Surface Dissolution and Formation of Scallops

Mr.Pasit Warunphaisal

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2009

522061

Thesis Title:	Surface Dissolution and Formation and Scallops
By:	Pasit Warunphaisal
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon
	Prof. Derek H. Lister
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

111

(Assoc. Prof. Thirasak Rirksomboon)

0

(Prof. Derek H. Lister)

June R Sterrand

(Prof. Frank R. Steward)

Anual Conwas

(Assoc, Prof. Anuvat Sirivat)

(Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

5073006063: Petroleum Technology Program Pasit Warunphaisal: Surface Dissolution and Formation of Scallops. Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon, Prof. Derek H. Lister and Prof. Frank R. Steward

Keywords: Scallop Surface, Flow accelerated corrosion, Dissolution

Flow-assisted corrosion (FAC) is a significant problem with carbon steel components exposed to rapidly moving water or water-steam mixtures. Such components often develop distinctive patterns of surface damage producing a dimpled surface looking like orange peel, called "Scalloping". This roughness plays an important role in the corrosion of pipes made of carbon steel and it seems that the formation of scallops are major factors in the thinning rate of the pipes. To characterize scallops, study the mechanisms of scallop formation and investigate how the formation of scallops and scallop phenomena affect the dissolution rate, experiments on the pressure drop and flow characteristics, of pipes made of plaster of Paris (CaSO₄ ·1/2H₂O) were performed. Atomic Absorption Spectroscopy (AAS) was used to analyze the dissolution rate of the plaster. The surface was photographed with a digital camera to observe the initiation of scallops. Pressure transducer was used to measure pressure drop. The size decreases with increasing flow rate whereas the population of scallops increases with increasing flow rate. Scalloping is believed to initiate from defect at the surface and it was found that size and population of scallops increase with increasing initial defect size and initial defect concentration respectively. The average dissolution rate increases with increasing flow rate, particle size, particle concentration and temperature. The dissolution rate of plaster is controlled by mixed kinetics. The entrance section affected the mechanism of the gypsum dissolution. It is found that concentration of defects on the plaster surface has a greater effect on the dissolution rate than effect of defect size. Pressure drop increases with increasing flow rate and temperature but decreases with increasing initial defect size and concentration. This means that the diameter of the plaster pipe has a greater effect than the surface roughness.

ภาษิต วรุณไพศาล : ชื่อหัวข้อวิทยานิพนธ์ การสลายตัวบนพื้นผิวและการก่อรูปส แกลลอปบนพื้นผิวท่อ (Surface Dissolution and Formation of Scallops) อ. ที่ปรึกษา : รศ. คร. ธีรศักดิ์ ฤกษ์สมบูรณ์ ศ. คร. คีเรก เอช ลิสเตอร์ และ ศ. คร. แฟรงค์ อาร์ สจ้วต 129 หน้า

