|w|
\end{aligned}
$$

for any $w \in \mathbb{C}$ with $|w| \geq 1$.
On the other hand,

$$
\begin{aligned}
& \int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) \leq a_{2} e^{-|w|^{2} / t} \int_{0}^{\infty} \frac{e^{-x|w|^{2} / t}}{\sqrt{2 x}} d x \\
&=\frac{a_{2} \sqrt{t \pi}}{\sqrt{2}|w|} e^{-|w|^{2} / t}
\end{aligned}
$$

Hence

$$
\Lambda(w) \leq \frac{a_{2}}{\sqrt{2 \pi t}} \frac{e^{-|w|^{2} / t}}{\pi t}|w|
$$

Thus the theorem is proved.

Lemma 5.5. The norms $\|\cdot\|_{L^{2}(\mathbb{C}, \beta)}$ and $\|\cdot\|_{L^{2}(\mathbb{C}, \lambda)}$ are equivalent, i.e., there are constants $k, K>0$, depending on d and t, such that

$$
\begin{equation*}
63\left\|_{k}\right\|\left\|_{L^{2}(\mathbb{C}, \beta)} \leq\right\| f\left\|_{L^{2}(\mathbb{C}, \lambda)} \leq K\right\| f \|_{L^{2}(\mathbb{C}, \beta)} \tag{5.8}
\end{equation*}
$$

Proof. First, we will show that there is a constant $D>0$, depending on d and t, such that

$$
\|f\|_{L^{2}(\mathbb{C}, \beta)}^{2} \leq D\|f\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}^{2}
$$

for any $f \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)$, where $\mathbb{D}=\{w \in \mathbb{C}:|w| \leq 1\}$.

Let $w \in \mathbb{D}$. Denote by $A(w)$ the annulus $\{z \in \mathbb{C}|2 \leq|z-w| \leq 3\}$. For any $v \in A(w)$, we use the polar coordinates with the origin at w so that $v-w=r e^{i \theta}$. If $f \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)$, then we expand f as a power series around $v=w$:

$$
f(v)=f(w)+\sum_{n=1}^{\infty} a_{n}(v-w)^{n}
$$

Hence,

$$
\int_{A(w)} f(v) d v=f(w)(9 \pi-4 \pi)+\sum_{n=1}^{\infty} \int_{2}^{3} \int_{0}^{2 \pi} a_{n} r^{n} e^{i n \theta} d \theta d r=5 \pi f(w)
$$

Therefore

$$
\begin{aligned}
f(w) & =\frac{1}{5 \pi} \int_{A(w)} f(v) d v \\
& =\frac{1}{5 \pi} \int_{\mathbb{C}-\mathbb{D}} \chi_{A}(w)(v) \frac{1}{\Lambda(v)} f(v) \Lambda(v) d v \\
& =\frac{1}{5 \pi}\left\langle\chi_{A(w)} \frac{1}{\Lambda}, f\right\rangle_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)} .
\end{aligned}
$$

By Cauchy-Schwarz inequality we have that

$$
|f(w)| \leq \frac{1}{5 \pi}\left\|\chi_{A(w)} \frac{1}{\Lambda}\right\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}\|f\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)} .
$$

Since Λ is strictly positive and continuous on $A(w), \frac{1}{\Lambda}$ is bounded on $A(w)$. Thus the first L^{2}-norm is finite. However, for each $w \in \mathbb{D}$,

$$
\frac{1}{5 \pi}\left\|\chi_{A(w)} \frac{1}{\Lambda}\right\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)} \leq \frac{1}{5 \pi}\left\|\chi_{A^{*}} \frac{1}{\Lambda}\right\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}<\infty
$$

where $A^{*}=\{z \in \mathbb{C}|1<|z|<4\}$, which contains each $A(w), w \in \mathbb{D}$. It follows

It now follows from Proposition 5.4 that

$$
\begin{aligned}
\int_{\mathbb{C}}|f(w)|^{2} \beta(w) d w & =\int_{\mathbb{D}}|f(w)|^{2} \beta(w) d w+\int_{\mathbb{C}-\mathbb{D}}|f(w)|^{2} \beta(w) d w \\
& \leq c^{2}\|f\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}^{2} \int_{\mathbb{D}} \beta(w) d w+\frac{1}{m}\|f\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}^{2} \\
& \leq D\|f\|_{L^{2}(\mathbb{C}-\mathbb{D}, \lambda)}^{2}
\end{aligned}
$$

for some constant $D>0$ depending on d and t. This give the first inequality in (5.8). The second inequality in (5.8) can be proved in the same way.

Having established Lemma 5.5, it is remains only to obtain pointwise bounds for elements in $\mathcal{H} L^{2}(\mathbb{C}, \lambda)$. We do this by reducing to the standard SegalBargmann space when d is odd and to the space $\mathcal{H} L^{2}\left(\mathbb{C},(t \pi)^{-1}|w| e^{-|w|^{2} / t} d w\right)$ when d is even. We now establish pointwise bound in the latter space.

Lemma 5.6. The set $\left\{\frac{w^{n}}{\left(t(2 n+1) / 2 \Gamma\left(n+\frac{3}{2}\right)\right)^{1 / 2}}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}(w) d w\right)$, where $\nu_{t}(w)=|w| \frac{e^{-|w|^{2} / t}}{t \pi}$ for all $w \in \mathbb{C}$.

