SYNTHESIS AND CHARACTERIZATION OF POLYANILINE NANOPARTICLES BY USING TEMPLATE TECHNIQUE

Tuspon Thanpitcha

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2009

522048

Thesis Title:	Synthesis and Characterization of Polyaniline Nanoparticles
	by using Template Technique
By:	Tuspon Thanpitcha
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Ratana Rujiravanit
	Prof. Alexander M. Jamieson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..... Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Frof. Pomthong Malakul)

(Prof. Alexander M. Jamieson)

Thanyalde Chaisua

(Dr. Thanyalak Chaisuwan)

Ratana Rujiravanit

(Assoc. Prof. Ratana Rujiravanit)

Anunatarial

(Assoc. Prof. Anuvat Sirivat)

(Dr. Manisara Phiriyawirut)

ABSTRACT

4892008063: Polymer Science Program
Tuspon Thanpitcha: Synthesis and Characterization of Polyaniline
Nanoparticles by using Template Technique.
Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and
Prof. Alexander M. Jamieson 206 pp.
Keywords: Polyaniline/ Nanoparticles/ Chlorophyllin/ Carboxymethyl chitin/
Template/ Rheology

Various morphologies of polyaniline (PANI) nanoparticles, including nanofibrils, dendrites, and spheres, were synthesized by oxidative polymerization of aniline in the presence of different types of templates those are chlorophyllin, carboxymethyl chitin (CM-chitin), and partially cross-linked carboxymethyl chitin, respectively. The pristine PANI nanoparticles are obtained after removing the templates by simply washing with specific solvents. Contrary, irregularly-shaped aggregates with a diameter greater than 1 μ m are obtained by using the conventional method (without the addition of templates). Molecular characterizations (including UV-vis, FTIR, TGA, and XRD) suggest an identical structure between PANI synthesized with and without templates. The morphology and size of the synthesized PANI products are also dependent on various parameters, e.g. structure of the template materials, the ratio of monomer to template, and the synthetic conditions. CM-chitin template can be applied to synthesize a spherical shape of polypyrrole (PPY) nanoparticles as well. In a preparation of nanocomposite films, it is further explored that the synthesized PPY nanoparticles are better dispersed in the CM-chitin matrix than that of the conventional particles. Rheological measurements indicate that the addition of PPY nanoparticles can decrease the viscosity of alginate. In contrast, the increase of suspension viscosity is observed when adding the larger size of conventional PPY in alginate. The distinct rheological behaviours are influenced by the size of PPY nanoparticles as well as the electronic state of PPY nanoparticles.

บทคัดย่อ

ทัศน์พล ธัญพิชชา: การสังเคราะห์และวิเคราะห์สมบัติของพอลิอะนิลีนที่มีอนุภาคขนาด นาโนเมตรโดยการใช้เทคนิคเท็มเพล็ท (Synthesis and Characterization of Polyaniline Nanoparticles by using Template Technique) อ. ที่ปรึกษา : รศ. ดร. รัตนา รุจิรวนิช และ ศ. ดร. อเล็กซานเดอร์ เอ็ม จามิสัน 206 หน้า

พอลิอะนิลีนที่มีขนาดอนุภาคอยู่ในระดับนาโนเมตรและมีลักษณะทางสัณฐานวิทยาที่ แตกต่างกันไป ได้แก่ ลักษณะที่เป็นแบบเส้นใยขนาดเล็ก ลักษณะที่เป็นแบบเด็นไดรต์ และ ลักษณะที่เป็นแบบทรงกลม สามารถสังเคราะห์ได้จากปฏิกิริยาพอลิเมอไรเซชั่นแบบออกซิเดชั่น ของอะนิลีนในสารที่ทำหน้าที่เป็นเท็มเพล็ท ได้แก่ สารคลอโรฟิลลีน สารคาร์บอกซีเมธิลไคติน และสารคาร์บอกซีเมธิลไคตินที่มีการเชื่อมขวางของโครงสร้างเป็นแบบร่างแห ตามลำดับ สารเท็ม