การกัดกร่อนแบบมีอัตราของของใหลเป็นตัวเร่ง (flow-accelerated corrosion) เป็น ้ ปัญหาสำคัญที่เกิดขึ้นกับท่อเหล็กการ์บอนที่สัมผัสกับน้ำหรือส่วนผสมระหว่างน้ำและไอน้ำที่ไหล ้อย่างรวดเร็ว ท่อเหล็กการ์บอนนี้มักจะเกิดกวามเสียหายบนพื้นผิวในแบบลักษณะพิเศษซึ่งจะสร้าง พื้นผิวขรุขระลักษณะคล้ายเปลือกส้ม, เรียกว่า "สแกลลอป" ผิวขรุขระนี้มีบทบาทที่สำคัญในการ ้กัดเซาะของท่อที่สร้างจากเหล็กการ์บอนและดูเหมือนว่าการก่อรูปของสแกลลอปนี้จะเป็นตัวแปร หลักในอัตราการบางลงของท่อ การก่อเกิดสแกลอปนี้เป็นปัญหาในการคำนวณอายุการใช้งานของ ท่อ และเครื่องมือ บ่อยครั้งที่สแกลลอปถูกนำมาใช้อย่างสอคคล้องกันในด้านความขรุขระที่ใช้น้ำ ในการขับเคลื่อน, การเพิ่มความคันลด และการถ่ายเทมวล ทั้งนี้เพื่อจะดูลักษณะพิเศษของส แกลลอป, ศึกษากลไกของการเกิดสแกลลอป, ศึกษาการเกิดสแกลลอปและปรากฏการณ์ของส แกลลอปว่าส่งผลอย่างไรต่ออัตราการสลายตัว, การศึกษาความคันลค และลักษณะของการไหล, การทคลองไค้ถูกสร้างขึ้นจากท่อที่สร้างจากปลาสเตอร์ออฟปารีส (Plaster of Paris. CaSO4·1/2H2O) เครื่องอะตอมมิกแอปซอปชั่นสเปกโตรสโคปี (AAS) ได้ถูกใช้เพื่อวิเคราะห์ อัตราการสลายตัวของปลาสเตอร์ พื้นผิวถูกถ่ายรูปด้วยกล้องดิจิตอลเพื่อศึกษาการเกิดสแกลลอป เครื่องวัคความคันแบบแปรกระแสได้ถูกใช้เพื่อวัคความคันลด ผลปรากฏว่าลักษณะของส แกลลอปมีความสัมพันธ์กับอัตราการใหล ขนาคของสแกลลอปลคลงตามการเพิ่มขึ้นของอัตราการ ใหล ในขณะที่จำนวนของสแกลลอปได้เพิ่มขึ้นตามการเพิ่มขึ้นของอัตราการไหล สแกลลอปนั้น ถูกเชื่อว่าเกิดขึ้นจากข้อบกพร่องบนพื้นผิว และพบว่า ขนาคและจำนวนของสแกลลอปเพิ่มขึ้นตาม การเพิ่มขึ้นของขนาดและความเข้มข้นของข้อบกพร่องบนพื้นผิวตามลำดับ อัตราการสลายตัวเฉลี่ย เพิ่มขึ้นตามการเพิ่มขึ้นของอัตราการใหล, ขนาคของอนุภาค, ความเข้มข้นของอนุภาค และ อุณหภูมิ อัตราการสลายตัวของปลาสเตอร์ถูกควบคุมโดยจลศาสตร์แบบรวม (Mix Kinetics) และยังพบอีกว่าความเข้มข้นของพื้นผิวที่บกพร่องนั้นมีผลต่อการสลายตัวของปลาสเตอร์มากกว่า ผลจากขนาดของพื้นผิวที่บกพร่อง ความคันลคเพิ่มขึ้นตามการเพิ่มขึ้นของอัตราการไหลและ อุณหภูมิ แต่ความคันลคลคลงตามการเพิ่มขึ้นของขนาคและความเข้มข้นของข้อบกพร่องบนพื้นผิว ซึ่งหมายความว่า เส้นผ่านศูนย์กลางของท่อปลาสเตอร์มีผลมากกว่าผลจากความขรุงระบนพื้นผิว

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Prof. Derek H. Lister, for giving me these great opportunities with his worth advice, knowledge and useful comments on my thesis work. I am grateful for his patience and kindness for giving me a chance to complete my research.

I would like to thank my supervisors, Prof. Frank R. Steward and Assoc. Prof. Thirasak Rirksomboon for their decision to take me as a graduate student and opportunity to do research in Canada and their support and advice.

This thesis work is funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Mr. Andrew Feicht and Mr. Piti Srisukvatananan are thanked for their technical advices, ideas and knowledge. I am grateful for providing all equipment throughout my work and solutions for any problems. Carl Murdock is thanks for all of his help providing the stuffs for my research work.

I would like to thank all graduate students in Chemical Engineering department and all my friends to help me in every ways to solve any problems. I have good memories and life in Canada because of you all.

Finally, this work could not been completed without my family. I would like to thank for their support and encouragement. Their love, supports and encouragement make me pass throughout the past year. I would also like to thank all my seniors and my friends in Thailand for their friendship and encouragement.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xii
Abbreviations	xxvi
List of Symbols	xxvii

CHAPTER

I	INTRODUCTION	1
II	LITERATURE REVIEW	4
III	EXPERIMENTAL	22
	3.1 Materials and Equipment	22
	3.1.1 Equipment	22
	3.1.2 Chemicals	22
	3.2 Methodology	22
	3.2.1 Mixing	22
	3.2.1.1 Mixing of the Plaster	22
	3.2.1.2 Mixing sand grains with plaster of Paris	23
	3.3 Test Section	24
	3.4 Test Loop	24
	3.5 Test Conditions	25
	3.6 Analytical Techniques	27
	3.6.1 Dissolution rate analysis	27

