ADSORPTIVE REMOVAL OF SULFUR COMPOUNDS FROM DIESEL USING ACTIVATED CARBON AND ALUMINA MODIFIED WITH Cu (I) AND Ni (II)

Sirapa Prateepamornkul

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2009

522058

Thesis Title:	Adsorptive Removal of Sulfur Compounds from Diesel
	Using Activated Carbon and Alumina Modified with Cu(I)
	and Ni(II)
By:	Sirapa Prateepamornkul
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Pomthong Malakul
	Dr. Thomas Michel

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

-----•

(Asst. Prof. Pomthong Malakul)

.....

(Dr. Michel Thomas)

Jhn/

(Asst. Prof. Siriporn Jongpatiwut)

litte tegi

(Assoc. Prof. Metta Chareonpanich)

ABSTRACT

 5073011063: Petroleum Technology Program
 Sirapa Prateepamornkul: Adsorptive Removal of Sulfur Compounds from Diesel Using Activated Carbon and Alumina Modified with Cu(I) and Ni(II).
 Thesis Advisors: Asst. Prof. Pomthong Malakul and Dr. Michel Thomas 98 pp.
 Keywords: Adsorption/ Impregnation/ Activated carbon/ Activated alumina/

Desulfurization

This research studied the adsorptive capacity and selectivity of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) in simulated diesel fuels containing polyaromatic or nitrogen compounds on activated carbon and alumina, modified with Cu^+ and Ni^{2+} using different preparation methods. Direct impregnation by using CuCl/CH₃CN was found to be unsuitable due to the stability and low solubility of Cu⁺. Impregnation was therefore performed with an aqueous solution of CuCl₂ following by a reduction step of CuCl₂ into CuCl using H₂. For Ni²⁺, an aqueous solution of NiCl₂ was used. A suitable feed flow rate and granulometry of the adsorbent was found to be 0.4 cm³/min and 100 to 400 µm, while the optimum temperature was 60°C and 90°C for Ni²⁺ and Cu⁺ impregnated alumina, respectively. The adsorption capacity at the sulfur breakthrough followed the order non-impregnated macroporous alumina < Cu⁺/macroporous alumina < nonimpregnated mesoporous alumina $< Cu^{+}/mesoporous$ alumina $< Ni^{2+}/macroporous$ alumina $< Ni^{2+}/mesoporous$ alumina $< Cu^{+}/AC < non-impregnated AC$. The breakthrough capacity of DBT was higher than 4,6-DMDBT for both of Ni²⁺ and Cu⁺/mesoporous alumina. Moreover, the breakthrough capacity of DBT without polyaromatic and nitrogen compounds was higher than that with polyaromatic and nitrogen compounds.

บทคัดย่อ

ศิรภา ประที่ปอมรกุล: การกำจัดสารประกอบกำมะถันจากน้ำมันดีเซล โดยใช้ถ่านกับ มันด์และอะลูมินาดัดแปลง โดยคอปเปอร์และนิกเกิลเป็นตัวดูดซับ (Adsorptive Removal of Sulfur Compounds from Diesel Using Activated Carbon and Alumina Modified with Cu(I) and Ni(II)) อ. ที่ปรึกษา : ผศ. ดร. ปมทอง มาลากุล ณ อยุธยา, ดร. โทมัส มิเชล 98 หน้า

