EFFECT OF Ti COMPOUNDS ON HYDROGEN DESORPTION-ABSORPTION OF LiNH₂/LiAlH₄/MgH₂

Atsadawuth Siangsai

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2009

522068

Thesis Title:	Effect of Ti Compounds on Hydrogen Desorption-Absorption
	of LiNH ₂ /LiAlH ₄ /MgH ₂
By:	Mr. Atsadawuth Siangsai
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Pramoch Rangsunvigit
	Asst. Prof. Boonyarach Kitiyanan
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Pramoch B. Kiliyanan

(Assoc. Prof. Pramoch Rangsunvigit) (Asst. Prof. Boonyarach Kitiyanan)

Santi, Kulpra

(Dr. Santi Kulprathipanja)

(Assoc. Prof. Thirasak Rirksomboon)

Manep C.

(Asst. Prof. Manop Charoenchaitrakool)

ABSTRACT

5071005063: Petrochemical Technology Program Atsadawuth Siangsai: Effect of Ti Compounds on Hydrogen Desorption-Absorption of LiNH₂/LiAlH₄/MgH₂ Thesis Advisors: Assoc. Prof. Pramoch Rangsunvigit, Asst. Prof. Boonyarach Kitiyanan, and Dr. Santi Kulprathipanja, 63 pp. LiNH₂/LiAlH₄/MgH₂/Hydrogen Storage/Complex Hydrides

Solid hydrogen storage materials have been investigated as hydrogen carriers due to their safety in hydrogen applications. In contrast, they also have some disadvantages, such as a low hydrogen capacity, very high desorption/absorption temperature, low kinetic rate, and low reversibility. Many attempts have been made to identify and improve materials that can be applied for on-board hydrogen storage for fuel cells. In this work, Ti and Ti compounds were used to enhance the kinetics rate and stability of metal hydrides. The results report the effects of Ti and Ti compounds (TiO₂ and TiCl₃) on hydrogen desorption and absorption cycles of a LiNH₂/LiAlH₄/MgH₂ system and their implications on the system. We demonstrated that the formation of ammonia from the decomposition of LiNH₂ was suppressed by adding LiAlH₄ and MgH₂. In addition, LiNH₂/LiAlH₄/MgH₂ showed a lower onset desorption temperature than that of neat LiNH₂, up to 200°C. Moreover, doping with TiO_2 or $TiCl_3$ also lowered the decomposition temperature and accelerated the H₂ desorption of the ternary mixture (LiNH₂/LiAlH₄/MgH₂). In addition, the H₂ reabsorption ability of LiNH₂/LiAlH₄/MgH₂ was improved by doping it with Ti and Ti compounds, and Ti exhibited the best performance in the reversible H₂ capacity, 0.4 wt%. XRD patterns revealed the small peaks of Mg(AlH₄)₂ and Mg(NH₂)₂, which were indicated as the reversible phases of the ternary mixture. Moreover, the addition of carbon nanotube in 2:1:1 LiNH₂/LiAlH₄/MgH₂ also affected the reversibility of the hydrides.

บทคัดย่อ

อัษฎาวุธ เสียงใส: การศึกษาผลกระทบของสารประกอบไทเทเนียมต่อการปลดปล่อย และการดูดซับไฮโครเจนในระบบไฮไครค์ผสมของลิเธียมเอไมค์ ลิเธียมอะลูมิเนียมไฮไครค์ และ แมกนีเซียมไฮไครค์ (Effect of Ti Compounds on Hydrogen Desorption–Absorption of LiNH₂/LiAlH₄/MgH₂) อ. ที่ปรึกษา: รศ. คร. ปราโมช รังสรรค์วิจิตร, ผศ. คร. บุนยรัชต์ กิติ ยานันท์ และ คร. สันติ กุลประทีปัญญา, 63 หน้า