CHAPTER		PAGE
	3.6.1.1 Dissolution rate with time from	
	mass variations	27
	3.6.1.2 Dissolution rate with time by using	
	atomic absorption spectrophotometer (AAS)	27
	3.6.1.3 Dissolution rate along the pipe	28
	3.6.2 Pressure drop analysis	28
	3.6.3 Characterization of scalloped surface	28
	3.6.4 Determination of the gypsum dissolution	28
IV	RESULTS AND DISCUSSION	30
	4.1 Scallop Surface	30
	4.1.1 The Effect of pH	30
	4.1.2 The Effect of Flow Rate	33
	4.1.3 The Effect of Initial Presence of Defects	33
	4.1.3.1 Effect of Particle Size	34
	4.1.3.2 Effect of Particle Concentration	34
	4.1.4 The Effect of Temperature	35
	4.2 Dissolution Rate	36
	4.2.1 Dissolution Rate with Time	36
	4.2.1.1 The Effect of pH	36
	4.2.1.2 The Effect of Flow Rate	42
	4.2.1.3 The Effect of Particle Size	42
	4.2.1.4 The Effect of Particle Concentration	45
	4.2.1.5 The Effect of Temperature	47
	4.2.2 Dissolution Rate Along the Pipe Length	49
	4.2.2.1 The Effect of pH	49
	4.2.2.2 The Effect of Flow Rate	52
	4.2.2.3 The Effect of Particle Size	52
	4.2.2.4 The Effect of Particle Concentration	54
	4.2.1.5 The Effect of Temperature	56

CHAPTER		PAGE
	4.3 Pressure Drop	57
	4.3.1 The Effect of pH	57
	4.3.2 The Effect of Flow Rate	58
	4.3.3 The Effect of Particle Size	59
	4.3.4 The Effect of Particle Concentration	60
	4.3.5 The Effect of Temperature	61
	4.4 The Mechanism of Gypsum Dissolution	62
	4.4.1 The Effect of pH	63
	4.4.2 The Effect of Flow Rate	64
	4.4.3 The Effect of Particle Size	66
	4.4.4 The Effect of Particle Concentration	67
	4.4.5 The Effect of Temperature	69
	4.5 Effects of various Parameters on Dissolution	71
V	CONCLUSIONS AND RECOMMENDATIONS	74
	REFERENCES	76
	APPENDICES	79
	Appendix A Dissolution Rate	79
	Appendix B Pressure Drop	106
	Appendix C The Mechanism of Gypsum Dissolution	116
	CURRICULUM VITAE	129

LIST OF TABLES

1	TABLE		PAGE
	3.1	Conditions for studying the effects of pH and flow rate (pure plaster – no defects).	26
	3.2	Conditions for studying the effects of temperature, particle size, defect concentration and flow rate.	26
	4.1	Average dissolution rate calculated from AAS at different pHs and 25LPM.	39
	4.2	Average dissolution rate calculated from AAS at different pHs and 35 LPM.	41
	4.3	Average dissolution rate calculated from AAS at different sizes of initial defects and 25 LPM and 25°C.	44
	4.4	Average dissolution rate calculated from AAS at different sizes of initial defects and 35 LPM and 25°C.	44
	4.5	Average dissolution rate calculated from AAS at different concentrations of initial defects at defect size of 0.500- 0.707 mm , 25LPM and 25°C.)	46
	4.6	Average dissolution rate calculated from AAS at different concentrations of initial defects at defect size of 0.500- 0.707 mm and 35LPM and 25°C.	47
	4.7	Average dissolution rate calculated from the thickness of pipe at different pHs and different flowrates.	52
	4.8	Average dissolution rate calculating from the thickness of pipe at different sizes of initial defects and different flowrates.	54
	4.9	Average dissolution rate calculating from the thickness of pipe at different concentrations of initial defects and different flowrates.	56