ในงานวิจัยนี้ศึกษาประสิทธิภาพของการดูคซับและความเฉพาะเจาะจงในการดูคซับไค เบนโซไทโอฟีนและ 4,6-ไดเมททิลไดเบนโซไทโอฟีนในแบบจำลองน้ำมันคีเซลที่มีสารประกอบ พอลิอะโรมาติกหรือสารประกอบในโตรเจนปน ด้วยตัวคคซับประเภทถ่านกัมมันต์ (Activated carbon, AC) และอะลูมินา (Alumina) ที่อิมเพรกเนชั่นด้วย Cu $^+$ และ Ni $^{2+}$ โดยใช้วิธีการเตรียม หลายวิธี จากการทคลองพบว่าการอิมเพรกเนชั่นโดยตรงโดยใช้ CuCl/CH3CN นั้นไม่เหมาะสม เนื่องจากความไม่เสถียรและความสามารถในการละลายที่ต่ำของ Cu⁺ คังนั้นจึงใช้วิธิอิมเพ รกเนชั่นที่ใช้สารละลายของ CuCl2 และตามด้วยการรีดิวซ์ของ CuCl2 เป็น CuCl โดยใช้ก๊าซ ้ไฮโครเจน หรือใช้สารละลาย NiCl₂ สำหรับ Ni²⁺ นอกจากนี้ พบว่าความเร็วที่เหมาะสมของ แบบจำลองน้ำมันดีเซลคือ 0.4 ลูกบาศก์เซนติเมตรต่อนาที โดยมีเส้นผ่ เนศูนย์กลางของตัวดูดซับ ีที่เหมาะสมคือ 100-400 ไมโครเมตร และอุณหภูมิที่เหมาะสมสำหรับการดุดซับของ Ni²⁺ เท่ากับ 60 องศาเซลเซียส และสำหรับ Cu⁺ เท่ากับ 90 องศาเซลเซียส จากผลการศึกษาพบว่า ความสามารถในการดูดซับของไดเบนโซไทโอฟีนเพิ่มขึ้นตามลำดับดังนี้ Macroporous alumina < Cu⁺/Macroporous alumina < Mesoporous alumina < Cu⁺/Mesoporous alumina $< Ni^{2+}/Macroporous$ alumina $< Ni^{2+}/Mesoporous$ alumina $< Cu^{+}/AC < AC$ max พบว่า ตัวดูคซับที่อิมเพรกเนชันค้วย Ni²⁺ และ Cu⁺ นั้น มีประสิทธิภาพในการดูคซับไดเบนโช ไทโอฟีนได้มากกว่า 4,6-ไดเมททิลไดเบนโซไทโอฟีน นอกจากนี้ ยังพบว่าประสิทธิภาพในการ ดูดซับไดเบนโซไทโอฟีนในระบบที่ไม่มีสารประกอบพอลิอะโรมาติกหรือไนโตรเจนนั้นสูงกว่า ในระบบที่มีสารประกอบพอลิอะโรมาติกหรือในโตรเจน

ACKNOWLEDGEMENTS

I would like to sincerely express my thanks and gratitude to the following people and organization. Without their help, this thesis could not be very fruitful.

First of all, I would sincerely like to thank my advisors, Asst. Prof. Pomthong Malakul and Dr. Thomas Michel, for their help and guidance on a day to day basis during my doing research at the Petroleum and Petrochemical College and Institut Français du Pétrole (IFP). I would really appreciate their advice, suggestions, and comments.

I would like to give special thanks to Ms. Sandra Montpeyroux, Ms. Aurélié Marsallon, Ms. Michèle Maricar-Pichon for their kindly helping and assisting me during my period time at Institut Français du Pétrole (IFP).

I would really appreciate Dr. Siriporn Jongpatiwut and Assoc. Prof. Metta Chareonpanich, for kindly serving on my thesis committee.

I would also like to thank all my professors who guided me through their courses, giving me a chance to get knowledge about my thesis.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

I would also like to express my special thank to the Royal Thai Government Research Fund and EGIDE for financial support.

Thanks to all of staffs in PPC, the IFP's technicians and all the graduate students at PPC, who helped me over the year.

Finally, special thanks to my parents for all their patience and understanding through my research time. Without their support this project would not have been possible.

TABLE OF CONTENTS

n		
-	Α	 н.