1

การกักเก็บไฮโดรเจนในของแข็งเป็นวิธีที่เหมาะสมสำหรับการกักเก็บไฮโดรเจนเพื่อใช้ ้เป็นเชื้อเพลิงสำหรับยานยนต์ที่ขับเคลื่อนโคยเครื่องยนด์ที่ใช้เซลล์เชื้อเพลิงอย่างไรก็ตาม การกัก ้เก็บไฮโครเจนโดยวิธีนี้มีข้อค้อยหลายอย่าง ได้แก่ ปริมาณไฮโครเจนที่กักเก็บได้ต่ำ ต้องใช้ อุณหภูมิสูงในการปลคปล่อยไฮโครเจน อัตราการเกิดปฏิกิริยาและความสามารถในการผันกลับได้ ต่ำ ดังนั้นวิทยานิพนธ์นี้จึงสนใจในการหาและพัฒนาวัสดุให้สามารถกักเก็บไฮโครเงนเพื่อ ประยุกต์ใช้กับเซลล์เชื้อเพลิงในยานพาหนะ ในการทคลองนี้ได้ศึกษาผลกระทบของโลหะหนัก ้ได้แก่ไทเทเนียม และสารประกอบโลหะหนักซึ่งได้แก่ ไทเทเนียมไคออกไซด์และไทเทเนียมไตร ้คลอไรด์ ที่มีต่อการปลคปล่อยและดูคซับไฮโครเจนในระบบไฮไครด์ผสมของลิเธียมเอไมด์ ลิ เธียมอะลูมิเนียมไฮไครค์ และแมกนีเซียมไฮไครค์ที่เตรียมโคยเครื่องบคแบบแรงเหวี่ยง จากผล การศึกษาพบว่าการเติมลิเธียมอะลูมิเนียมไฮไครค์ และแมกนีเซียมไฮไครค์ลงไปในลิเธียมเอไมค์ ้สามารถลดปริมาณแอมโมเนียที่เกิดจากลิเธียมเอไมด์ได้ นอกจากนี้สารผสมของลิเธียมเอไมด์ ลิ ้เธียมอะลูมิเนียมไฮไครค์ และแมกนี้เซียมไฮไครค์ สามารถปลคปล่อยไฮโครเจนที่อุณหภูมิต่ำกว่า การใช้ลิเธียมเอไมค์เพียงอย่างเคียว การเติมโลหะหนัก และสารประกอบโลหะหนักเพื่อช่วยลค อุณหภูมิในการปลคปล่อยไฮโครเจน โคยอุณหภูมิที่เริ่มเกิดการคายไฮโครเจนอยู่ที่ประมาณ 80-350 องศาเซลเซียส นอกจากนี้ยังสามารถเร่งการปลดปล่อยไฮโครเจนของสารผสมได้ อีกทั้งยัง สามารถเกิดการผันกลับได้ในสารผสมนี้ด้วย โดยที่สารผสมที่เติมไทเทเนียมลงไปมีความสามารถ ในการผันกลับได้ดีที่สุด ซึ่งสามารถผันกลับได้ 0.4 เปอร์เซนต์โดยน้ำหนักไฮโดรเจนต่อ น้ำหนักไฮไครค์ และจากผลการวิเคราะห์ด้วยเทคนิค XRD ได้พบหลักฐานของการเกิด แมกนี้เซียมอะลูมิเนียมไฮไครค์ และแมกนี้เซียมเอไมด์ ซึ่งบ่งชี้ว่าเป็นวัฏภาคที่ทำให้เกิคการผัน กลับได้ในสารผสมนี้ นอกจากนี้ยังได้ศึกษาผลของการเติมคาร์บอนนาโนทิวบ์ต่อการปลดปล่อย ไฮโครเจนของไฮไครค์ผสมด้วย จากการศึกษาพบว่า การเติมคาร์บอนนาโนทิวบ์มีผลต่อการผัน กลับได้ของไฮไดรด์ผสม

ACKNOWLEDGEMENTS

This thesis could not have been possible without the assistance of the following individuals and organizations.

First of all, I would like to express the deepest gratitude to Assoc. Prof. Pramoch Rangsunvigit, who is the kind supervisor, for his precious advice, providing me lots of opportunities to think and do work, and always suggesting me with valuable advices, encouragement, useful comments, and patience in proof reading my thesis.

I would like to express my sincere gratitude to Dr. Santi Kulprathipanja, my US advisor, for suggesting me with his valuable advices. I would also like to thank his wife, Mrs. Apinya Kulprathipanja for her kindness.

I also would like to thank Assist. Prof. Boonyarach Kitiyanan, who is the kind supervisors, for his precious advice and useful comments.

I especially extend my gratitude to my thesis committees, Assoc. Prof. Thirasak Rirksomboon and Asssist. Prof. Manop Charoenchaitrakool for their wellintentioned suggestions and comments.

Special thanks are forwarded to all professors who taught me and help to establish the knowledge, to PPC faculty and staff who supported me throughout this research work.

I would like to thank Dr. Yindee Suttisawat and Ms. Pattaraporn Sridechprasat, who give me useful information, helpful explanation and practical techniques throughout of my work.