TABLE

4.10	Values of dissolution rate constant, mass transfer	65
	coefficient and dissolution coefficient at different pHs.	
4.11	Average values of mass transfer coefficient and	68
	dissolution coefficient at different surface roughness.	
4.12	Average values of mass transfer coefficient and	70
	dissolution coefficient at different temperatures.	
4.13	Average values of mass transfer coefficient and	70
	dissolution coefficient at different temperatures.	
4.14	Dissolution rate comparison between the effect of flow	72
	rate and effect of temperature.	
4.15	Dissolution rate comparison between the effect of initial	73
	defect size and effect of initial defect concentration.	
A.1	Average dissolution rate calculating from AAS at different	81
	sizes of initial defects and 25 LPM.	
A.2	Average dissolution rate calculating from AAS at different	82
	sizes of initial defects and 35 LPM.	
A.3	Average dissolution rate calculating from AAS at different	84
	concentrations of initial defects at defect size of 0.21-0.25	
	mm and 25LPM.	
A.4	Average dissolution rate calculating from AAS at different	85
	concentrations of initial defects at defect size of 0.42-0.50	
	mm and 25LPM.	
A.5	Average dissolution rate calculating from AAS at different	86
	concentrations of initial defects at defect size of 0.21-0.25	
	mm and 35LPM.	
A.6	Average dissolution rate calculating from AAS at different	87
	concentrations of initial defects at defect size of 0.42-0.50	
	mm and 35LPM.	

TABLE

PAGE

A.7	Average dissolution rate calculating from AAS at different	96
	sizes of initial defects and 35 LPM.	
A.8	Average dissolution rate calculating from the thickness of	97
	pipe at different concentrations of initial defects and	
	different flowrate.	
A.9	Average dissolution rate calculating from the thickness of	99
	pipe at different concentrations of initial defects and	
	different flowrate.	

LIST OF FIGURES

FIGURE		PAGE
1.1	Scallops found on outlet feeder pipe k16 (Lister, 2004).	2
2.1	Scalloping on the inner surface of a carbon steel feeder	5
	pipe (Villien et al., 2001)	
2.2	Schematic of primary coolant in a CANDU reactor	6
2.3	Evolution of a surface, (1) passive-bed theory and (2)	8
	defect theory	
2.4	Stages in the development of experimental flutes (a-e)	10
	and grooves (f), (g) defects introduced into Plaster of	
	Paris beds. Flow from bottom to top. (e) 10cmwidth	
	(Allen, 1971).	
2.5	Flute hydrodynamics (Blumberg, 1970)	11
2.6	SEM of the plaster structure.	12
2.7	Dissolution rates of gypsum as functions of flow rate	15
	(Villien et al., 2005).	
2.8	Concentration of calcium ion vs time for four	16
	experiments, each run at 300-rpm spinning rate and 25°C	
	(Raines and Dewers, 1997)	
2.9	Schematic of different scallop types at inlet and outlet	16
	(Shao, 2006).	
2.10	Dihydrate solubility in H ₂ O vs. temperature. The curve is	17
	determined from the OLI default database (Azimi et al.,	
	2007)	
2.11	The 1000/T dependence of log k (dissolution rate	18
	constant) of different specimens or different kinds of	
	gypsum (Lebedev, et al. 1989).	
2.12	The pressure drop versus time (Shao, 2006)	18

2.13	Gypsum solubility in H ₂ SO ₄ solutions at different	20
	temperatures.	
2.14	Dependence of Ca ²⁺ concentration on the OH ⁻	20
	concentration in the solution with and without sulphate.	
2.15	Comparison of dissolution rates at different pHs.	21
3.1	Schematic of the mixing apparatus.	23
3.2	Schematic of the test section. (Villien, et al., 2005)	24
3.3	Schematic of the experimental loop.	25
4.1	Scallop formation on defect-free plaster suface every	31
	hour at different pHs, 25 LPM and 30°C: (a1) – (a5) run	
	at pH3, $(b1) - (b5)$ run at pH7, $(c1) - (c5)$ run at pH10.	
4.2	Scallop formation on defect-free plaster suface every	32
	hour at different pHs, 35 LPM and 30°C: (a1) – (a5) run	
	at pH3, (b1) – (b5) run at pH7, (c1) – (c5) run at pH10.	
4.3	Scallop formation on defect-free plaster surface at	33
	different flow rates at pH 7, 30°C: (a) 25 LPM (b)	
	35LPM.	
4.4	Scallop formation on plaster suface at different sizes of	34
	initial defects at 25°C, 25LPM and 50 defects/cm ³ : (a)	
	pure plaster (b) 0.21-0.25mm (c) 0.42-0.50mm and (d)	
	0.505-0.707mm.	
4.5	Scallop formation on plaster suface at different	35
	concentrations of initial defects at 25°C, 25LPM. 0.500-	
	0.707 mm: (a) 50 defects/cm ³ (b) 100 defects/cm ³ .	
4.6	Scallop formation on plaster suface at different	36
	temperatures at 25LPM, 0.42-0.50 mm and 50	
	defects/cm ³ : (a) 25°C (b) 10 °C.	

