
CHAPTER III
FINITE ELEMENT ANALYSIS

To study the influence of diagonal web reinforcement, the directions and 
magnitudes of stresses (strains) distributed in concrete and reinforcing steels should 
be known. A finite element analysis with appropriated material models can predict the 
responses accurately. A monotonie finite element analysis is performed in this study 
to approximate the envelope of the cyclic load-deformation curves. Material models 
used in this study are verified with the test results and then the influence of diagonal 
web reinforcement on shear behavior is studied.

3.1 Finite Element Formulation

The displacement-based finite element method is widely used in engineering 
applications. In this method, the displacement field within each element is expressed 
in terms of the nodal displacements by means of appropriate shape functions. The 
principle of virtual displacement is conveniently used to formulate the equilibrium 
equations. The classical principle of virtual displacement may be states as follows:

“the equilibrium of the body requires that for any compatible, small virtual 
displacements which satisfy the essential boundary conditions, imposed on the body, 
the total internal virtual work is equal to the total external virtual work” (Bathe 1982) 

For a general body, the principle of virtual displacement can be written as

j"ô£To d v  = JôuBfB d V +  JôuJfs<ff + £ôU *F. (3.1)
V V s  ‘

in  w h i c h  ÔU is  t h e  v i r t u a l  d i s p l a c e m e n t  v e c t o r ,  0 £  is  t h e  v i r t u a l  s t r a i n  v e c t o r ,  

fB, fs , Fj a r e  v e c t o r s  o f  b o d y  f o r c e s ,  s u r f a c e  t r a c t i o n s ,  a n d  c o n c e n t r a t e d  f o r c e s ,

respectively, ôuB,ôus ,ôüj are, respectively, vectors of virtual displacements 
associated with fB , fs , Fj, and o is a vector of actual stresses.

In the finite element analysis, the displacements within each element are 
assumed to be a function of the displacements at the finite element nodal points.
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น0,,,(x,y) = H'm,(x,y)U (3.2)

where น0,,, denotes the continuous displacement field within the element m, H(m) is 
an appropriate displacement interpolation matrix, and บ is the vector of global nodal 
displacements.

The corresponding element strains, £(m), can now be related to the nodal 
displacements through the strain-displacement matrix, B(m), as follows:

e<m)(x>y) = B(m)(x,y)U (3.3)

The stresses in the element are then related to element strains through the constitutive 
matrix, c(m). Thus,

0  ( m)  = C t m , £  ( ท»  ( 3 . 4 )

By substituting Eq. (3.2) through Eq. (3.4) for both real and virtual displacements and 
strains into equation (3.1) and rearranging the terms, the principle of virtual 
displacement can be rewritten as follows:

KU = R (3.5)

where K is the stiffness matrix obtained from the element assemblage, and the load 
vector R includes the effect of the element body forces, Rb, the effect of the element
surface forces, Rs 5 and the effect of concentrated loads, Rc, which are, respectively, 
given by

K = £  j  B|, |,C{W I
๓ 1..

(3.6)

Rb = J  f  H,m)Tf‘" พ (m’
ทใ y("‘ )

(3.7)

Rs = z  j  H°n)Tf 0n)r/S('")m s<») (3.8)

RC=F (3.9)
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3.2 Iterative Method

Equation (3.5) is valid for linear systems with constant structural stiffness. 
This constant stiffness matrix results from the use of a constant constitutive matrix, 
c  5 and a constant strain-displacement matrix, B 5 which are valid for a linear elastic 
structure undergoing small displacement. As a result, the nodal displacements, บ , 
corresponding to the applied load vector, R , can be calculated directly from Eq. 
(3.5). However, the stress-strain relationships of concrete and reinforcing steel are 
nonlinear and depend on the current state of stresses and strains. This will cause the 
constitutive matrix and, consequently, the stiffness matrix to be nonlinear. Therefore, 
an incremental-iterative algorithm is required to solve the nonlinear equilibrium 
equations.

The state of equilibrium for the nonlinear structure can be obtained following 
the procedure shown in Fig. 3.1. The displacements are first calculated by Eq. (3.5) 
with initial stiffness of the structure. Then, the stresses due to the calculated 
deformations of each element are obtained from Eqs. (3.3-3.4). Consequently, the 
nodal forces in equilibrium with the element stresses can be evaluated by Eq. (3.10).