Proof. For each $n \in \mathbb{N} \cup\{0\}$, define $g_{n}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g_{n}(w)=w^{n} \quad \text { for all } w \in \mathbb{C} .
$$

It is clear that $g_{n} \in \mathcal{H}(\mathbb{C})$. Claim that $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal subset of $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$. To prove the claim, let σ be a positive real number. Define

Next, let

$$
\begin{aligned}
& M_{\sigma}(j, k)=\int_{D_{\sigma}} w^{j} \bar{w}^{k}|w| e^{-w^{2} / t}(\pi t)^{-1} d w \\
& \text { 66? } \left.=\int_{0}^{2 \pi} \int_{0}^{\sigma} e^{i \theta(j \varrho k)} r^{j+k+2} e^{-\bar{x}^{2} / t}(\pi t)\right]^{-1} d r d \theta
\end{aligned}
$$

It follows that
(i) $M_{\sigma}(j, k)=0$ if $j \neq k$, b 6 ,
(ii) $M_{\sigma}(k, k) \rightarrow t^{k+1 / 2} \Gamma(k+3 / 2)$ as $\sigma \rightarrow \infty$.

For any $m, n \in \mathbb{N} \cup\{0\}$,

$$
\begin{aligned}
\int_{\mathbb{C}} g_{m}(w) \overline{g_{n}(w)} \nu_{t}(w) d w & =\int_{\mathbb{C}} w^{m} \overline{w^{n}}|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w \\
& =\lim _{\sigma \rightarrow \infty} M_{\sigma}(m, n)
\end{aligned}
$$

Thus it follows from (i) that

$$
\int_{\mathbb{C}} g_{m}(w) \overline{g_{n}(w)} \nu_{t}(w) d w=0, \quad \text { if } m \neq n
$$

If $n=m$, we have

$$
\begin{aligned}
\int_{\mathbb{C}}\left|g_{n}(w)\right|^{2} \nu_{t}(w) d w & =\lim _{\sigma \rightarrow \infty} M_{\sigma}(n, n) \\
& \equiv t^{n+1 / 2} \Gamma(n+3 / 2)
\end{aligned}
$$

Thus for any $n \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\left\|g_{n}\right\|_{L^{2}\left(\mathbb{C}, \nu_{t}\right)}^{2}=t^{n+1 / 2} \Gamma\left(n+\frac{3}{2}\right) . \tag{5.9}
\end{equation*}
$$

Hence, $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal subset of $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$. Next, we will show that $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal basis of $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$. Let $g \in \mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$. Then $g(w)=\sum_{n=0}^{\infty} a_{n} w^{n}$ for each $w \in \mathbb{C}$, where $a_{n} \in \mathbb{C}$ for all $n \in \mathbb{N} \cup\{0\}$. Since this power series converges uniformly on the set D_{σ}, we have

$$
\begin{aligned}
\int_{D_{\sigma}}|g(w)|^{2} \nu_{t}(w) d w & =\int_{D_{\sigma}} \sum_{n=0}^{\infty} a_{n} w^{n} \sum_{m=0}^{\infty} \overline{a_{m} w^{m}}|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n} \overline{a_{m}} \int_{D_{\sigma}} w^{n} \overline{w^{m}}|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w
\end{aligned}
$$

$$
\mathscr{Q}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} M_{\sigma}(n, n)
$$

Next, using the monotone convergence theorem, we have

$$
\begin{aligned}
\sqrt[9]{\int_{\mathbb{C}}}|g(w)|^{2} \nu_{t}(w) d w & =\lim _{\sigma \rightarrow \infty} 9 \int_{D_{\sigma}}|g(w)|^{2}|w| e^{e^{-|w|^{2} / t}} t w w^{\varrho} \\
& =\lim _{\sigma \rightarrow \infty} \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} M_{\sigma}(n, n) \\
& =\sum_{n=0}^{\infty}\left|a_{2 n}\right|^{2} t^{n+\frac{1}{2}} \Gamma\left(n+\frac{3}{2}\right)
\end{aligned}
$$

Therefore, if g is square-integrable with respect to ν_{t}, then

$$
\sum_{n=0}^{\infty}\left|a_{2 n}\right|^{2} t^{n+\frac{1}{2}} \Gamma\left(n+\frac{3}{2}\right)<\infty
$$

Define a sequence $\left(F_{n}\right)$ to be

$$
F_{n}(w):=\sum_{m=0}^{n} a_{m} w^{m}
$$

for any $w \in \mathbb{C}$. Then $\left(F_{n}\right)$ is a Cauchy sequence in $L^{2}\left(\mathbb{C}, \nu_{t}\right)$. To see this, notice that for $m>n$,

$$
\begin{aligned}
\left\|F_{m}-F_{n}\right\|_{L^{2}\left(\mathbb{C}, \nu_{t}\right)} & =\int_{\mathbb{C}}\left|F_{m}-F_{n}\right|^{2}|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w \\
& =\left.\left.\int_{\mathbb{C}}\right|_{k=n+1} ^{m} a_{k} w^{k}\right|^{2}|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w \\
& =\sum_{k=n+1}^{m}\left|a_{k}\right|^{2} t^{k+\frac{1}{2}} \Gamma\left(k+\frac{3}{2}\right) \rightarrow 0 \quad \text { as } m, n \rightarrow \infty .
\end{aligned}
$$