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	х
List of Figures	xiv

CHAPTER

I	INTRODUCTION	1			
II	LITERATURE REVIEW				
	2.1 Transportation fuels and sulfur compositions	3			
	2.1.1 Transportation fuels	3			
	2.1.2 Sulfur compositions	4			
	2.2 Sulfur removal processes	7			
	2.2.1 Conventional hydrodesulfurization (HDS)	8			
	2.2.2 Desulfurization by adsorption	9			
	2.3 Adsorbents for sulfur removal	11			
	2.3.1 Types of adsorbent	11			
	2.3.1.1 Activated carbons	11			
	2.3.1.2 Molecular-sieve zeolites	12			
	2.3.1.3 Silica gel	14			
	2.3.1.4 Activated alumina	15			
	2.3.2 Types of metal loading on adsorbent	16			
	2.3.3 Adsorbents preparation	18			
	2.3.3.1 Precipitation and coprecipitation	18			
	2.3.3.2 Sol-gel process	21			

CHAPTER					PAGE
			2.3.3.3	Ion exchange	23
			2.3.3.4	Impregnation	23
		2.3.4	Cu imp	regnations	24
	2.4	Desor	rption		25
III	EX	PERI	MENTA	\L	27
	3.1	Mate	rials		27
	3.2	Equip	oments		28
	3.3	Meth	odology		29
		3.3.1	Adsorb	ents preparation	29
			3.3.1.1	Preparation of Cu impregnated on activated	
				alumina by using CuCl ₂ in deionized water	29
			3.3.1.2	Preparation of Cu impregnated on activated	
				carbon by using CuCl ₂ in ethanol	29
			3.3.1.3	Preparation of Cu impregnated on activated	
				alumina by using CuCl in 75% acetonitrile-	
				25% deionized water	29
			3.3.1.4	Preparation of Ni impregnated on activated	
				alumina by using NiCl ₂ in deionized water	30
		3.3.2	Reducti	on	30
		3.3.3	Charact	erization of the adsorbents	30
		3.3.4	Prepara	tion of the simulated diesel	31
		3.3.5	Adsorp	tion of sulfur compounds from simulated dies	el
			by fixed	bed adsorption	31
		3.3.6	Sulfur c	compounds analysis	33
		3.3.7	Calcula	tion method of the breakthrough curve	34
			3.3.7.1	Definitions of the different volumes in the	
				column	36
			3.3.7.2	Porosity levels in the column	36

CHAPTER		PAGE
	3.3.7.3 First moment of the breakthrough curve (μ)	37
IV	RESULTS AND DISCUSSION	42
	4.1 Adsorbent characterization	42
	4.1.1 Characterization of adsorbent by nitrogen	
	adsorption/desorption method and mercury	
	porosimetry	42
	4.1.2 Temperature-programmed reduction	47
	4.1.2.1 Temperature-programmed reduction of	
	CuCl ₂ impregnated on the adsorbent	47
	4.1.2.2 Temperature-programmed reduction of	
	CuCl in 75% acetonitrile-25% deionized	
	water impregnated on the adsorbent	51
	4.1.2.3 Temperature-programmed reduction of	
	NiCl ₂ impregnated on the adsorbent	53
	4.2 Fixed-bed adsorption experiments	54
	4.2.1 Effect of feed flow rate on the sulfur adsorption	
	capacities	55
	4.2.2 Influence of adsorbent granulometry on the sulfur	
	adsorption capacities	56
	4.2.3 Influence of the adsorption temperature on the	
	sulfur adsorption capacities	58
	4.2.4 Effect of different adsorbents on the sulfur	
	adsorption capacities	61
	4.2.5 Influence of Cu charge on the sulfur adsorption	
	capacities	63
	4.2.6 Comparison of the sulfur adsorption capacities with	
	different types of sulfur compounds	66
	4.2.7 Comparison of the sulfur adsorption capacities in	
	presence of polyaromatic compounds	69

