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APPENDICES

Appendix A Dissolution Rate

The effluent, from the test section, was collected every 30 minutes and it was 
analyzed with AAS for the calcium concentration. The samples were diluted 20 times 
to fit AAS limitation. Scallop characteristics were obtained by taking photos every 
30 minutes. Thickness of plaster pipe was measured every centimeter along the pipe 
and calculated to get the dissolution rate profile along the pipe at the end of the test. 
Moreover, pressure drop was also measured every 30 minutes between the inlet and 
outlet of the conduit by pressure transducer.

A.l Dissolution Rate with Time 
A. 1.1 Effect o f Flow Rate

Figure A.l Dissolution rate with time at pH7 and 30°c.
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Figure A.2 Dissolution rate with time at pH 10 and 30°c. 

A. 1.2 Effect o f Defect Size
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Figure A.3 Dissolution rate with time at different sizes of particles, 25°c, 100 
defects/cm3 and 25LPM.
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Figure A.4 Dissolution rate with time at different sizes of particles, 25°c, 100 
defects/cm3 and 35LPM.

Table A.l Average dissolution rate calculating from AAS at different sizes of initial 
defects and 25 LPM.

t(m in) Pure Plaster
"-Ï . ;

0.21-0.25 mm 
100 defects/cm3

0.42-0.50 mm 
100 defects/cm3

0.500-0.707 mm 
100 defects/cm3

30 0.283 2.036 3.111 0.848
60 1.810 1.867 2.036 1.131
90 1.414 1.188 3.620 3.903
120 1.471 1.244 1.697 1.244
150 2.489 2.715 1.697 3.337
180 3.451 2.206 1.980 1.131
210 2.376 3.337 2.941 4.582
240 2.149 2.715 0.679 2.885
270 1.810 0.735 1.923 2.545
300 1.414 2.432 1.640 3.055

“ T
1.867

1 '  a
2.048 2.133

‘I ^  r ï  ■ : ; -V - -

.ร::?.:;

-
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Table A.2 Average dissolution rate calculating from AAS at different sizes of initial
defects and 35 LPM.

๘; . v  t(m in)
p § ® p ilp  -ร■ ร';':'.* ร

Pure Plaster 0.21-0.25 mm 
100 defects/cm3V• ■'’> โ̂ /̂

0.42-0.50 mm 
100 defects/cm3

0.500-0.707 mm 
100 defects/cm3

30 1.821 2.455 4.276 5.147
60 2.138 5.068 3.722 3.168
90 1.821 1.584 6.098 4.039
120 3.009 5.623 1.821 7.682
150 3.801 2.217 2.534 6.256
180 3.088 2.217 5.147 1.901
210 3.960 3.009 2.851 2.138
240 2.930 5.147 4.831 2.138
270 3.168 3.088 3.405 4.752
300 3.088 0.950 1.109 1.980

* 2 ร *
•:พ.'-:-

, 882 3.136
ไร่แเ

3 579น•น/ น

O fi .
๘^1๘1๘.' ;;;'' .๘.-๘' 

ใ 920
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A. 1.3 Effect o f Defect Concentration

Figure A.5 Dissolution rate with time at different concentrations of particles, 0.21-
0.25 mm, 25°c and 25LPM.

Figure A.6 Dissolution rate with time at different concentrations of particles, 0.42-
0.50 mm, 25°c and 25LPM.
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Table A.3 Average dissolution rate calculating from AAS at different
concentrations of initial defects at defect size of 0.21-0.25 mm and 25LPM.

t(min) Pure Plaster 0.21-0.25 mm 
50 defects/cm3

0.21-0.25 mm 
100 defects/cm3

30 0.283 1.018 2.036
60 1.810 1.301 1.867
90 1.414 2.206 1.188
120 1.471 3.677 1.244
150 2.489 1.414 2.715
180 3.451 1.810 2.206
210 2.376 1.867 3.337
240 2.149 4.073 2.715
270 1.810 1.584 0.735
300 1.414 0.792 2.432

Average 
dissolution rate 

(g/m2min)
1.867

- ' \ .;รร;ร%i . 'litM .ไfzi.... r i ...
•

1.974
•V7'*.’ ■ k̂ . ■ '. 'ร*'. ~Ï - '■ พ.! ■ . . » .

■ ■ -■ ■ '■ 'พ-พ 
2.048

V i  . ร ': ■■■•■: - ? รพ '?& '.