Thus $\left(F_{n}\right)$ converges in $L^{2}\left(\mathbb{C}, \nu_{t}\right)$ to some function h, and hence it has a subsequence which converges pointwise almost everywhere to h. But $\left(F_{n}\right)$ converges pointwise to g, so we have that $h=g$ a.e. $\left[\nu_{t}\right]$. Therefore $h=g$ in $L^{2}\left(\mathbb{C}, \nu_{t}\right)$, so $\left(F_{n}\right)$ converges to g in $L^{2}\left(\mathbb{C}, \nu_{t}\right)$. Thus $g \in \overline{\operatorname{span}\left\{g_{n} \mid n \in \mathbb{N} \cup\{0\}\right\}}$. This show that $\left\{\frac{w^{n}}{\left(t^{(2 n+1) / 2} \Gamma\left(n+\frac{3}{2}\right)\right)^{1 / 2}}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$.

Corollary 5.7. For any $g \in \mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$,

$$
\underset{\sigma}{\mid}|g(w)|^{2} \leq \frac{e^{|w|^{2} / t}}{|\varphi w|} \operatorname{erf}\left(\frac{|w|}{\sqrt{t}}\right)| | g \|^{2} \Longleftrightarrow(w \in \mathbb{C}-\{0\}),
$$

where the error function erf is defined by
ere the error function erf is defined by

Proof. By using Lemma 5.6, the reproducing kernel for the space $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$ is given by

$$
K(x, y)=\sum_{n=0}^{\infty} \frac{x^{n} \bar{y}^{n}}{t^{(2 n+1) / 2} \Gamma\left(n+\frac{3}{2}\right)} .
$$

Thus the pointwise bound for a function g in the space $\mathcal{H} L^{2}\left(\mathbb{C}, \nu_{t}\right)$ is

$$
\begin{aligned}
|g(w)|^{2} & \leq K(w, w)\|g\|^{2} \\
& \leq \sum_{n=0}^{\infty} \frac{|w|^{2 n}}{t^{(2 n+1) / 2} \Gamma\left(n+\frac{3}{2}\right)}\|g\|^{2} \\
& =\frac{e^{|w|^{2} / t}}{|w|} \operatorname{erf}\left(\frac{|w|}{\sqrt{t}}\right)\|g\|^{2}
\end{aligned}
$$

for any $w \in \mathbb{C}$.
Theorem 5.8. There is a constant B, depending on d and t, such that for any $f \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)$ and any $w \in \mathbb{C}-\{0\}$,

$$
\begin{equation*}
|f(w)|^{2} \leq \frac{B}{|w|^{d-1}} e^{|w|^{2} / t}\|f\|_{L^{2}(\mathbb{C}, \lambda)}^{2} \tag{5.10}
\end{equation*}
$$

Proof. Let $f \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. Then $f \in \mathcal{H} L^{2}(\mathbb{C}, \beta)$, and thus

$$
\int_{\mathbb{C}}|w|^{d-1}|f(w)|^{2} \frac{e^{-|w|^{2} / t}}{\pi t} d w<\infty
$$

If $d-1$ is an even number, then

$$
w^{(d-1) / 2} f(w) \in \mathcal{H} L^{2}\left(\mathbb{C}, \frac{e^{-|w|^{2} / t}}{t \pi} d w\right) .
$$

This is the one-dimensional Segal-Bargmann space. Using Bargmann's pointwise bound (3.1) for this space, we obtain

$$
\widehat{\sigma}|w|^{d-1}|f(w)|^{2} \leftrightarrows e^{\left\langle\left. w\right|^{2}\right.} t /\|f\|_{L^{2}(\mathbb{C}, \beta)}^{2} \preccurlyeq \frac{e^{|w|^{2} / t}}{k^{2}}\|f\|_{L^{2}(\mathbb{C}, \lambda)}^{2}
$$

for all $w \in \mathbb{C}$, where k is the constant in Corollary 5.8. On the other hand if $d-1$ is an odd number, then

$$
w^{(d-2) / 2} f(w) \in \mathcal{H} L^{2}\left(\mathbb{C},|w| \frac{e^{-|w|^{2} / t}}{t \pi} d w\right) .
$$

Following Lemma 5.6, we have

$$
\begin{aligned}
|w|^{d-2}|f(w)|^{2} & \leq\|f\|_{L^{2}(\mathbb{C}, \beta)}^{2} \frac{e^{|w|^{2} / t}}{|w|} \operatorname{erf}\left(\frac{|w|}{\sqrt{t}}\right) \\
& \leq \frac{1}{k^{2}}\|f\|_{L^{2}(\mathbb{C}, \lambda)}^{2} \frac{e^{|w|^{2} / t}}{|w|}
\end{aligned}
$$

for all $w \in \mathbb{C}-\{0\}$. In either case we obtain the pointwise (5.10) with $B=$ $1 / k^{2}$.