F ,= £  j  B(m,To;m)d F (3.10)

These forces will be compared with the applied forces, R. The system will be in 
equilibrium if the Euclidean norm of the unbalanced forces, which is the difference 
between calculated forces, Fj, and the applied forces, R, (AF. = R-Fj), is less than the
acceptable tolerance (taken as 5% of the norm of applied forces in this study). 
Otherwise, the equilibrium of the system is not satisfied. The structural stiffness will 
then be updated using the constitutive matrix obtained from the secant stiffnesses of 
the materials at the current state of stresses and strains. The incremental 
displacements due to the unbalanced forces will then be estimated from Eq. (3.11).

Ki+1 AUi+1 = AF; (3.11)
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The updated displacement can be obtained from the summation of the 
previous displacement and the incremental displacement ( บj+1 = บ. + AUi+1 ). The 
iteration is performed until the equilibrium is reached. The details of the described 
procedure, known as direct iteration using the secant stiffness of the structure, have 
been given by Zienkiewicz and Taylor (1991).

3.3 Finite Element Model

3.3.1 Modeling for reinforcing steel

The major models of steel reinforcement which have been used 
successfully in the finite element analysis of reinforced concrete are

1. discrete steel model
2. smeared steel model

In a discrete model, a reinforcing bar is represented by a one­
dimensional bar element. The advantages of this model are its simplicity and its 
ability to include bond-slip relationships between concrete and steel by using a 
linkage element to connect the common nodes of a bar element and concrete element. 
The disadvantage of the discrete model is its mesh discrepancy; the direction and 
location of bar elements depend on the mesh layout of the finite element model.

In a smeared model, reinforcing steel is assumed to be uniformly 
distributed over a concrete element. The perfect bond between reinforcing steel and 
concrete must also be assumed in this model. The constitutive matrix of reinforcing 
steel is superimposed on top of the constitutive matrix of concrete to obtain the total 
constitutive matrix of reinforced concrete.

3.3.2 Modeling for concrete
The stress and strain are assumed to be continuous within each element 

in the finite element formulation. However, when concrete cracks, discontinuities in 
stress and strain occur. In general, the approaches which have been used to represent 
cracks are
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1. discrete crack model
2. smeared crack model

In the discrete crack model, cracks are represented as a separation of 
nodes along element boundaries. The post-cracking behavior such as aggregate 
interlock, dowel action, and bond slippage can be incorporated into the model by 
using linkage elements to connect the separated nodes. Many finite element models 
have yielded smaller displacements than the experimental results when these 
influences are overlooked (Okamura and Maekawa 1991). Okamura and Maekawa 
(1991) modeled these characteristics at joint between shear wall and footing by using 
a one-dimensional element with the relationships between force and displacement.

In the smeared crack model, concrete is assumed to remain continuous 
after cracking. The stress-strain discontinuities across the cracks are averaged over the 
element in the vicinity of the cracks; consequently, the stress-strain relationship of 
cracked concrete can still be described in a continuous manner. There are two major 
crack models generally used (Kwan and Billington 2001):

1. fixed crack model
2. rotating crack model

For the fixed crack model, cracks occur normal to the direction of the 
maximum principal stress when the maximum principal stress first reaches the 
cracking stress. This crack direction is assumed to remain fixed throughout the 
analysis. Then the cracked concrete is assumed to be orthotropic, with respect to the 
axes that are parallel and normal to the first crack direction. The constitutive 
relationship of cracked concrete for two-dimensional plane stress problems can be 
written in the crack coordinates (See Fig. 3.2) as follows:

Excc = 0
0

0 0
£2 0 
0  G

(3.12)
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the current states of stresses cr, and a 2 associated with the strains £ 1 and £2, 
respectively. Thus,

in  w h ic h  £ 1 a n d  £ 2 a re  th e  s t i f fn e s s e s  o f  c r a c k e d  c o n c re te  n o r m a l  a n d  p a ra l le l  to  th e

f i r s t  c r a c k , r e s p e c t iv e ly .  A s  p o in te d  o u t in  th e  S e c t io n  3 .2  “ I te r a t iv e  m e th o d ” , th e

s e c a n t  s t i f f n e s s  is  e m p lo y e d  in  th is  s tu d y . T h e r e fo re ,  £ 1 a n d  £ 2 a r e  d e te rm in e d  f ro m