CHAPTER			PAGE
	4.2.8 Co	mparison of the sulfur adsorption capacities in	
	pre	sence of nitrogen compounds	76
V	CONCLUSI	ONS AND RECOMMENDATIONS	84
REFERENC		ES	86
	APPENDICI	ES	89
	Appendix A	Calculation of sample preparation	89
	Appendix B	Calculation of amount of metal loading on	
		adsorbent	91
	Appendix C	Calculation of amount of adsorption of	
		sulfur compounds in dynamic adsorption	
		experiment	93
	CURRICUL	UM VITAE	98

LIST OF TABLES

TABLE		
2.1	Typical compositions of transportation fuels (vol %)	1
2.2	Typical organic sulfur compounds	5
2.3	The organic sulfur compounds and their hydrotreating	
	pathway	9
2.4	Pore sizes in typical activated carbon	12
2.5	Selected well-characterized zeolites of interest in catalysis	13
2.6	Some industrially relevant catalysts and supports obtained by	
	precipitation or coprecipitation techniques	19
3.1	Physical properties of sulfur compounds and simulated	
	diesel fuel	28
3.2	GC conditions for the analysis	33
4.1	Properties of adsorbents by using the Nitrogen adsorption /	
	desorption methods at 77K	42
4.2	Properties of adsorbents by using the Mercury porosimetry	44
4.3	Hydrogen consumption measured in TPR measurement for	
	Cu	48
4.4	Hydrogen consumption measured in TPR measurement for	
	CuCl ₂ reduced under H ₂	50
4.5	Hydrogen consumption measured in TPR measurement for	
	CuCl ₂ reduced under He	51
4.6	Hydrogen consumption measured in TPR measurement for	
	CuCl	52
4.7	Hydrogen consumption measured in TPR measurement for	
	NiCl ₂	54

TABLE

PAGE

4.8	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel in Ni ²⁺	
	impregnated on mesoporous alumina at different feed flow	
	rates	56
4.9	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel in Ni ²⁺	
	impregnated on mesoporous alumina in different sizes of	
	adsorbents	57
4.10	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel in Ni ²⁺	
	impregnated on mesoporous alumina with different	
	adsorption temperatures	58
4.11	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel in Cu^+	
	impregnated on mesoporous alumina with different	
	adsorption temperatures	60
4.12	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel with different	
	adsrobents	62
4.13	Breakthrough and adsorption capacities loading for	
	dibenzothiophene from simulated diesel fuel in Cu ²⁺	
	impregnated on mesoporous alumina	65
4.14	Breakthrough and adsorption capacities loading for	
	dibenzothiophene and 4,6-dimethyldibenzothiopheme from	
	simulated diesel fuel in Ni ²⁺ impregnated on mesoporous	
	alumina	66
	w. w	00

TABLE

4.15	Breakthrough and adsorption capacities loading for	
	dibenzothiophene and 4,6-dimethyldibenzothiopheme from	
	simulated diesel fuel in Ni ²⁺ impregnated on mesoporous	
	alumina	68
4.16	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, from simulated diesel fuel in Ni ²⁺	
	impregnated on mesoporous alumina	70
4.17	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, naphthalene and phenanthrene from	
	simulated diesel fuel including polyaromatic in Ni ²⁺	
	impregnated on mesoporous alumina	73
4.18	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, from simulated diesel fuel in Cu^+	
	impregnated on mesoporous alumina	74
4.19	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, naphthalene and phenanthrene from	
	simulated diesel fuel including polyaromatic in Cu ⁺	
	impregnated on mesoporous alumina	75
4.20	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, from simulated diesel fuel in Ni ²⁺	
	impregnated on mesoporous alumina	78
4.21	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, carbazole and acridine from simulated	
	diesel fuel including nitrogen compounds in Ni ²⁺	
	impregnated on mesoporous alumina	79
4.22	Breakthrough and adsorption capacities loading for	
	dibenzothiophene, from simulated diesel fuel in Cu^+	
	impregnated on mesoporous alumina	81

TABLE

PAGE

xiii

4.23 Breakthrough and adsorption capacities loading for dibenzothiophene, carbazole and acridine from simulated diesel fuel including nitrogen compounds in Cu⁺
impregnated on mesoporous alumina