Proof of Theorem 1.1. We will transform the pointwise bound (5.10) to a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$. Let $F \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$. Then $F(w, 0, \ldots, 0) \in$ $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$, which implies

$$
|F(z)|^{2}=|F(w, 0, \ldots, 0)|^{2} \leq B \frac{e^{|w|^{2} / t}}{|w|^{d-1}}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2}
$$

where $w=\sqrt{(z, z)}$ for any $z \in \mathbb{C}^{d}$ with $(z, z) \neq 0$. In particular,

$$
|F(z)|^{2} \leq \frac{B e^{|(z, z)| / t}}{|(z, z)|^{(d-1) / 2}}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2}
$$

for any $z \in \mathbb{C}^{d}$ with $(z, z) \neq 0$. On the other hand, from Proposition 5.1,

$$
|F(z)|^{2} \leq e^{\mid(z, z) / / t}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2} \quad \text { for any } z \in \mathbb{C}^{d}
$$

Applying the inequality

$$
\min \left\{1, \frac{1}{x}\right\} \leq \frac{2}{x+1} \quad \text { for each } x>0
$$

we have

$$
6 \sqrt{6}|F(z)|^{2} \leq \frac{\frown e^{\mid(z, z) / / t}}{|(z, z)|^{(d-1) / 2}+1}\|F\|_{L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)}^{2}
$$

for each $z \in \mathbb{C}^{d}$, where C is a constant depending on d and t. This completes the proof of Theorem 1.1. ? 6

Chapter 6

Reproducing kernel formula

In this last chapter, we obtain the formula for the reproducing kernel of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ that will yield an optimal pointwise bound for a function in $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$. This bound is asymptotically equal to the bound on the previous chapter for large arguments. First, we recall some definitions and properties of modified Bessel functions that will be central in the formula for the reproducing kernel of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$.

6.1 Bessel Functions

In this section, we give some definitions and properties of the Bessel functions that will be used in the next section. All of substances of this section are in $[\mathrm{T}]$ and [Wat].

Bessel functions first defined by the Swiss mathematician Daniel Bernoulli and named after Friedrich Bessel, are canonical solutions $y(x)$ of Bessel's differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0
$$

for an arbitrary real number α (the order). The most common and important special case is where α is an integer.

Since this is a second-order differential equation there must be two linearly independent solutions. The Bessel functions of the first kind, denoted by $J_{\alpha}(x)$, can be defined by its Taylor series expansion around $x=0$ that is

$$
J_{\alpha}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2 m+\alpha}
$$

The graphs of Bessel functions look roughly like oscillating sine or cosine functions that decay proportionally to $1 / \sqrt{x}$, although their roots are not generally periodic except asymptotically for large x.

The second linearly independent solution is then found to be the Bessel function of the second kind, denoted by $Y_{\alpha}(x)$. They are singular (infinite) at $x=0$. Then $Y_{\alpha}(x)$ is related to $J_{\alpha}(x)$ by

$$
Y_{\alpha}(x)=\frac{J_{\alpha}(x) \cos (\alpha \pi)-J_{-\alpha}(x)}{\sin (\alpha \pi)}
$$

where the case of integer α is handled by taking the limit.
The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the Bessel equation are called the modified Bessel functions of the first and second kind which are defined by,
$\frac{\operatorname{cosselI}}{}(\alpha, x):=I_{\alpha}(x)=i^{-\alpha} J_{\alpha}(i x)$

$$
\operatorname{BesselK}(\alpha, x):=K_{\alpha}(x)=\frac{\frac{\pi}{2} I_{-\alpha}(x)-I_{\alpha}(x)}{\sin (\alpha \pi)}
$$

These are chosen to be real-valued for real arguments x. They are the two linearly independent solutions to the modified Bessel's equations

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\left(x^{2}+\alpha^{2}\right) y=0
$$

Unlike the ordinary Bessel functions, which are oscillating, $I_{\alpha}(x)$ and $K_{\alpha}(x)$ are exponentially growing and decaying functions respectively. Like the ordinary Bessel function $J_{\alpha}(x)$, the function $I_{\alpha}(x)$ goes to zero at $x=0$ for $\alpha>0$ and is finite at $x=0$ for $\alpha=0$. Analogously $K_{\alpha}(x)$ diverges at $x=0$.

We next give some properties of the modified Bessel functions which will be used in the next section.

1. If $\operatorname{Re}(\alpha)>-\frac{1}{2}$

$$
I_{\alpha}(z)=\frac{(z / 2)^{\alpha}}{\sqrt{\pi} \Gamma(1 / 2+\alpha)} \int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-1 / 2} \cosh (t \alpha) d t .
$$

2. For any α

$$
I_{\alpha}(x)=\sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2 m+\alpha}
$$

3. If $\operatorname{Re}(\alpha)>-\frac{1}{2}$ and $|\arg z|<\frac{1}{2} \pi$

$$
\begin{aligned}
& \qquad \begin{aligned}
\Gamma(1 / 2+\alpha) K_{\alpha}(z) & =\sqrt{\pi}\left(\frac{z}{\alpha}\right)^{\alpha} \int_{1}^{\infty}\left(1-t^{2}\right)^{\alpha-1 / 2} e^{-z t} d t \\
& =\sqrt{(\pi)}\left(\frac{z}{\alpha}\right)^{\alpha} \int_{0}^{\infty} \exp (-z \cosh (\theta)) \sinh (\theta)^{2 \alpha} d \theta
\end{aligned} \\
& \text { 4. If } n \text { is a positive integer (or zero) }
\end{aligned}
$$

$$
66 K_{n+\frac{1}{2}}=\left(\frac{\pi}{2 z}\right)^{1 / 2} e^{-z} \sum_{k=0}^{n} \frac{(n+k)!}{k!(n-k)!}(2 z)^{-k}
$$