(3.13)

The shear modulus, G , in the fixed crack model represents the shear 
stiffness retained in the crack direction because of aggregate interlock and dowel 
action. At first, the cracked shear modulus is obtained by multiplying the elastic 
uncracked shear modulus by an empirical shear retention factor ranging from 0 to 1. It 
was found that any nonzero value of the factor was satisfactory as results were 
relatively insensitive to the value assumed (Grayson and Stevens 1979). Therefore, a 
number of researchers proposed empirical shear functions that satisfy their problems. 
The summary of these functions can be found in the paper by Zsu et al. (2001). 
Because of the complicated forms of shear stress-strain relationship of cracked 
concrete, Zsu et al. (2001) has proposed a rational shear modulus that is derived from 
the equilibrium and compatibility conditions. Figure 3.2 depicts a stress field in global 
(x-y axes), principal (r-d axes), and crack (1-2 axes) directions. The equilibrium and 
compatibility equations between the crack and principal directions are shown in Eq. 
(3.14) and Eq. (3.15), respectively.

Equilibrium equations:
cr, =  a  11 sin2 p  + <7r cos2 p  

a 2 = a d cos2 p  + <Jr sin2 p  

r12 =(<£. - <Jd ) sin/?cosp
(3.14)



Compatibility equations:
£1 = £11 sin2 p  + £r cos2 p  
£2 = £11 cos2 p  + £r sin2 p  
Yn = 2 { £ r  - £ j ) ร\ทp c o s p

Therefore, the shear modulus along the crack is given by

c  r.2 ( ^ - ^ )
= Yn =  2  { £ r - £ j )

= (o~|-^2 )
= 2(๕1 - ๕2)
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(3 .1 5 )

(3.16)

For the rotating crack model, the cracked concrete is assumed to be 
orthotropic, as it is assumed in the fixed crack model. However, the axes of 
orthotropy do not remain fixed but they are always aligned with the principal 
directions.

3.4 Material Model for Reinforcing Steel

The stress-strain curve for reinforcing steel in tension is shown in Fig. 3.3. It 
consists of four linear segments representing the initial elastic portion, the yield 
plateau, strain hardening, and tensile capacity plateau. Figure 3.3 also compares the 
stress-strain relationship from the tensile test to that represented by the model.

The stress-strain relationship in compression is not the same as in tension 
because steel bars under high compression tend to buckle and it is necessary to model 
buckling of reinforcing steel. The buckling behavior depends on the slenderness of 
reinforcing bar which is defined by the ratio of buckling length, L, to diameter of 
reinforcing bar, D, the yield strength, /  and the lateral restraint provided by
transverse ties (Dhakal and Maekawa 2002).

It should be noted that the buckling length of reinforcing bars inside an RC 
member is generally not equal to the spacing of lateral ties, except in special cases 
when the lateral ties are very stiff, or the reinforcing bars are very slender, or the 
spacing is very large. Therefore, Dhakal and Maekawa (2002) has proposed a simple
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method to predict the buckling length. First, the actual stiffness of the lateral ties 
effective tp each bar is computed. Next, the minimum ties stiffnesses required to hold 
a vertical bar in different buckling modes are determined by means of energy 
principles. The buckling mode ท is defined as buckling over ท tie spacing which is the 
buckling length. If the actual tie stiffness is less than the required stiffness for mode 
ท-1 but exceeds that for mode ท, the vertical bar would buckle in the ท'11 buckling 
mode. Table 3.1 summarizes the stiffness required to stabilize the reinforcing bar in 
each buckling mode.

For the longitudinal bars in the boundary elements, the lateral ties stiffness, 
k t , is given by Eq. (3.17).

*1 = M x i (3.17)

where £ 1 is Young’s modulus of lateral tie. A' is cross-sectional area of lateral tie, /1, 
is effective length of tie, ท1 is the number of lateral tie legs along the buckling 
direction, and ท11 is the number of main bars prone to simultaneous buckling.