เพล็ทที่เหลือจากการสังเคราะห์พอลิอะนิลีนที่มีขนาดอนุกาดอยู่ในระดับนาโนเมตรนั้นสามารถ กำงัดออกได้ง่ายโดยใช้ตัวทำละลายของสารเท็มเพล็ทเหล่านั้น ในทางกลับกันการสังเคราะห์พอ ลิอะนิลีนแบบวิชีทั่วไปที่ไม่ใช้สารเท็มเพล็ทจะทำให้ได้พอลิอะนิลีนที่มีรูปร่างไม่สม่ำเสมอ มีการ เกาะติดกันของอนุกาดจนมีขนาดที่ใหญ่กว่า 1 ไมโครเมตร จากการวิเคราะห์ทางโมเลกุลโดยใช้ เทคนิค ยูวี-วิสซิเบิลสเปคโตรสโคปี ฟูเรียทรานฟรอมสเปคโตรสโคปี เทอร์โมกราวิเมทริกอะ นาไลซีส และเอ็กซ์เรย์ดีแฟรคชั่นอะนาไลซีส บ่งบอกลึงการมีโครงสร้างทางเคมีที่เหมือนกันของ

พอลิอะนิลินที่สังเคราะห์ได้ไม่ว่าจะเป็นจากเทคนิคที่ใช้สารเท็มเพล็ทหรือไม่ใช้สารเท็มเพล็ท นอกจากนี้ยังพบว่าลักษณะทางสัณฐานวิทยาและขนาดอนุภาคของพอลิอะนิลินที่สังเคราะห์ได้จะ ขึ้นกับตัวแปรต่างๆ เช่นโครงสร้างของสารเท็มเพล็ท สัดส่วนของอะนิลินต่อสารเท็มเพล็ท และ สภาวะที่ใช้ในการสังเคราะห์พอลิอะนิลิน นอกจากนี้สารคาร์บอกซีเมธิลไคดินยังใช้เป็นเท็มเพล็ท ในการสังเคราะห์พอลิไพรโรลที่มีลักษณะเป็นแบบทรงกลมได้อีกด้วย ในส่วนของการเครียม สารประกอบนาโนคอมพอสิต จะพบว่าพอลิไพรโรลที่มีขนาดอนุภาคอยู่ในระดับนาโนเมตรจะมี การกระจายตัวในสารตัวกลางการ์บอกซีเมธิลไคตินที่ดีกว่าพอลิพอลิไพรโรลที่สังเคราะห์จาก วิธีการทั่วไป และจากการทดลองเพื่อศึกษาสมบัติการไหลของพอลิไพรโรลในสารละลายแอลจิ เนตพบว่าการเติมพอลิไพรโรลที่มีขนาดอนุภาคอยู่ในระดับนาโนเมตรทำให้ความหนืดของ สารละลายแอลจิเนตลดลงซึ่งต่างจากการเติมพอลิไพรโรลที่สังเคราะห์จากวิธีการทั่วไปที่มีขนาด

ใหญ่กว่าจะทำให้ความหนืดของสารละลายแอลจิเนตเพิ่มขึ้น ซึ่งพฤติกรรมทางการไหลที่แตกต่าง กันนั้นมีอิทธิพลมาจากความแตกต่างของขนาดอนุภาคของพอลิไพรโรลและสภาวะทางไฟฟ้าด้วย

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges his advisors, Assoc. Prof. Ratana Rujiravanit from the Petroleum and Petrochemical College, Chulalongkorn University and Prof. Alexander M. Jamieson from Department of Macromolecular Science and Engineering, Case Western Reserve University, for giving his the opportunity to be in the interesting avenue of research, their attention to the development of this work, invaluable knowledge, meaningful guidance, tolerance, and their encouragement all along the way.

He gratefully acknowledges all faculty members and staffs at the Petroleum and Petrochemical College, Chulalongkorn University as well as Case Western Reserve University for their knowledge and assistances.

Asst. Prof. Pomthong Malakul, Assoc. Prof. Anuvat Sirivat, Dr. Thanyalak Chaisuwan, and Dr. Manisara Phiriyawirut are further acknowledged for being his dissertation committee, making comments, and their helpful ideas and suggestions.

He wises to express his deep gratitude to his family for their unconditional love, continual encouragement, understanding, and for being his limitless inspiration source during all these years he has spent for his Ph.D study.