4.7	The effects of pH on the dissolution rate of plaster with	38
	time, 25LPM, 30°C.	
4.8	The effect of pH on the dissolution rate of plaster of Paris	40
	with time at 35LPM, 30°C.	
4.9	Effect of flow rate on the dissolution rate with time at	42
	pH3 and 30°C.	
4.10	Dissolution rate with time at different sizes of particles,	43
	25°C, 50 defects/cm ³ and 25LPM.	
4.11	Dissolution rate with time at different sizes of particles,	43
	25°C, 50 defects/cm ³ and 35LPM.	
4.12	Dissolution rate with time at different concentrations of	45
	particles, 0.500-0.707 mm, 25°C and 25LPM.	
4.13	Dissolution rate with time at different concentrations of	45
	particles, 0.500-0.707 mm 25°C and 35LPM.	
4.14	Dissolution rate with time at different temperatures, 0.21-	48
	0.25 mm, 50 defects/cm ³ and 25LPM.	
4.15	Dissolution rate with time at different temperatures, 0.21-	48
	0.25 mm, 50 defects/cm ³ and 35LPM.	
4.16	Dissolution along the pipe at 25LPM, 30°C.	49
4.17	Dissolution along the pipe at 35LPM, 30°C.	50
4.18	Plaster test section at different positions (a) 25 LPM at	51
	the entrance, (b) 25 LPM at the exit, (c) 35 LPM at the	
	entrance, (d) 35 LPM at the exit.	
4.19	Dissolution rate along the pipe length at pH3 and 30°C.	52
4.20	Dissolution along the pipe at different particle sizes, 50	53
	defects/cm ³ , 25LPM and 25°C.	
4.21	Dissolution along the pipe at different particle sizes, 50	53
	defects/cm ³ , 35LPM and 25°C.	

4.22	Dissolution along the pipe at different particle	55
	concentrations, 0.500-0.707 mm, 25LPM and 25°C.	
4.23	Dissolution along the pipe at different particle	55
	concentrations, 0.500-0.707 mm, 35LPM and 25°C.	
4.24	Dissolution along the pipe at different temperatures, 0.21-	56
	$0.25 \text{ mm}, 50 \text{ defects/cm}^3, 25 \text{LPM}.$	
4.25	Pressure drop with time at 25 LPM, 30°C.	57
4.26	Pressure drop with time at 35 LPM, 30°C.	58
4.27	Pressure drop with time at pH3, 30°C.	58
4.28	Pressure drop at different sizes of particles, 50	59
	defects/cm ³ , 25°C and 25 LPM.	
4.29	Pressure drop at different sizes of particles, 50	60
	defects/cm ³ , 25°C and 35 LPM.	
4.30	Pressure drop with time at different concentrations of	60
	particles, 0.42-0.50 mm, 25°C and 25 LPM.	
4.31	Pressure drop with time at different concentrations of	61
	particles, 0.42-0.50 mm, 25°C and 35 LPM.	
4.32	Pressure drop with time at different temperatures, 0.21-	61
	0.25 mm, 50 defects/cm ³ and 25 LPM.	
4.33	Pressure drop with time at different temperatures, 0.21-	62
	0.25 mm, 50 defects/cm ³ and 35 LPM.	
4.34	The overall rate constant (K) and the dissolution	63
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition pH3, 30°C	
	and 25 LPM	
4.35	The overall rate constant (K) and the dissolution	63
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition pH7, 30°C	
	and 25 LPM	