For the walls tested. kt is found to be 54 kN/mm, and according to Table 3.1,
this stiffness value can hold the bars in the second buckling mode. Therefore the 
buckling length of the longitudinal bars is 2x60 = 120 mm which was actually 
confirmed by the experiment.

For the web reinforcement, there is no restraining lateral tie and the procedure 
described above cannot be applied. Instead, the buckling length of web bars is 
assumed to be equal to the spacing of web reinforcement in view of its large spacing. 
Furthermore, the web bars in tension provides some lateral restraints for the bars in 
compression.

Dhakal and Maekawa (2002) has also proposed the stress-strain relationship of 
reinforcing bars including buckling effect based on analytical parametric studies using 
the fiber technique. The model assumes that a bar begins to be softened after yield 
point. The softening in the average compressive stress-strain relationship has been
found to be related by f Regardless of the compressive stress

degradation rate in the second state beyond an intermediate state (£*,cr ) is nearly
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constant with a negative slope approximately equal to 2% of elastic modulus, 0.02 E s , 

until the average compressive stress reaches 20% of the yield strength, 0.20 f  after
which the stress becomes constant. The complete compressive stress-strain 
relationships in monotonie loading are given by

o  = £น' ร < £1

o

a

o

= 1 . 0 - 1. - ร  -  £ 1

; ร  1 <  ร  <  ร '

(7-
£ ' - £  J (3.18)

= ๐-' - 0 . 0 2 £  น ' - È  ) ร  >  ร

>0.2 / 1

where { ร , a )  is a current point, { ร , , a " )  is an intermediate point, a  1 and o '  1 are the 
stresses in the tension envelope corresponding to ร  and ร ' ,  respectively. The 
intermediate point { ร , , o '  ) is defined as follows:

£ -  = 1.1-0.016 E

where { ร 1, / 1) is the yield point, o ' 1 are the stresses in the tension envelope 
corresponding to ร ' .

Figure 3.4 shows the stress-strain relationship of the longitudinal bars and web 
bars following the Dhakal and Maekawa (2002) model, and the relevant properties are 
given in Table 3.2. Table 3.3 summarizes the buckling strengths of the web bars 
computed in accordance with Dhakal and Maekawa, together with the elastic buckling 
values. It is seen that the elastic buckling strengths of the web bars of specimens 
WC150 and WD150 are higher than the yield strengths while those of the-other 
specimens are less than the yield values. This indicates that the web bars in specimens 
WD170, WD200 and WCD170 should have buckled elastically at the lower value of 
the buckling load, and the Dhakal and Maekawa inelastic buckling model is not

-  = 5 5 - 2 . 3 —  น ^ร. D V 100
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applicable. Therefore, Eq. (3.20) is proposed to model bars that buckle elastically. 
Figure 3.5 compares the stress-strain relationships of web bars using this proposed 
model and Dhakal and Maekawa model.

o  = E .e

= ° h -
a ‘ - f y

k £
( * - ^ )

*  0-2/,,

■ร11 < £ < £

, £ >  £ (3.20)

where £11 and (J11 is the elastic buckling strain and stress, respectively.

3.5 Material Model for Concrete

The constitutive modeling of smear fixed cracked concrete requires the stress- 
strain relationship of concrete in the crack direction. Since the stress-strain 
relationship of concrete is generally determined by uniaxial testing, it is convenient 
and reasonable to modify and apply the uniaxial stress-strain relationship of concrete 
in the cracked direction. The concrete stress-strain relationships proposed by 
Hognestad (1951) and Saatcioglu and Razvi (1992) were adopted for unconfined and 
confined concrete, respectively (see Fig. 3.6). Tension in concrete was modeled using 
the formulation proposed by Belarbi et al. (1994) (see Fig. 3.7).