He owes his special thanks to all of his teachers in his life for giving his knowledge and supports. He is thankful for the contributions, wonderful friendship, liveliness, and supports from his friends and the other members of his research groups.

This work would not be carried out successfully without the financial supports provided by the Thailand Research Fund (The RGJ grant no. 2.L.CU/49/GT.1), the Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PPT Consortium), the Conductive and Electroactive Polymer Research Unit, the Petroleum and Petrochemical College, and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

TABLE OF CONTENTS

		PAGE
Ti	tle Page	i
A	ostract (in English)	iii
A	ostract (in Thai)	iv
A	cknowledgements	v
Та	ble of Contents	vi
Li	st of Tables	xi
Li	st of Figures	xii
Li	st of Schemes	xvii
СНАРТ	`ER	
I	INTRODUCTION	1
П	LITERATURE REVIEW	6
	2.1 Conductive Polymers	6
	2.1.1 Conduction Mechanisms	6
	2.1.2 The Concept of Doping	7
	2.1.3 Doping Process	8
	2.1.4 Literature Review of Conductive Polymers	10
	2.2 Polyaniline	12
	2.2.1 General Background	12
	2.2.2 Literature Review of Polyaniline	15
	2.3 Polyaniline Nanostructures	15
	2.3.1 Synthesis of Polyaniline Nanostructures	17
	2.3.2 Properties of Polyaniline Nanostructures	31
	2.3.3 Application of Polyaniline Nanostructures	32
	2.3.4 Literature Review of the Polyaniline Nanoparticles	35

Ш

2.4	4 Introduction to Polymer Rheology	37
	2.4.1 Non-Newtonian Flow	39
	2.4.2 Viscosity of Polymer Solution and Suspension	45
	2.4.3 Constitutive Equations	48
EX	PERIMENTAL	51
3.1	Materials	51
3.2	Equipment	51
	3.2.1 FTIR Spectrophotometer	51
	3.2.2 UV/Visible Spectrophotometer	51
	3.2.3 Thermogravimetric Analyzer (TGA)	52
	3.2.4 Different Scanning Calorimeter (DSC)	52
	3.2.5 Scanning Electron Microscope (SEM)	52
	3.2.6 X-ray Diffractometer (XRD)	53
	3.2.7 Electrometer	53
	3.2.8 Rheometer	53
	3.2.9 Dynamic Light Scattering Instrument	53
3.3	Methodology	54
	3.3.1 Synthesis of Polyaniline Nanofibrils by using	
	Chlorophyllin as an In-situ Seed	54
	3.3.2 Preparation of Chitin	54
	3.3.3 Measurement of Degree of Deacetylation of Chitin	55
	3.3.4 Preparation of Carboxymethyl Chitin (CM-chitin)	55
	3.3.5 Synthesis of Dendritic Polyaniline Nanoparticles	
	using CM-chitin Template	56
	3.3.6 Synthesis of Polyaniline Nanoparticles with Controlled	
	Size by using Cross-linked CM-chitin as a Template	56

88

IV	SYNTHESIS OF POLYANILINE NANOFIBRILS	
	USING AN IN-SITU SEEDING TECHNIQUE	60
	4.1 Abstract	60
	4.2 Introduction	60
	4.3 Experimental	63
	4.4 Results and Discussion	64
	4.5 Conclusions	80
	4.6 Acknowledgements	81
	4.7 References	81

V DENDRITIC POLYANILINE NANOPARTICLES SYNTHESIZED BY CARBOXYMETHYL CHITIN TEMPLATING

5.1	Abstract	88
5.2	Introduction	88
5.3	Experimental	90
5.4	Results and Discussion	92
5.5	Conclusions	103
5.6	Acknowledgements	104
5.7	References	104

VI POLYANILINE NANOPARTICLES WITH

CONTROLLED SIZES USING A CROSS-LINKED		
CARBOXYMETHYL CHITIN TEMPLATE		109
6.1	Abstract	109
6.2	Introduction	109
6.3	Experimental	112
6.4	Results and Discussion	114
6.5	Conclusions	127