4.36	The overall rate constant (K) and the dissolution	64
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition pH10,	
	30°C and 25 LPM	
4.37	The overall rate constant (K) and the dissolution	64
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition pH3, 30°C	
	and 25 LPM	
4.38	The overall rate constant (K) and the dissolution	65
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition pH3, 30°C	
	and 35 LPM	
4.39	The overall rate constant (K) and the dissolution	66
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition 0.21-	
	0.25mm, 50 defects/cm ³ , 25°C and 25 LPM.	
4.40	The overall rate constant (K) and the dissolution	66
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition 0.42-	
	0.50mm, 50 defects/cm ³ , 25°C and 25 LPM.	
4.41	The overall rate constant (K) and the dissolution	67
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition 0.500-	
	0.707 mm, 50 defects/cm ³ , 25°C and 25 LPM.	
4.42	The overall rate constant (K) and the dissolution	67
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition 0.42-	
	0.50mm, 50 defects/cm ³ , 25°C and 25 LPM.	

4.43	The overall rate constant (K) and the dissolution	68
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe under condition 0.42-	
	0.50mm, 100 defects/cm ³ , 25°C and 25 LPM.	
4.44	The overall rate constant (K) and the dissolution	69
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition 0.42-	
	0.50mm, 50 defects/cm ³ , 10°C and 25 LPM.	
4.45	The overall rate constant (K) and the dissolution	69
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe under condition 0.42-	
	0.50mm, 50 defects/cm ³ , 25°C and 25 LPM.	
A.1	Dissolution rate with time at pH7 and 30° C.	79
A.2	Dissolution rate with time at pH10 and 30°C.	80
A.3	Dissolution rate with time at different sizes of particles,	80
	25°C, 100 defects/cm ³ and 25LPM.	
A.4	Dissolution rate with time at different sizes of particles,	81
	25°C, 100 defects/cm ³ and 35LPM.	
A.5	Dissolution rate with time at different concentrations of	83
	particles, 0.21-0.25 mm, 25°C and 25LPM.	
A.6	Dissolution rate with time at different concentrations of	83
	particles, 0.42-0.50 mm, 25°C and 25LPM.	
A.7	Dissolution rate with time at different concentrations of	85
	particles, 0.21-0.25 mm, 25°C and 35LPM.	
A.8	Dissolution rate with time at different concentrations of	86
	particles, 0.42-0.50 mm, 25°C and 35LPM.	
A.9	Dissolution rate with time at different temperatures, pure	88
	plaster and 25LPM.	

xviii

FIGURE

PAGE

A.10	Dissolution rate with time at different temperatures, pure	88
	plaster and 35LPM.	
A.11	Dissolution rate with time at different temperatures, 0.42-	89
	0.50 mm, 50 defects/cm ³ and 25LPM.	
A.12	Dissolution rate with time at different temperatures, 0.42-	89
	0.50 mm, 50 defects/cm ³ and 35LPM.	
A.13	Dissolution rate with time at different temperatures,	90
	0.500-0.707 mm, 50 defects/cm ³ and 25 LPM.	
A.14	Dissolution rate with time at different temperatures,	90
	0.500-0.707 mm, 50 defects/cm ³ and 35LPM.	
A.15	Dissolution rate with time at different temperatures, 0.21-	91
	0.25 mm, 100 defects/cm ³ and 25LPM.	
A.16	Dissolution rate with time at different temperatures, 0.21-	91
	0.25 mm, 100 defects/cm ³ and 35LPM.	
A.17	Dissolution rate with time at different temperatures, 0.42-	92
	0.50 mm, 100 defects/cm ³ and 25LPM.	
A.18	Dissolution rate with time at different temperatures, 0.42-	92
	0.50 mm, 100 defects/cm ³ and 35LPM.	
A.19	Dissolution rate with time at different temperatures,	93
	0.500-0.707 mm, 100 defects/cm ³ and 25LPM.	
A.20	Dissolution rate with time at different temperatures,	93
	0.500-0.707 mm, 100 defects/cm ³ and 35LPM.	
A.21	Dissolution rate along the pipe length under pH7 and	94
	30°C.	
A.22	Dissolution rate along the pipe length under pH10 and	94
	30°C.	
A.23	Dissolution along the pipe at different particle sizes, 100	95
	defects/cm ³ , 25LPM and 25°C.	