■ พ -
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Table A.4 Average dissolution rate calculating from AAS at different
concentrations of initial defects at defect size of 0.42-0.50 mm and 25LPM.

t(min) Pure Plaster 0.42-0.50 mm 
50 defects/cm3

0.42-0.50 mm 
100 defects/cm3

30 0.283 3.394 3.111
60 1.810 2.998 2.036
90 1.414 1.584 3.620
120 1.471 2.432 1.697
150 2.489 2.149 1.697
180 3.451 0.962 1.980
210 2.376 2.432 2.941
240 2.149 1.697 0.679
270 1.810 0.566 1.923
300 1.414 2.545 1.640

Average 
dissolution rate 1.867 2.076 2.133

(g/m2min) 1-p - V: •■ ไ- ''ร ,
6.00

5.00

Ê
4.00

O
3.00

c
๐
ไว 2.00
๐
$
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Figure A.7 Dissolution rate with time at different concentrations of particles, 0.21- 
0.25 mm, 25°c and 35LPM.
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Figure A.8 Dissolution rate with time at different concentrations of particles, 0.42- 
0.50 mm, 25°c and 35LPM.

Table A.5 Average dissolution rate calculating from AAS at different 
concentrations of initial defects at defect size of 0.21-0.25 mm and 35LPM.

i  m
..... - • , „■ / i

Pure Plaster 0.21-0.25 mm 
50 defects/cm3

0.21-0.25 mm 
100 defects/cm3

30 1.821 2.613 2.455
60 2.138 1.505 5.068
90 1.821 1.346 1.584
120 3.009 3.564 5.623
150 3.801 5.385 2.217
180 3.088 1.980 2.217
210 3.960 5.385 3.009
240 2.930 4.910 5.147
270 3.168 3.247 3.088
300 3.088 0.792 0.950

Average 
dissolution rate 

(g/m2min)
2.883 3.136 3.136

V •พุ;/:vfk
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Table A.6 Average dissolution rate calculating from AAS at different
concentrations of initial defects at defect size of 0.42-0.50 mm and 35LPM.

t (min) Pure Piaster 0.42-0.50 mm 
50 defects/cm3

0.42-0.50 mm 
100defects/cm3

30 1.821 2.613 4.276
60 2.138 4.514 3.722
90 1.821 2.693 6.098
120 3.009 3.722 1.821
150 3.801 2.455 2.534
180 3.088 2.693 5.147
210 3.960 4.910 2.851
240 2.930 4.197 4.831
270 3.168 1.901 3.405
300 3.088 5.147 1.109

Average 
dissolution rate 

(g/m2min)
2.883 3.484 3.579

. . .  '  ’  1 £  ■ ' V  

.
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A. 1.4 Effect o f Temperature

Figure A.9 Dissolution rate with time at different temperatures, pure plaster and 
25LPM.
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Figure A.10 Dissolution rate with time at different temperatures, pure plaster and
35LPM.
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Figure A .ll Dissolution rate with time at different temperatures, 0.42-0.50 mm, 50 
defects/cm3 and 25LPM.

Figure A.12 Dissolution rate with time at different temperatures, 0.42-0.50 mm, 50
defects/cm3 and 35LPM.
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Figure A.13 Dissolution rate with time at different temperatures, 0.500-0.707 mm, 
50defects/cm3 and 25LPM.

Figure A.14 Dissolution rate with time at different temperatures, 0.500-0.707 mm,
50 defects/cm3 and 35LPM.
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Figure A.15 Dissolution rate with time at different temperatures, 0.21-0.25 mm, 
100 defects/cm3 and 25LPM.

Figure A.16 Dissolution rate with time at different temperatures, 0.21-0.25 mm,
100 defects/cm3 and 35LPM.
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Figure A.17 Dissolution rate with time at different temperatures, 0.42-0.50 mm, 
100 defects/cm3 and 25LPM.

Figure A.18 Dissolution rate with time at different temperatures, 0.42-0.50 mm,
100 defects/cm3 and 35LPM.
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Figure A.19 Dissolution rate with time at different temperatures, 0.500-0.707 mm, 
100 defects/cm3 and 25LPM.

Figure A.20 Dissolution rate with time at different temperatures, 0.500-0.707 mm,
100 defects/cm3 and 35LPM.
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A.2 Dissolution Rate along the Pipe Length
A.2.1 The Effect of Flow Rate

Figure A.21 Dissolution rate along the pipe length under pH7 and 30°c.

Figure A.22 Dissolution rate along the pipe length under pHIO and 30°c.
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Figure A.23 Dissolution along the pipe at different particle sizes, 100 defects/cm 
25LPM and 25°c.
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Figure A.24 Dissolution along the pipe at different particle sizes, 100 
defects/cm3,35LPM and 25°c.
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Table A.7 Average dissolution rate calculating from the thickness of pipe at 
different sizes of initial defects and 35 LPM.

« T  .