HAPTEF	HAPTER	
	6.6 Acknowledgements	127
	6.7 References	128
VП	RHEOLOGICAL BEHAVIORS OF POLYPYRROLE	
	NANOPARTICLES/ALGINATE SUSPENSION	134
	7.1 Abstract	134
	7.2 Introduction	134
	7.3 Experimental	137
	7.4 Results and Discussion	140
	7.5 Conclusions	156
	7.6 Acknowledgements	157
	7.7 References	157
VШ	CONCLUSIONS AND RECOMMENDATIONS	163
	REFERENCES	165
	APPENDICES	181
	Appendix A Determination of Ohmic Linear Regime	181
	Appendix B Determination of Geometric Correlation Factor	
	(K) of Custom Built Two-Point Probe	183
	Appendix C Conductivity Measurement of the Doped	
	Polyaniline Synthesized in the Presence of Chlorophyllin	186
	Appendix D Conductivity Measurement of the Undoped	
	Polyaniline Synthesized in the Presence of Chlorophyllin	189
	Appendix E Conductivity Measurement of the Doped	
	Polyaniline Synthesized in the Presence of CM-chitin	192
	Appendix F Conductivity Measurement of the Undoped	

Polyaniline Synthesized in the Presence of CM-chitin

195

ix

CHAPTER

Appendix G Conductivity Measurement of the Doped	
Polyaniline Synthesized in the Presence of Cross-linked	
CM-chitin	198
Appendix H Conductivity Measurement of the Undoped	
Polyaniline Synthesized in the Presence of Cross-linked	
CM-chitin	201
CURRICULUM VITAE	204

LIST OF TABLES

TABI	LE	PAGE
	CHAPTER II	
2.1	Power-law parameters for some representative polymers	50
2.2	Typical $\dot{\gamma}$ range for polymer processing operations	50
	CHAPTER IV	
4.1	Electrical conductivities of pelletized PANI samples	80
	CHAPTER V	
5.1	Electrical conductivity of polyaniline nanoparticle	103
	CHAPTER VI	
6.1	Electrical conductivity of the PANI nanoparticles in the pellet	
	form	126
	CHAPTER VII	
7.1	Hydrodynamic diameter of the nPPY synthesized by using	
	different concentration of CM-chitin	154
7.2	Hydrodynamic diameter of the synthesized nPPY1CMCT	
	suspended in alginate	155

LIST OF FIGURES

FIGURE

СНАРТЕК ІІ

2.1	The π -conjugated system in the polyacetylene	6
2.2	Representative of simple shear flow (plane Couette flow)	
	between parallel plates whereby the upper plate is moving at	
	a constant velocity (U)	39
2.3	Typical dependence of apparent viscosity, η , of the polymeric	
	melt on shear rate, $\dot{\gamma}$, showing the zero-shear viscosity, η_o ,	
	plateau	41
2.4	Idealized view of the effect of shear on the entanglement of	
	concentrated polymer solutions and polymer melts	41
2.5	Effect of increasing molecular weight on the dependence of	
	polymer viscosity on $\dot{\gamma}$ for polystyrene (Mc = 31,200) at	
	183°C. Molecular weights are (a) 242,000; (b) 217,000; (c)	
	179,000; (d) 117,000 and (e) 48,500	42
2.6	WLF fit (curve) of the shift factor, $\alpha_T = \eta(T)/\eta(260^{\circ}\text{C})$, for	
	polycarbonate at a reference temperature of 260°C	43
2.7	Critical concentration regions showing transition from the	
	extremely dilute regions ($c < c^{**}$) where polymer coils are	
	isolated to the dilute region ($c > c^*$) where coils become	
	entangled	45
2.8	Concentration dependence of the specific viscosity of dilute	
	and moderately concentrated solutions of cellulose acetate in	
	dimethyl sulfoxide. The intersection of straight line that are	
	drawn through the dilute-solution (\bullet) and concentrated-	
	solution (\circ) data marks the critical concentration, c^* (ca. 3.7	
	g dL ^{-1} in this case)	46

2.9 Viscosity of polystyrene (411,000 molecular weight) in *n*butyl benzene at different concentration (*c*, unit of g cm⁻¹) as a function of shear strain-rate ($\dot{\gamma}$) at 30°C 47