LIST OF FIGURES

FIGU	RE	PAGE
2.1	GC-FPD chromatograms of gasoline, jet fuel and diesel for	
	identification of sulfur compounds	6
2.2	Desulfurization technologies classified by nature of a key	
	process to remove sulfur	7
2.3	Siloxane group	15
2.4	Preparation scheme for precipitated catalyst. Optional	
	preparation steps are indicated by square brackets	20
2.5	Schematic diagram showing the various steps of a sol-gel	
	process	22
3.1	Schematic of the fixed bed adsorption breakthrough	32
3.2	Collector in the fixed bed adsorption model	33
3.3	Gas chromatography	34
3.4	Support of vials in gas chromatography	34
3.5	The adsorber geometry	35
3.6	Characteristics of a typical adsorption breakthrough curve	38
3.7	The first moment of the breakthrough curve (μ)	39
4.1	Temperature-programmed reduction (TPR) of CuCl ₂	
	impregnated on mesoporous alumina in 10% H ₂ in Ar	48
4.2	Temperature-programmed reduction (TPR) of $CuCl_2$	
	impregnated on mesoporous alumina in 10% H ₂ in Ar	49
4.3	Temperature-programmed reduction (TPR) of CuCl ₂	
	impregnated on mesoporous alumina reduced by H_2	50
4.4	Temperature-programmed reduction (TPR) of CuCl ₂	
	impregnated on mesoporous alumina "reduced" by He	51

FIGURE

PAGE

4.5	Temperature-programmed reduction (TPR) of CuCl in 75%	
	cetonitrile-25% deionized water impregnated on mesoporous	
	in 10% H ₂ in Ar	53
4.6	Temperature-programmed reduction (TPR) of NiCl ₂	
	impregnated on mesoporous alumina in 10% H ₂ in Ar	54
4.7	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina at 2	
	cm ³ /min and 4 cm ³ /min	55
4.8	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina in	
	size of 4 mm and 100-400 µm	57
4.9	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina with	
	adsorption temperature at 30°C and 60°C	59
4.10	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Cu^+ impregnated on mesoporous alumina with	
	adsorption temperature at 60°C and 90°C	60
4.11	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over all types of adsorbent	63
4.12	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Cu ²⁺ impregnated on mesoporous alumina	
	without reduction, reduction by He, and reduction by H_2	64
4.13	Breakthrough curve of Ni ²⁺ impregnated on mesoporous	
	alumina over dibenzothiophene, DBT and 4,6-	
	dimethyldibenzothiophene, 4,6-DMDBT	67
4.14	Breakthrough curve of Cu^+ impregnated on mesoporous	
	alumina over dibenzothiophene, DBT and 4,6-	
	dimethyldibenzothiophene, 4,6-DMDBT	68

FIGURE

4.15	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina	
	without polyaromatic and with polyaromatic	70
4.16	The structure of dibenzothiophene, naphthalene, and	
	phenanthrene (c).	71
4.17	Breakthrough curve of all components in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina	72
4.18	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Cu ⁺ impregnated on mesoporous alumina	
	without polyaromatic and with polyaromatic	74
4.19	Breakthrough curve of all components in a fixed-bed	
	adsorber over Cu^+ impregnated on mesoporous alumina	75
4.20	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina	
	without nitrogen compounds and with nitrogen compounds	77
4.21	The structure of dibenzothiophene, carbazole, and acridine	78
4.22	Breakthrough curve of all components in a fixed-bed	
	adsorber over Ni ²⁺ impregnated on mesoporous alumina	79
4.23	Breakthrough curve of dibenzothiophene in a fixed-bed	
	adsorber over Cu ⁺ impregnated on mesoporous alumina	
	without nitrogen compounds and with nitrogen compounds	80
4.24	Breakthrough curve of all components in a fixed-bed	
	adsorber over Cu ⁺ impregnated on mesoporous alumina	82