5. $K_{\alpha}(z)=K_{-\alpha}(z)$.
6. $\int_{0}^{\infty} K_{\alpha}(t) t^{v-1} d t=2^{v-2} \Gamma\left(\frac{v-\alpha}{2}\right) \Gamma\left(\frac{v+\alpha}{2}\right)$.
7. The asymptotic approximations for $I_{\alpha}(x)$ and $K_{\alpha}(x)$ for large x, given by

$$
\begin{aligned}
I_{\alpha}(x) & \sim \frac{e^{x}}{\sqrt{2 \pi x}} \\
K_{\alpha}(x) & \sim e^{-x} \sqrt{\frac{\pi}{2 x}}
\end{aligned}
$$

for all $\alpha \in \mathbb{R}$.

6.2 Reproducing kernel of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$

Theorem 6.1. The set $\left\{x^{2 n}\right\}_{n=0}^{\infty}$ forms an orthogonal basis for $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$.

Proof. For each $n \in \mathbb{N} \cup\{0\}$, define $g_{n}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
g_{n}(x)=x^{2 n} \quad \text { for all } x \in \mathbb{C}
$$

It is clear that $g_{n} \in \mathcal{H}(\mathbb{C})$. Claim that $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal subset of $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. To prove the claim, let σ be a positive real number. Define

$$
\begin{aligned}
& D_{\sigma}:=\left\{z \in \mathbb{C}^{d}| | z_{j} \mid \leq \sigma \text { for all } j=1, \ldots, d\right\} \quad \text { and } \\
& D_{\sigma}^{1}:=\{x \in \mathbb{C}| | x \mid \leq \sigma\}
\end{aligned}
$$

Next, let

$$
\begin{aligned}
M_{\sigma}(j, k) & =\int_{D_{\sigma}^{1}} x^{2 j} x^{2 k} e^{-x^{2} / t}(\pi t)^{-1} d x \\
& =\int_{0}^{2 \pi} \int_{0}^{\sigma} e^{2 i \theta(j-k)} r^{2 j+2 k+1} e^{-r^{2} / t}(\pi t)^{-1} d r d \theta .
\end{aligned}
$$

It follows that
(i.) $M_{\sigma}(j, k)=0$ if $j \neq k$,

(ii.) $M_{\sigma}(k, k) \rightarrow t^{2 k}(2 k)$! as $\sigma \rightarrow \infty$.

In other words,

$$
\begin{aligned}
& \rightarrow t^{-\omega}(2 k)!\text { as } \sigma \rightarrow \infty . \\
& \qquad \int_{\mathbb{C}} x^{2 j} \bar{x}^{2 k} d \mu_{t}(z)=\delta_{j k} t^{2 k}(2 k)!.
\end{aligned}
$$

For any $m, n \in \mathbb{N} \cup\{0\}$,

$$
\begin{aligned}
\int_{\mathbb{C}} g_{m} \cdot \overline{g_{n}} d \lambda & =\int_{\mathbb{C}^{d}}\left(g_{m} \cdot \overline{g_{n}}\right) \circ \Phi(z) \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}} g_{m}(\sqrt{(z, z)}) \overline{g_{n}(\sqrt{(z, z)})} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}(z, z)^{m} \overline{(z, z)^{n}} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}\left(z_{1}^{2}+\cdots+z_{d}^{2}\right)^{m}\left(\bar{z}_{1}^{2}+\cdots+\bar{z}_{d}^{2}\right)^{n} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}^{d}}\left(\sum_{j_{1}+\cdots+j_{d}=m} z_{1}^{2 j_{1}} \cdots z_{d}^{2 j_{d}}\right)\left(\sum_{k_{1}+\cdots+k_{d}=n} \bar{z}_{1}^{2 k_{1}} \cdots \bar{z}_{d}^{2 k_{d}}\right) \mu_{t}(z) d z \\
& =\sum_{j_{1}+\cdots+j_{d}=m} \sum_{k_{1}+\cdots+k_{d}=n}^{\sum_{\mathbb{C}^{d}}\left(z_{1}^{j_{1}} \bar{z}_{1}^{k_{1}}\right)^{2} \cdots\left(z_{d}^{j_{d}} \bar{z}_{d}^{k_{d}}\right)^{2} \frac{e^{-|z|^{2} / t}}{(\pi t)^{d}} d z} M_{\sigma}\left(j_{1}, k_{1}\right) \cdots M_{\sigma}\left(j_{d}, k_{d}\right) . \\
& =\sum_{j_{1}+\cdots+j_{d}=m}, \frac{k_{1}+\cdots+k_{d}=n}{}
\end{aligned}
$$

Thus it follows from (i) that

$$
\int_{\mathbb{C}} g_{m} \cdot \overline{g_{n}} d \lambda=0, \quad \text { if } m \neq n .
$$