CHAPTER IV

4.1	FTIR spectra of a) chlorophyllin (acid form); and PANI	
	polymerized in the presence of 4.07×10^{-2} mole ratio of	
	chlorophyllin to aniline monomer, after washing with b)	
	distilled water; c) acetone; and d) 0.5 M NaOH	66
4.2	UV-visible spectra of the synthesized PANI nanofibrils: a)	
	emeraldine salt form (PANI ES) and b) emeraldine base form	
	(PANI EB)	67
4.3	SEM images of a) nanorod-like chlorophyllin (acid form); b)	
	conventional PANI; and PANI polymerized in the presence of	
	different mole ratios of chlorophyllin to aniline monomer after	
	washing with acetone: c) 8.14×10^{-4} mole ratio; d) 8.14×10^{-3}	
	mole ratio; e) 1.63×10^{-2} mole ratio; and f) 4.07×10^{-2} mole	
	ratio	69
4.4	SEM images of PANI polymerized in the presence of	
	8.14×10 ⁻⁴ mole ratio of chlorophyllin to aniline monomer,	
	isolated from the polymerization reaction at different reaction	
	times: a) 0.5 h; b) 2 h; and c) 4 h, after washing with acetone	73
4.5	SEM images of PANI polymerized in the presence of	
	8.14×10 ⁻³ mole ratio of chlorophyllin to aniline monomer after	
	washing with different solvents: a) acetone; b) 0.5 M NaOH;	
	and c) distilled water	75

xiii

FIGURE

TGA thermograms of a) nanorod-like chlorophyllin (acid 4.6 form); b) conventional PANI EB; c) conventional PANI ES; d) PANI ES polymerized in the presence of 4.07×10^{-2} mole ratio of chlorophyllin to aniline monomer after washing with acetone; and e) PANI ES polymerized in the presence of 4.07×10^{-2} mole ratio of chlorophyllin to aniline monomer without washing with acetone 77 4.7 XRD patterns of a) chlorophyllin powder; PANI ES polymerized in the presence of b) 8.14×10^{-4} mole ratio of chlorophyllin to aniline monomer; c) 4.07×10^{-2} mole ratio of chlorophyllin to aniline monomer after washing with acetone; and d) PANI EB polymerized in the presence of 4.07×10^{-2} mole ratio of chlorophyllin to aniline monomer, after washing with 0.5 M NaOH 78

CHAPTER V

5.1	UV-visible spectra of the synthesized PANI nanoparticles: a)	
	emeraldine salt form (PANI ES) and b) emeraldine base form	
	(PANI EB)	93
5.2	SEM images of polyaniline nanoparticle: a) dendritic PANI	
	nanoparticle; b) conventional PANI	95
5.3	SEM images of polyaniline nanoparticle obtained from	
	different CM-chitin concentrations: a) PANI-(0.5CMCT)	
	without washing; b) PANI-(0.5CMCT) washed with H ₂ O; c)	
	PANI-(1CMCT) without washing; d) PANI-(1CMCT)	
	washed with H ₂ O; e) PANI-(2CMCT) without washing; f)	
	PANI-(2CMCT) washed with H_2O	98

5.4	FTIR spectra of polyaniline nanoparticle: a) conventional	
	PANI; b) PANI-(0.5CMCT); c) PANI-(1CMCT); d) PANI-	
	(2CMCT); d) CM-chitin (acid form)	100
5.5	TGA thermograms of polyaniline nanoparticle: a) CM-chitin	
	powder; b) PANI-(1CMCT); c) PANI-(2CMCT); d)	
	conventional PANI	101
5.6	XRD patterns of polyaniline nanoparticle: a) conventional	
	PANI; b) PANI-(0.5CMCT); c) PANI-(2CMCT); d) CM-	
	chitin powder	102