A.24	Dissolution along the pipe at different particle sizes, 100	95
	defects/cm ³ , 35LPM and 25°C.	
A.25	Dissolution along the pipe at different particle	96
	concentrations, 0.21-0.25 mm, 25LPM and 25°C.	
A.26	Dissolution along the pipe at different particle	97
	concentrations, 0.21-0.25 mm, 35LPM and 25°C.	
A.27	Dissolution along the pipe at different particle	98
	concentrations, 0.42-0.50 mm, 25LPM and 25°C.	
A.28	Dissolution along the pipe at different particle	98
	concentrations, 0.42-0.50 mm, 35LPM and 25°C.	
A.29	Dissolution along the pipe at different temperatures, pure	99
	plaster, and 25LPM.	
A.30	Dissolution along the pipe at different temperatures, pure	100
	plaster, and 35LPM.	
A.31	Dissolution along the pipe at different temperatures, 0.21-	100
	0.25, 50 defects/cm ^{3} and 35LPM.	
A.32	Dissolution along the pipe at different temperatures, 0.42-	101
	0.50, 50 defects/cm ^{3} and 25LPM.	
A.33	Dissolution along the pipe at different temperatures, 0.42-	101
	0.50, 50 defects/cm ^{3} and 35LPM.	
A.34	Dissolution along the pipe at different temperatures,	102
	0.500-0.707, 50 defects/cm ³ and 25LPM.	
A.35	Dissolution along the pipe at different temperatures,	102
	0.500-0.707, 50 defects/cm ³ and 35LPM.	
A.36	Dissolution along the pipe at different temperatures, 0.21-	103
	0.25, 100 defects/cm ^{3} and 25LPM.	

A.37	Dissolution along the pipe at different temperatures, 0.21-	103
	0.25, 100 defects/cm ³ and 35LPM.	
A.38	Dissolution along the pipe at different temperatures, 0.42-	104
	0.50, 100 defects/cm ³ and 25LPM.	
A.39	Dissolution along the pipe at different temperatures, 0.42-	104
	0.50, 100 defects/cm ^{3} and 35LPM.	
A.40	Dissolution along the pipe at different temperatures,	105
	0.500-0.707, 100 defects/cm ³ and 25LPM.	
A.41	Dissolution along the pipe at different temperatures,	105
	0.500-0.707, 100 defects/cm ³ and 35LPM.	
B.1	Pressure drop under pH7 and 30°C.	106
⁼ B.2	Pressure drop under pH10 and 30°C.	106
B.3	Pressure drop at different sizes of particles, 100	107
	defects/cm ³ , 25°C and 25 LPM.	
B.4	Pressure drop at different sizes of particles, 100	107
	defects/cm ³ , 25°C and 35 LPM.	
B.5	Pressure drop with time at different concentrations of	108
	particles, 0.21-0.25 mm, 25°C and 25 LPM.	
B.6	Pressure drop with time at different concentrations of	108
	particles, 0.21-0.25 mm, 25°C and 35 LPM.	
B.7	Pressure drop with time at different concentrations of	109
	particles, 0.500-0.707 mm, 25°C and 25 LPM.	
B.8	Pressure drop with time at different concentrations of	109
	particles, 0.500-0.707 mm, 25°C and 35 LPM.	
B.9	Pressure drop with time at different temperatures, pure	110
	plaster and 25 LPM.	
B.10	Pressure drop with time at different temperatures, pure	110
	plaster and 35 LPM.	

B.11	Pressure drop with time at different temperatures, 0.42-	111
	0.50, 50 defects/cm ³ and 25 LPM.	
B.12	Pressure drop with time at different temperatures, 0.42-	111
	0.50, 50 defects/cm ³ and 35 LPM.	
B.13	Pressure drop with time at different temperatures, 0.500-	112
	0.707, 50 defects/cm ^{3} and 25 LPM.	
B.14	Pressure drop with time at different temperatures, 0.500-	112
	0.707, 50 defects/cm ^{3} and 35 LPM.	
B.15	Pressure drop with time at different temperatures, 0.21-	113
	0.25, 100 defects/cm ³ and 25 LPM.	
B.16	Pressure drop with time at different temperatures, 0.21-	113
	0.25, 100 defects/cm ³ and 35 LPM.	
B.17	Pressure drop with time at different temperatures, 0.42-	114
	0.50, 100 defects/cm ^{3} and 25 LPM.	
B.18	Pressure drop with time at different temperatures, 0.42-	114
	0.50, 100 defects/cm ^{3} and 35 LPM.	
B.19	Pressure drop with time at different temperatures, 0.500-	115
	0.707, 100 defects/cm ^{3} and 25 LPM.	
B.20	Pressure drop with time at different temperatures, 0.500-	115
	0.707, 100 defects/cm ^{3} and 35 LPM.	
C.1	The overall rate constant (K) and the dissolution	116
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	pH7, 30°C and 25 LPM.	
C.2	The overall rate constant (K) and the dissolution	117
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	pH7, 30°C and 35 LPM.	