Hence, $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal subset of $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. Next, we will show that $\left\{g_{n}\right\}_{n=0}^{\infty}$ is an orthogonal basis of $\mathcal{H} L^{2}(\mathbb{C}, \lambda)^{e}$. Let $g \in \mathcal{H}(\mathbb{C})^{e}$. Then $g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for each $x \in \mathbb{C}$, where $a_{n} \in \mathbb{C}$ for all $n \in \mathbb{N} \cup\{0\}$. But $g(x)=g(-x)$, so $a_{n}=0$ for each odd positive integer n. Thus

Since this power series converges uniformly on the set D_{σ}, we have

$$
\begin{aligned}
& \int_{D_{\sigma}}|g(\sqrt{(z, z)})|^{2} \mu_{t}(z) d z \\
& =\int_{D_{\sigma}} \sum_{n=0}^{\infty} a_{2 n}(z, z)^{n} \sum_{m=0}^{\infty} \overline{a_{2 m}(z, z)^{m}} \mu_{t}(z) d z \\
& =\int_{D_{\sigma}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{2 n} \overline{\overline{a_{2 m}}}(z, z)^{n} \overline{(z, z)^{m}} \mu_{t}(z) d z \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{2 n} \overline{a_{2 m}} \int_{D_{\sigma}}\left(z_{1}^{2}+\cdots+z_{d}^{2}\right)^{n}\left(\bar{z}_{1}^{2}+\cdots+\bar{z}_{d}^{2}\right)^{m} \mu_{t}(z) d z \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{2 n} \overline{a_{2 m}} \int_{D_{\sigma}} \sum_{j_{1}+\cdots+j_{d}=n}^{z_{1}^{2 j_{1}} \cdots z_{d}^{2 j_{d}} \sum_{k_{1}+\cdots+k_{d}=m} \bar{z}_{1}^{2 k_{1}} \cdots \bar{z}_{d}^{2 k_{d}} \frac{e^{-|z|^{2} / t}}{(\pi t)^{d}} d z} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{2 n} \overline{a_{2 m}} \sum_{j_{1}+\cdots+j_{d}=n} \sum_{k_{1}+\cdots+k_{d}=m}\left(z_{1}^{j_{1}} \bar{z}_{1}^{k_{1}}\right)^{2} \cdots\left(z_{d}^{j_{d}} \bar{z}_{d}^{k_{d}}\right)^{2} \frac{e^{-|z|^{2} / t}}{(\pi t)^{d}} d z \\
& =\sum_{n=0}^{\infty}\left|a_{2 n}\right|^{2} \sum_{k_{1}+\cdots+k_{d}=n} M_{\sigma}\left(k_{\left.1_{2}, k_{1}\right) \cdots M_{\sigma}\left(k_{d}, k_{d}\right) .}\right.
\end{aligned}
$$

Next, using the monotone convergence theorem, we have

$$
\begin{aligned}
& \int_{\mathbb{C}}|g|^{2} d \lambda=\int_{\mathbb{C}^{d}}|g \circ \Phi(z)|^{2} \mu_{t}(z) d z \\
& =\lim _{\sigma \rightarrow \infty} \int_{D_{\sigma}}|g(\sqrt{(z, z)})|^{2} \mu_{t}(z) d z \\
& =\lim _{\sigma \rightarrow \infty} \sum_{n=0}^{\infty}\left|a_{2 n}\right|^{2} \sum_{k_{1}+\cdots+k_{d}=n} M_{\sigma}\left(k_{1}, k_{1}\right) \cdots M_{\sigma}\left(k_{d}, k_{d}\right) \\
& \text { Wb }=\sum_{n=0}^{\infty}\left|a_{2 n}\right|^{2} \sum_{k_{1}+\cdots+k_{d}=n}^{C}\left(t^{2 k_{1}}\left(2 k_{1}\right)!\right) \cdots\left(t^{2 k_{d}}\left(2 k_{d}\right)!\right)
\end{aligned}
$$

Therefore, if g is square-integrable with respect to λ, then

$$
\sum_{n=0}^{\infty}\left(\left|a_{2 n}\right|^{2} t^{2 n} \sum_{k_{1}+\cdots+k_{d}=n}\left(2 k_{1}\right)!\cdots\left(2 k_{d}\right)!\right)=\int_{\mathbb{C}}|g|^{2} d \lambda<\infty .
$$

Define a sequence $\left(F_{n}\right)$ to be

$$
F_{n}(x):=\sum_{m=0}^{n} a_{2 m} x^{2 m}
$$

for any $x \in \mathbb{C}$. Then $\left(F_{n}\right)$ is a Cauchy sequence in $L^{2}(\mathbb{C}, \lambda)$. To see this, notice that for $m>n$,

$$
\begin{aligned}
\left\|F_{m}-F_{n}\right\|_{L^{2}(\mathbb{C} \lambda)} & =\int_{\mathbb{C}}\left|F_{m}-F_{n}\right|^{2} d \lambda \\
& =\int_{\mathbb{C}^{d}}\left|\sum_{k=n+1}^{m} a_{2 k}(z, z)^{k}\right|^{2} \mu_{t}(z) d z \\
& =\sum_{k=n+1}^{m}\left|a_{2 k}\right|^{2} t^{2 k} \sum_{k_{1}+\cdots+k_{d}=k}\left(2 k_{1}\right)!\cdots\left(2 k_{d}\right)!\rightarrow 0 \quad \text { as } m, n \rightarrow \infty .
\end{aligned}
$$