Flowrate

I p j p

25

25

25

Average 

dissolution rate 

(g/m2min)

1.967

2.144

C - P M s s
Flowrate

T  ; f f

35

35

35

dissolution rate

(g/m2min)
•

2.709

3.054

3.324

0̂̂ 500-0̂ 707 2  100
m m m  ■ -

25 2.423 35 3.566

A. 2.3 Effect o f Defect Concentration

0 10 20 30 40 50 60 70 80Pipe length (cm)

4.50
4.00

1 3.50
3.00

2 2.50
i  2.00
I  150

. ร ุ 1.00
8  050

■ Pure plaster■ 50dcfects/cm3■ 100defects/cm3

0.00

Figure A.25 Dissolution along the pipe at different particle concentrations, 0.21-
0.25 mm, 25LPM and 25°c.
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Figure A.26 Dissolution along the pipe at different particle concentrations, 0.21- 
0.25 mm, 35LPM and 25°c.

Table A.8 Average dissolution rate calculating from the thickness of pipe at 
different concentrations of initial defects and different flowrates.
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Figure A.27 Dissolution along the pipe at different particle concentrations, 0.42- 
0.50 mm, 25LPM and 25°c.
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Figure A.28 Dissolution along the pipe at different particle concentrations, 0.42-
0.50 m, 35LPM and 25°c.
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Table A.9 Average dissolution rate calculating from the thickness of pipe at 
different concentrations of initial defects and different flowrate.

A. 2.4 Effect o f Temperature

Figure A.29 Dissolution along the pipe at different temperatures, pure plaster, and
25LPM.
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Figure A.30 Dissolution along the pipe at different temperatures, pure plaster, and 
35LPM.

Figure A.31 Dissolution along the pipe at different temperatures, 0.21-0.25, 50
defects/cm3 and 35LPM.
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Figure A.32 Dissolution along the pipe at different temperatures, 0.42-0.50, 50 
defects/cm3 and 25LPM.

Figure A.33 Dissolution along the pipe at different temperatures, 0.42-0.50, 50
defects/cm3 and 35LPM.
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Figure A.34 Dissolution along the pipe at different temperatures, 0.500-0.707, 50 
defects/cm3 and 25LPM.

6.00 ;
. 1 0 C

Pipe length (cm)

Figure A.35 Dissolution along the pipe at different temperatures, 0.500-0.707, 50
defects/cm3 and 35LPM.
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Figure A.36 Dissolution along the pipe at different temperatures, 0.21-0.25, 100 
defects/cm3 and 25LPM.

Figure A.37 Dissolution along the pipe at different temperatures, 0.21-0.25, 100
defects/cm3 and 35LPM.
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Figure A.38 Dissolution along the pipe at different temperatures, 0.42-0.50, 100 
defects/cm3 and 25LPM.

Figure A.39 Dissolution along the pipe at different temperatures, 0.42-0.50, 100
defects/cm3 and 35LPM.
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Figure A.40 Dissolution along the pipe at different temperatures, 0.500-0.707, 100 
defects/cm3 and 25LPM.
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Figure A.41 Dissolution along the pipe at different temperatures, 0.500-0.707, 100
defects/cm3 and 35LPM.
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Appendix B Pressure Drop

B.l The Effect of Flow Rate

Table B.l Pressure drop under pH7 and 30°c.

160.00
140.00

0.00

•25LPM
■ 351PM

30 60 90 120 150 180 210 240 270 300 330Time (min)

Figure B.2 Pressure drop under pH 10 and 30°c.
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B.2 Effect of Defect Size

Figure B.3 Pressure drop at different size of particles, 100 defects/cm3, 25°c and 25 
LPM.

Figure B.4 Pressure drop at different size of particles, 100 defects/cm3, 25°c and 35
LPM.
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B.3 Effect of Defect Concentration

Figure B.5 Pressure drop with time at different concentrations of particles, 0.21- 
0.25 mm, 25°c and 25 LPM.

140.0
135.0
130.0

90.0

pure plaster 
- 50 defects/cm3 
-100 (Iefects/cm3

30 60 90 120 150 180 210 240 270 300 330Time (min)

Figure B.6 Pressure drop with time at different concentrations of particles, 0.21- 
0.25 mm, 25°c and 35 LPM.
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Figure B.7 Pressure drop with time at different concentrations of particles, 0.500- 
0.707 mm, 25°c and 25 LPM.

140.0
135.0

-•— pure plaster 
Hi— 50 defects/cm3 
-Hr— 100 defects/cm3

30 60 90 120 150 180 210 240 270 300 330Time (min)

Figure B.8 Pressure drop with time at different concentrations o f particles, 0.500-
0.707 mm, 25°c and 35 LPM.
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B.4 Effect of Temperature

Figure B.9 Pressure drop with time at different temperatures, pure plaster and 25 
LPM.