Concrete has been customarily modeled either as unconfined or confined. For 
concrete web, it is reasonable to model it as unconfined since no transverse 
reinforcement is provided. The state of stress in the boundary element with sufficient 
confining transverse reinforcement is much more complex. When buckling of the 
longitudinal reinforcement takes place, the confinement pressure on the concrete core 
adjacent to the buckled bars decreases, i.e., the confinement effectiveness is reduced 
after buckling of the longitudinal bars. As mentioned in the previous section, the 
buckling length of the longitudinal reinforcement in the columns considered in this 
study equals twice the spacing of the lateral ties. Fig. 3.8 depicts the confined 
concrete behavior at different levels of confinement. With the confining stress 
effectively provided by all lateral ties, the confined concrete stress-strain model 
exhibits a slow decay in the descending branch as illustrated by line 1 in the figure. If
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the lateral tie spacing is doubled, the effective confinement is reduced by half, 
resulting in the concrete stress-strain relationship as shown by Line 2 in Fig. 3.8. 
Therefore, the stress-strain relationship of confined concrete during buckling should 
be somewhere between Line 1 and Line 2. As a simplified approximation, only the 
descending branch of the confined stress-strain model is modified accounting for the 
buckling effect, which is represented by Line 3, reducing linearly from the peak 
confined stress to the average stress of Line 1 and Line 2 at the intermediate strain of 
the longitudinal bar ( ร ’ ).

Shear walls are actually 3D structures. However, modeling the walls using 2D 
finite element idealization in the x-y plane is simple and widely adopted. This implies 
that the same state of stress is assumed to exist throughout the thickness of the wall. 
To capture the 3D behavior, realistic modeling of the actual stress variations in the 
unconfmed concrete cover and the confined concrete core is needed.

Assuming the same state of strain exists across the entire depth of the wall 
(perpendicular to the lateral loading direction), the actual virtual strain energy for any 
imposed virtual strain may be equated to the virtual strain energy performed by the 
equivalent effective stress which is assumed to be constant throughout the thickness 
of the wall. Thus,

\ôsT<ydV = 1ร£r a tdxdy

v. 7. (3.21)= JS s  I^uc  ( t - 0 + a cK \  d xd y

where <J is the effective equivalent stress, <JUC and Gc are, respectively, the 
unconfmed and confined stresses corresponding to the same level of strain, ร . tL is
the thickness of core concrete measured center-to-center of the hoop and t is the total 
thickness of boundary columns.

Therefore, the effective equivalent stress, cr, can be obtained by Eq. (3.22) 
which depends on the ratio of the thickness of core concrete to the total thickness of 
boundary column.
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o-(f) = ^ - y  o-«(f )+ y  CTcO) (3.22)

Line 3 in Fig. 3.9 represents the effective equivalent stress-strain relationship 
for concrete in the boundary elements, which is determined from the unconfined 
concrete model (Line 1) and confined concrete model including the buckling effect 
(Line 2) using Eq. (3.22). It is seen that there are two segments in the descending 
branch. To further simplify the model, one single linear line connecting the peak point 
and the point at intermediate strain ( £’ ) is used instead.

The material properties of unconfined concrete used for concrete web 
elements and modified-confined concrete considering reduced confinement by 
buckling of longitudinal bars and combination of unconfined and unconfined material 
properties used for concrete boundary elements are summarized in Table 3.4.

3.6 Verification of Material Models

Figure 3.10 depicts the finite element model of the walls used in this study. 
Concrete was modeled using four-node bilinear isoparametric elements with a 
smeared, fixed crack model, and the shear modulus along crack proposed by Zhu et 
al. (2001) is adopted. Reinforcing bars are modeled as truss elements. Perfect bond 
between concrete and steel is assumed. Vertical load is applied directly in the form of 
prescribed loads and, in order to investigate the behavior of the structures under 
lateral loads, the horizontal loads are applied indirectly through prescribed 
displacements at the loading points.

The material models described in the previous section were incorporated into 
the finite element program, FINITE. To verify the material models, all specimens 
were analyzed and the results were compared with the experimental results. The 
criteria to determine a failure are described below:

a. Web crushing failure was assumed to occur when the compressive strains at all 
gauss points of the concrete web elements along the direction of the cracked 
coordinate reached the limiting strain of unconfined concrete (0.0038).
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b. The buckling of longitudinal bars in the boundary elements was assumed to take 
place when the compressive strains reached £•', as defined in Fig. 3.6. At this 
strain level, the confinement provided by the transverse reinforcement was 
deemed to be ineffective and crushing of the concrete in the boundary elements 
was expected.

c. As previously described, the diagonal web bars experience compressive strains. 
Buckling of the web reinforcement was assumed when the compressive strains 
reached the buckling strain, with subsequent spalling of the concrete cover in the 
web.

d. Fracture of longitudinal bars due to low-cycle fatigue was not considered in this 
study.