Thus $\left(F_{n}\right)$ converges in $L^{2}(\mathbb{C}, \lambda)$ to some function h, and hence it has a subsequence which converges pointwise almost everywhere to h. But $\left(F_{n}\right)$ converges pointwise to g, so we have that $h=g$ a.e. $[\lambda]$. Therefore $h=g$ in $L^{2}(\mathbb{C}, \lambda)$, so $\left(F_{n}\right)$ converges to g in $L^{2}(\mathbb{C}, \lambda)$. Thus $g \in \overline{\operatorname{span}\left\{g_{n} \mid n \in \mathbb{N}\right\}}$. This show that $\left\{x^{2 n}\right\}_{n=0}^{\infty}$ forms an orthogonal basis for $\mathcal{H} L^{2}(\mathbb{C}, \lambda)$.

Corollary 6.2. The set $\left\{(z, z)^{n}\right\}_{n=0}^{\infty}$, forms an orthogonal basis for $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$.

Proof. This follows from Theorem 5.2 and Theorem 6.1.
Proposition 6.3. The reproducing kernel K of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ is

$$
K(z, z)=\frac{\Gamma(d / 2)}{a_{0} 2^{d} / 2+1} \operatorname{BesselI}\left(\frac{d-2}{e^{2}}, \frac{|(z, z)|}{t^{t}}\right)\left(\frac{t}{|(z, z)|}\right)^{d / 2-1}
$$

for all $z \in \mathbb{C}^{d}$, where a_{0} is a constant in Lemma 4.7.
Proof. From Proposition 5.3, the density function of the measure λ is

$$
\begin{aligned}
\Lambda(w) & =\frac{|w|^{2 d-2}}{(\pi t)^{d}} \int_{S_{1}} e^{-|w z|^{2} / t} d \alpha(z) \\
& =a_{0} \frac{|w|^{2 d-2}}{(\pi t)^{d}} \int_{S^{d-1}} \int_{\mathbf{x} \cdot \mathbf{p}=\mathbf{0}} e^{-|w \mathbf{a}(\mathbf{x}, \mathbf{p})|^{2} / t}\left(\frac{\sinh 2 p}{2 p}\right)^{d-2} p^{d-2} 2^{d-1} d \mathbf{p} d \mathbf{x} \\
& =a_{d} \frac{|w|^{2 d-2}}{(\pi t)^{d}} \int_{0}^{\infty} e^{-(\cosh x)|w|^{2} / t}(\sinh x)^{d-2} d x \\
& =a_{d} \frac{|w|^{2 d-2}}{(\pi t)^{d}} \Gamma\left(\frac{d-1}{2}\right) \operatorname{BesselK}\left(\frac{d-2}{2}, \frac{|w|^{2}}{t}\right)\left(\frac{t}{|w|^{2}}\right)^{(d-2) / 2} \frac{2^{(d-2) / 2}}{\sqrt{\pi}}
\end{aligned}
$$

for all $w \in \mathbb{C}$. So for any $z \in \mathbb{C}^{d}$ and $n \geq 0$, we we have that

$$
\begin{aligned}
\left\|(z, z)^{n}\right\|^{2} & =\int_{\mathbb{C}^{d}}\left\|(z, z)^{n}\right\|^{2} \mu_{t}(z) d z \\
& =\int_{\mathbb{C}}\left|w^{2 n}\right|^{2} d \lambda(w) \\
& =\frac{a_{d} 2^{(d-2) / 2}}{\pi^{(d+1 / 2)}} \Gamma\left(\frac{d-1}{2}\right) \int_{\mathbb{C}} \frac{|w|^{2 d-2+4 n}}{t^{d}} K_{\frac{d-2}{2}}\left(\frac{|w|^{2}}{t}\right)\left(\frac{t}{|w|^{2}}\right)^{(d-2) / 2} d w \\
& =\frac{a_{d} 2^{(d-2) / 2}}{\pi^{(d-1 / 2)}} \Gamma\left(\frac{d-1}{2}\right) \int_{0}^{\infty} t^{2 n} x^{2 n+d / 2} K_{\frac{d-2}{2}}(x) d x \\
& =\frac{a_{d} 2^{(d-2) / 2}}{\pi^{(d-1 / 2)}} t^{2 n} \Gamma\left(\frac{d-1}{2}\right) \Gamma(n+1) \Gamma(n+d / 2) 2^{2 n-1+d / 2} \\
& =\frac{a_{0}}{\Gamma(d / 2)} 2^{2 n+d} t^{2 n} \Gamma(n+1) \Gamma(n+d / 2) .
\end{aligned}
$$

Since $\left\{(z, z)^{n}\right\}_{0}^{\infty}$ is an orthogonal basis for $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$, the reproducing kernel K of $\mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$ is

$$
\begin{aligned}
K(z, z) & =\sum_{n=0}^{\infty} \frac{\left|(z, z)^{n}\right|^{2}}{\left\|(z, z)^{n}\right\|^{2}} \\
& =\frac{\Gamma(d / 2)}{a_{\theta}-\sum_{n=0}^{\infty}} \frac{|(z, z)|^{2 n}}{t^{2 n} 2^{2 n+d} \Gamma(n+1) \Gamma(n+d / 2)} \\
& =\frac{\Gamma(d / 2)}{a_{0} 2^{d / 2+1}} \operatorname{BesselI}\left(\frac{d-2}{2}, \frac{|(z, z)|}{t}\right)\left(\frac{t}{|(z, z)|}\right)^{d / 2-1}
\end{aligned}
$$

for all $z \in \mathbb{C}^{d}$. The last equality follows from the property number (2) of the modified Bessel functions in the previous section.