Figure B.10 Pressure drop with time at different temperatures, pure plaster and 35 
LPM.
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Figure B.l 1 Pressure drop with time at different temperatures, 0.42-0.50, 50 
defects/cm3 and 25 LPM.

Figure B.12 Pressure drop with time at different temperatures, 0.42-0.50, 50
defects/cm3 and 35 LPM.
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Figure B.13 Pressure drop with time at different temperatures, 0.500-0.707, 50 
defects/cm3 and 25 LPM.

Figure B.14 Pressure drop with time at different temperatures, 0.500-0.707, 50
defects/cm3 and 35 LPM.
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Figure B.15 Pressure drop with time at different temperatures, 0.21-0.25, 100 
defects/cm3 and 25 LPM.

Figure B.16 Pressure drop with time at different temperatures, 0.21-0.25, 100
defects/cm3 and 35 LPM.
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Figure B.17 Pressure drop with time at different temperatures, 0.42-0.50, 100 
defects/cm3 and 25 LPM.

Figure B.18 Pressure drop with time at different temperatures, 0.42-0.50, 100
defects/cm3 and 35 LPM.
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Figure B.19 Pressure drop with time at different temperatures, 0.500-0.707, 100 
defects/cm3 and 25 LPM.

Figure B.20 Pressure drop with time at different temperatures, 0.500-0.707, 100
defects/cm3 and 35 LPM.
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Appendix c  The Mechanism of Gypsum Dissolution

c .l  Effect of Flow rate

0 20 40 1_ , 1 60 80Pipe Length (cm)

Figure c . l  The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition pH7, 30°c and 25 LPM.
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Figure C.2 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition pH7, 30°c and 35 LPM.

Figure C.3 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient ( k m )  along the pipe length under
condition pH 10, 30°c and 25 LPM.
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Figure C.4 The overall rate constant (K) 
compared with the mass transfer coefficient 
condition pH 10, 30°c and 35 LPM.

and the dissolution coefficient (kd) 
(km) along the pipe length under

C.2 Effect of Defect size

0
0 10 20 30 40 50 60 70 80Pipe length (cm)

Figure C.5 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) the pipe length under condition 
0.21-0.25 mm, 100 defects/cm3, 25°c and 25 LPM.
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Figure C.6 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.42-0.50 mm, 100 defects/cm3, 25°c and 25 LPM.

Figure C.7 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.500-0.707 mm, 100 defects/cm3, 25°c and 25 LPM.
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C.3 Effect of Defect Concentration
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Figure C.8 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.21-0.25 mm, 50 defects/cm3, 25°c and 25 LPM.

Figure C.9 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.21-0.25 mm, 100 defects/cm3, 25°c and 25 LPM.
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Pipe Length (cm)

Figure C.10 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.500-0.707 mm, 50 defects/cm3, 25°c and 25 LPM.

Figure c . l l  The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.500-0.707 mm, 100 defects/cm3, 25°c and 25 LPM.
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C.4 Effect of Temperature
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Figure C.12 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition pure plaster, 10°c and 25 LPM.
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Figure C.13 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.21-0.25 mm, 100 defects/cm3, 10°c and 25 LPM.
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Figure C.14 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.42-0.50 mm, 50 defects/cm3, J 0°c and 25 LPM.
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Figure C.15 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.42-0.50 mm, 100 defects/cm3, 10°c and 25 LPM.
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Figure C.16 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.500-0.707 mm, 50 defects/cm3, 10°c and 25 LPM.
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Figure C.17 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.500-0.707 mm, 100 defects/cm3, 10°c and 25 LPM.
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Figure C.18 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition pure plaster, 10°c and 35 LPM.

0.0001

0 10 20 30 40 50 60 70 80
Pipe Length (cm)

k (m/s) 

km (m/s) 

Kd(m/s)

0.0006
0.0005

<. 0.0004 £
I  0.0003 
E
Q 0.0002

Figure C.19 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.21-0.25 mm, 50 defects/cm3, 10°c and 35 TPM.
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Figure C.20 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition'0.21-0.25 mm, 100 defects/cm3, 10°c and 35 LPM.

Pipe Length (cm)

Figure C.21 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.42-0.50 mm, 50 defects/cm3, 10°c and 35 LPM.
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Figure C.22 The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.42-0.50 mm, 100 defects/cm3, 10°c and 35LPM.
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Figure C.23 The overall rate constant (K) and the dissolution coefficient (kd)
compared with the mass transfer coefficient (km) along the pipe length under
condition 0.500-0.707 mm, 50 defects/cm3, 10°c and 35LPM.
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Figure C.24 Mass The overall rate constant (K) and the dissolution coefficient (kd) 
compared with the mass transfer coefficient (km) along the pipe length under 
condition 0.500-0.707 mm, 100 defects/cm3, 10°c and 35LPM
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