Figure 3.11 compares the load-displacement relationships from the finite 
element analysis with those from the experiments. The experimental displacement 
plotted in Fig. 3.11 is the total displacement subtracted by the sliding component 
because sliding at base is not considered in the finite element model. The load- 
displacement curves predicted by the finite element analyses are seem to match 
reasonably well with the envelopes of the experimental hysteretic loops. The 
important behavior captured by the finite element analysis is compared to that 
obtained from experiments as listed below.

Specimens Finite element analyses Experiments
WC150 Maximum load is 855 kN. Web 

concrete (elem. 76) starts crushing 
at 35.4 mm.

Maximum load was 908 kN. The 
specimen failed by web crushing 
at 40.5 mm.

WD150 Maximum load is 970 kN. 
Buckling of longitudinal bar (elem. 
234) is observed at 48.1 mm.

Maximum load was 925 kN. 
Buckling of longitudinal bars was 
observed at 35.3 mm.

WD170 Maximum load is 926 kN. 
Buckling of a web bar (elem. 358) 
and longitudinal bar (elem. 234) 
are predicted at 34.9 mm and 44.1 
mm, respectively. Web concrete

Maximum load was 996.5 kN. 
Buckling of a web bar was 
observed at 33.0 mm. 
Longitudinal bars buckled at 40.7 
mm.

๐1 จfcf
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(elem. 76) crushing and buckling of 
web bar (elem. 374) then follow at 
46.7 mm. I:

WD200 Maximum load is 891 kN.
Buckling of web bars is predicted 
at 38.0 mm (elem. 358). 42.5 mm 
(elem. 374) and buckling of 
longitudinal bar is predicted at 45.6 
mm. Web concrete (elem. 76) 
crushing then follows at 50.2 mm.

Maximum load was 928 kN.
Web bars buckled at 31.2 mm and : 
web concrete crushed at 42.7 mm.

1

WCD170 Maximum load is 927 kN. 
Buckling of web bar (elem. 358) 
and longitudinal bar (elem. 234) 
are predicted at 38.0 mm and 45.1 
mm, respectively. Web concrete 
(elem. 76) crushing then follows at 
49.0 mm.

Maximum load was 914 kN. 
Concrete cover spalled off at 40.0 
mm. and longitudinal bars buckled 
and fractured at 45.0 mm

WD170A Maximum load is 1054 kN. Web 
bar (elem. 358) buckles at 26.8 
mm. Web concrete (elem. 76) 
crushing and buckling of a 
longitudinal bar (elem. 234) are 
predicted at 34.4 mm.

Maximum load was 1055 kN. 
Concrete cover spalled off at 33.5 
mm. Consequently, longitudinal 
bars buckled and fractured at 42.0 
mm.

3.7 Influence of Diagonal Web Reinforcement

The experimental results appear to indicate that web crushing, which causes a 
very brittle mode of failure, is prevented when the web reinforcement is oriented in 
the diagonal directions. Unfortunately, due to the large variations in the compressive 
strength of the concrete used to construct the test specimens, it is not possible to make 
a definite conclusion regarding this hypothesis. To gain additional insight into the 
influence of diagonal reinforcement on the lateral response of walls, finite element 
analyses were conducted for all specimens using the same material properties of
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WC150. The specimens will now be denoted by WD150*, WD170*, WD200*, 
WCD170*, WD170A* which are identical to WD150, WD170, WD200, WCD170, 
WD170A, respectively, except for the material properties as mentioned.