However, $\operatorname{BesselI}(d / 2-1, x) \sim \frac{e^{x}}{\sqrt{2 \pi x}}$ asymptotically if x is large enough. Thus for any $z \in \mathbb{C} \mathbb{C}^{d}$ such that $|(z, z)|$ is large enough we chave that

$$
K(z, z) \sim \frac{t^{(d-1) / 2} \Gamma(d / 2)}{a_{0} \sqrt{\pi} 2^{(d+3) / 2}} \frac{e^{|(z, z)| / t}}{|(z, z)|^{(d-1) / 2}}
$$

This implies that for all $F \in \mathcal{H} L^{2}\left(\mathbb{C}^{d}, \mu_{t}\right)^{S O(d, \mathbb{C})}$

$$
|F(z)|^{2} \leq C \frac{e^{|(z, z)| / t}}{|(z, z)|^{(d-1) / 2}}\|F\|_{L^{2}\left(C^{2}, \mu_{t}\right)}^{2}
$$

for any $z \in \mathbb{C}^{d}$ such that $|(z, z)|$ is large enough, where $C>0$ is a constant depending on d and t. Hence the bound in Theorem 1.1 is sharp.

References

[A] D.E.Amos, Uniform Asymptotic Expansions for Exponential Integrals $E_{n}(x)$ and Bickley Functions $K i_{n}(x)$, AMC Transactions on Mathematical Software, Vol.9, No.4, 1983, 467-479.
[B] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math 14 (1961), 187-214.
[CL] K. Chailuek and W. Lewkeeratiyutkul, A pointwise bound for a holomorphic function which is square-integrable with respect to an exponential density function, Soochow J. Math., 30 (2004), 75-83.
[Dr] B. Driver, On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms, J. Funct.Anal. 133 (1995), 69-128.
[E] M. Engliš, Weighted Bergman kernels and quantization, Comm. Math. Phys. 227 (2002), 211-241.
[F1] G. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, NJ 1989.
[F2] G. Folland, Real Analysis, Second Edition, John Wiley \& Sons, Inc. New York 1999
[GM] L. Gross and P. Malliavin, Hall's transform and the Segal-Bargmann map, in "Ito's Stochastic calculus and Probability theory," (Fukushima, M., a Ikeda, N and Watanable, S., Eds.) 73-116, Springer-Verlag, Berlin/New York, 1996.
[H1] B.C. Hall, The Segal-Bargmann "coherent state" transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103-151.
[H2] B.C. Hall, Phase space bounds for quantum mechanics on a compact Lie group, Comm. Math. Phys. 184 (1997), 233-250.
[H3] B.C. Hall, Holomorphic methods in analysis and mathematical physics, in: First Summer School in Analysis and Mathematical Physics (S. Pèrez Esteva and C. Villegas Blas, Eds.), 1-59, Contemp. Math., Vol. 260, Amer. Math. Soc., Providence, RI, 2000.
[H4] B.C. Hall, Harmonic analysis with respect to heat kernel measure, Bull. Amer. Math. Soc. (N.S.) 38 (2001), 43-78.
[H5] B.C. Hall, Bounds on the Segal-Bargmann transform of L^{p} functions, J. Fourier Anal. Appl. 7 (2001), 553-569.
[H6] B.C. Hall, The Segal-Bargmann transform and the Gross ergodicity theorem, Finite and infinite dimensional analysis in honor of Leonard Gross (H.-H. Kuo and A. N. Sengupta, Eds.), 99-116, Contemp. Math., Vol. 317, Amer. Math. Soc., Providence, RI, 2003.
[HL] B.C. Hall and W. Lewkeeratiyutkul, Holomorphic Sobolev spaces and the generalized Segal-Bargmann transform, J. Funct. Anal. 217 (2004), 192220.
[HM] B.C. Hall and J.J. Mitchell, Coherent states on spheres, J. Math. Phys. 43 (2002), 1211-1236.
[HS] B.C. Hall and A.N. Sengupta, The Segal-Bargmann transform for pathgroups, J. Funct. Anal. 152 (1998), 220-254.
[Kn] A.W. Knapp, "Lie groups beyond an introduction." Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1996.
[T] C.J. Tranter, "Bessel functions with some physical applications." The English Universities Press Ltd., London, 1968.
[War] F.W. Warner, "Foundations of differentiable manifolds and Lie groups." Springer-Verlag, New York, 1994. Cambridge University Press, London, 1966.
[Wat] G.N. Watson, "A treatise on the theory of Bessel functions." Cambridge University Press, London, 1966.
ลถถาบนว่ทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