C.3	The overall rate constant (K) and the dissolution	117
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	pH10, 30°C and 25 LPM.	
C.4	The overall rate constant (K) and the dissolution	118
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	pH10, 30°C and 35 LPM.	
C.5	The overall rate constant (K) and the dissolution	118
	coefficient (k _d) compared with the mass transfer	
	coefficient (k_m) the pipe length under condition 0.21-	
	0.25 mm, 100 defects/cm ³ , 25°C and 25 LPM.	
C.6	The overall rate constant (K) and the dissolution	119
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.42-0.50 mm, 100 defects/cm ³ , 25°C and 25 LPM.	
C.7	The overall rate constant (K) and the dissolution	119
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.500-0.707 mm, 100 defects/cm ³ , 25°C and 25 LPM.	
C.8	The overall rate constant (K) and the dissolution	120
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.21-0.25 mm, 50 defects/cm ³ , 25°C and 25 LPM.	
C.9	The overall rate constant (K) and the dissolution	120
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.21-0.25 mm, 100 defects/cm ³ , 25°C and 25 LPM.	

xxiii

C.10	The overall rate constant (K) and the dissolution	121
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.500-0.707 mm, 50 defects/cm ³ , 25°C and 25 LPM.	
C.11	The overall rate constant (K) and the dissolution	121
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.500-0.707 mm, 100 defects/cm ³ , 25°C and 25 LPM.	
C.12	The overall rate constant (K) and the dissolution	122
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	pure plaster, 10°C and 25 LPM.	
C.13	The overall rate constant (K) and the dissolution	122
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.21-0.25 mm, 100 defects/cm ³ , 10°C and 25 LPM.	
C.14	The overall rate constant (K) and the dissolution	123
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.42-0.50 mm, 50 defects/cm ³ , 10°C and 25 LPM.	
C.15	The overall rate constant (K) and the dissolution	123
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.42-0.50 mm, 100 defects/cm ³ , 10°C and 25 LPM.	
C.16	The overall rate constant (K) and the dissolution	124
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.500-0.707 mm, 50 defects/cm ³ , 10°C and 25 LPM.	

C.17	The overall rate constant (K) and the dissolution	124
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.500-0.707 mm, 100 defects/cm ³ , 10°C and 25 LPM.	
C.18	The overall rate constant (K) and the dissolution	125
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	pure plaster, 10°C and 35 LPM.	
C.19	The overall rate constant (K) and the dissolution	125
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.21-0.25 mm, 50 defects/cm ³ , 10°C and 35 LPM.	
C.20	The overall rate constant (K) and the dissolution	126
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.21-0.25 mm, 100 defects/cm ³ , 10°C and 35 LPM.	
C.21	The overall rate constant (K) and the dissolution	126
	coefficient (k_d) compared with the mass transfer	
	coefficient (k _m) along the pipe length under condition	
	0.42-0.50 mm, 50 defects/cm ³ , 10°C and 35 LPM.	
C.22	The overall rate constant (K) and the dissolution	127
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.42-0.50 mm, 100 defects/cm ³ , 10°C and 35LPM.	
C.23	The overall rate constant (K) and the dissolution	127
	coefficient (k_d) compared with the mass transfer	
	coefficient (k_m) along the pipe length under condition	
	0.500-0.707 mm, 50 defects/cm ³ , 10°C and 35LPM.	

C.24 Mass The overall rate constant (K) and the dissolution 128 coefficient (k_d) compared with the mass transfer coefficient (k_m) along the pipe length under condition 0.500-0.707 mm, 100 defects/cm³, 10°C and 35LPM.