CHAPTER VI

6.1	UV-visible spectra of the synthesized PANI nanoparticles: a)	
	emeraldine salt form (PANI ES) and b) emeraldine base form	
	(PANI EB)	115
6.2	SEM images of the synthesized PANI: a) conventional PANI;	
	b) PANI-(1CMCT-0Glu); c) PANI-(1CMCT-3Glu); d)	
	PANI-(1CMCT-9Glu); and, e) PANI-(1CMCT-18Glu)	119
6.3	FTIR spectra of the synthesized PANI: a) conventional	
	PANI; b) PANI-(1CMCT-3Glu); c) PANI-(1CMCT-9Glu);	
	d) PANI-(1CMCT-18Glu); and, e) CM-chitin (acid form)	123
6.4	TGA thermograms of the synthesized PANI: a) PANI-	
	(1CMCT-3Glu); b) PANI-(1CMCT-9Glu); c) PANI-	
	(1CMCT-18Glu); d) conventional PANI; and, e) CM-chitin	
	(acid form)	124
6.5	XRD patterns of the synthesized PANI: a) conventional	
	PANI; b) PANI-(1CMCT-0Glu); c) PANI-(1CMCT-3Glu);	
	and, d) CM-chitin (acid form)	125

CHAPTER VII

7.1	SEM images of CPPY and nPPY (synthesized in the presence	
	of different CM-chitin concentrations) after washing with	
	distilled water: a) CPPY, b) nPPY-(025CMCT), c) nPPY-	
	(05CMCT), and d) nPPY-(1CMCT)	141
7.2	Cross-sectional morphologies of PPY/CM-chitin composite	
	films: a) CM-chitin; b) 10 wt% CPPY/CM-chitin; c) 50 wt%	
	CPPY/CM-chitin; and d) 50 wt% nPPY-(025CMCT)/CM-	
	chitin	143
7.3	FTIR spectra of a) CM-chitin (acid form); b) CPPY; c)	
	nPPY-(025CMCT)	144
7.4	Steady shear and oscillatory shear measurements of doped	
	CPPY suspended in 4 wt% alginate solution: a) plot of shear	
	viscosity against shear rate; b) plot of storage (G') and loss	
	(G") moduli against angular frequency; and c) plot of	
	dynamic viscosity against angular frequency	147
7.5	Steady shear and oscillatory shear measurements of the	
	doped nPPY-(025CMCT) suspended in 4 wt% alginate	
	solution: a) plot of shear viscosity against shear rate; b) plot	
	of dynamic viscosity against angular frequency; and c) plot of	
	storage (G') and loss (G") moduli against angular frequency	
		149
7.6	Plots of shear viscosity against shear rate of the different size	
	of nPPY/alginate suspension with a) 10 wt% nPPY content	
	and b) 30 wt% nPPY content	151
7.7	Plot of shear viscosity against shear rate of nPPY-	
	(025CMCT)/alginate suspension with different electronic	
	states of nPPY-(025CMCT)	153

LIST OF SCHEMES

SCHEME

PAGE

СНАРТЕК П

2.1	Doping process of emeraldine base polyaniline by protonic	
	acids	10
2.2	The general formula of polyaniline	12
2.3	The different oxidation states of polyaniline	12
2.4	A reaction diagram consistent with the interconversion of	
	different oxidation and protonation states of polyaniline	14

СНАРТЕВ Ш

3.1 \$	Schematic of two-point probe	58
--------	------------------------------	----

CHAPTER IV

4.1	Chlorophyllin structures under acid-base conditions	70
4.2	Proposed mechanism of formation of the synthesized PANI	
	nanofibrils based on adsorption of anilinium ion on	
	chlorophyllin nanorod seed particles	74

CHAPTER V

5.1	Proposed formation mechanism of dendritic polyaniline	
	nanoparticles using CM-chitin template. Note, not shown in	
	the diagram are the chloride counterions and associated	
	water of asolvation which accompany the clustering of	
	anilinium ions	97

CHAPTER VI

6.1	CM-chitin structures under acid-base conditions	117
-----	---	-----

SCHEME

6.2	Proposed formation mechanism of synthesized PANI	
	nanoparticles using non-cross-linked CM-chitin template.	
	Note, not shown in the diagram is the associated water of	
	asolvation which accompany the clustering of anilinium ions	118
6.3	Proposed formation mechanism of synthesized PANI	
	nanoparticles using cross-linked CM-chitin template. Note,	
	not shown in the diagram are the chloride counterions and	
	associated water of asolvation which accompany the	
	clustering of anilinium ions	121