Figure 3.12 plots the load-displacement curves obtained from the finite 
element analyses. It is seen that the walls with diagonal web reinforcement have 
higher ductility capacity. The specimen WC150 fails by web crushing while diagonal 
walls fail by buckling of longitudinal bars except specimen WD200 . Because the 
buckling strength of web reinforcement in specimen WD200* is very low, the 
specimen fails by bar buckling of diagonal web reinforcement at a lower ductility. It 
is seen that the maximum drift attained by specimen WD150* is higher than specimen 
WC150 by about 22%. For specimens WD170* and WCD170\ the drift capacity is 
almost equal although the elastic stiffness of specimen WD170* is slightly higher than 
that of specimen WCD170*. Therefore, this indicates that the combination type of 
web reinforcement proposed appears to be quite promising for practice.

The axial load influences stiffness, load capacity, and ductility. The specimen 
WD170A* fails by buckling of longitudinal bar at a smaller displacement compared 
with specimen WD170* by about 20%. In other words, ductility decreases with an 
increase in the axial load. However, the results from experiments did not exhibit this 
behavior and further research is needed to study the wall performance under different 
levels of axial load.

Figure 3.13 plots the horizontal reaction force distribution at the base of 
specimen WC150 in which the shear force is resisted only by concrete struts, i.e., the 
contribution of dowel action in the vertical steel is neglected. At a small lateral 
displacement, the shear force is resisted mostly by the boundary column (Nodes 11-
13). At the ultimate drift ratio of 1.6%, the compressive strain in the column reaches 
the peak confined strain. Consequently, the shear resistance by the column decreases 
and thus the remaining shear has to be transferred to the web concrete, thereby 
significantly increasing the diagonal compressive strain in the concrete strut. This 
explains why web crushing failure follows after excessive deformation takes place the 
boundary element. For wall specimen WD150*, on the other hand, part of the shear 
force is resisted by diagonal web reinforcement, the contribution being 8.6%, 13.0%, 
and 18.5% of the lateral loads at drift ratio of 0.9%, 1.6%, and 2.0%, respectively, as 
shown in Fig. 3.14. Consequently, the diagonal compressive strain in concrete strut is 
reduced.
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Figure 3.15 shows the diagonal compressive strain in the concrete strut of 
element 76 which is the critical element in the web concrete. It confirms that with 
diagonal web reinforcement, the compressive strain in the web concrete strut is 
reduced by about 23% at the drift ratio of 1.6% (the ultimate value of WC150). 
Therefore, walls with diagonal web reinforcement are less susceptible to web 
crushing.

3.8 Strain and Stress Distributions

To develop a simplified design procedure for walls considering web crushing, 
the stress and strain distributions in the wall should be clearly depicted. Therefore, the 
distributions of strains and stresses through the wall section at the base obtained from 
the finite element analyses are investigated in detail in this section.

Figures 3.16-3.17 plot the strain and stress distributions in global coordinates 
(x-y axes) of concrete elements at the section of the base of specimen WC150 at the 
peak load. With regard to the strain distributions (see Figs. 3.16), the shear strains can 
be seen to be nearly constant and the transverse strains in X direction are close to zero. 
As expected, the longitudinal strains do not vary linearly especially in the region of 
high tensile strains. However, the assumption of linear distribution of longitudinal 
strains is generally acceptable in sectional analysis. The assumptions on the strain 
distributions described here will be used in the simplified design procedure for walls 
considering web crushing that will be described in the next chapter.

3.9 Summary

In this study, the finite element procedure proposed by Sittipunt (1994) is 
extended to predict the envelope curve of the cyclic hysteresis loops obtained from 
experiments, taking into account the effects of buckling of longitudinal bars on the 
behavior of confined concrete and the difference in stress-strain characteristics of the 
cover and core concrete in the boundary columns. Finite element analyses indicate the 
effectiveness of diagonal web reinforcement in reducing the compressive strain in the 
critical strut in comparison with the conventional one. The reduction is about 23% at
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t h e  u l t i m a t e  d r i f t  r a t i o  o f  t h e  l a t t e r ,  t h e r e b y  d e f e r r i n g  w e b  c r u s h i n g  w i t h  e n h a n c e d  

p e r f o r m a n c e .  C o n s e q u e n t l y ,  t h e  d r i f t  c a p a c i t y  i n c r e a s e s  b y  2 2 % .
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