Scholarship and financial supports to this work by The Reverse Brain Drain Project (RBD); and The Petroleum and Petrochemical College, and the Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University are greatly acknowledged.

Finally, I would like to thank my entire PPC friends for their friendly helps and encouragement. I am also very greatly indebted to my beloved family, who play the greatest role in my success, for the endless love, support, and encouragement.

TABLE OF CONTENTS

PAGE

Title Page	1
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	x

CHAPTER

I	INT	TRODUCTION	1
II	BA	CKGROUND AND LITERATURE SURVEY	3
	2.1	Hydrogen	3
	2.2	Hydrogen Storage	3
		2.2.1 Compressed Hydrogen Gas	3
		2.2.2 Liquid Hydrogen Storage	4
		2.2.3 Solid-state-Storage	4
		2.2.4 Storage via Chemical Reactions	5
	2.3	Metal Hydrides and Complex Hydrides Materials	5
		2.3.1 Dopants	11
		2.3.2 Nano-scale Hydrides	11
		2.3.3 Alkali Metal Hydrides	12
		2.3.4 Inter-Metallic Metal Hydrides	12
	2.4	Comparison of Material's Hydrogen Storage Densities	13
	2.5	Li–N–H system	14
	2.6	Li–Al–H system	17
	2.7	Mg–N–H system	18

CHAPTER

	2.8	Li-M	g–N–H system	19
	2.9	Li–Al	-N-H system	21
Ш	EX	PERIM	IENTAL	24
	3.1	Mater	ials and Equipment	24
		3.1.1	Materials	24
		3.1.2	Equipment	24
	3.2	Exper	imental Procedures	24
		3.2.1	Samples preparation	24
		3.2.2	Experimental set-up	25
	3.3	Hydro	ogen Desorption/Absorption and Characterization	27
		3.3.1	Hydrogen desorption	27
		3.2.2	Hydrogen absorption	29
		3.2.3	X-ray diffraction	29
		3.2.4	Temperature-programmed desorption	
			mass spectroscope (TPDMS)	29
IV	RES	SULTS	AND DISCUSSION	30
	4.1	Mater	ial Properties	30
		4.1.1	Lithium amide (LiNH ₂)	30
		4.1.2	Lithium aluminum hydride (LiAlH4)	31
		4.1.3	Magnesium hydride (MgH ₂)	32
	4.2	Effect	of LiAlH ₄ on Hydrogen Desorption of LiNH ₂	33
	4.3	Effect	of MgH ₂ on Hydrogen Desorption of LiNH ₂	34
	4.4	Effect	of Milling Time on Hydrogen Desorption of	
		2:1:1 I	LiNH ₂ /LiAlH ₄ /MgH ₂	36
	4.5	Effect	of Catalysts on Hydrogen Desorption of	38
		4.5.1	Effect of catalysts	38
		4.5.2	Reversibility of LiNH ₂ /LiAlH ₄ /MgH ₂	39

V

	4.5.2	Reversil	pility of LiNH ₂ /LiAlH ₄ /MgH ₂	39
		4.5.2.1	5 mol%TiO ₂ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	40
		4.5.2.2	5 mol%TiCl ₃ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	42
		4.5.2.3	5 mol%Ti-2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	44
4.6	Roles	of TiO ₂ , [^]	ΓiCl ₃ , and Ti on the LiNH ₂ /LiAlH ₄ /MgH ₂	
	Mixtu	re		47
4.7	Effect	of Carbo	n nanotube on Hydrogen Desorption of	
	2:1:1	LiNH2/Li.	AlH ₄ /MgH ₂	48
	4.7.1	5 wt% C	Carbon nanotube	
		+ 2:1:1	LiNH ₂ /LiAlH ₄ /MgH ₂	48
	4.7.2	10 wt%	Carbon nanotube	
		+ 2:1:1]	LiNH ₂ /LiAIH ₄ /MgH ₂	48
4.8	TPD a	nd MS of	2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	50
	4.8.1	Effect of	f adding $LiAlH_4$ or MgH_2 on $LiNH_2$	50
	4.8.2	2:1:1 Li	NH ₂ /LiAlH ₄ /MgH ₂	52
	4.8.3	Effect of	f Ti compounds on	
		2:1:1 Li	NH ₂ /LiAlH ₄ /MgH ₂	53
CO	NCLUS	SIONS AI	ND RECOMMENDATIONS	57
5.1	Conclu	usions		57
5.2	Recon	mendatio	ons	58

59 REFERENCES

CURRICULUM VITAE	63
------------------	----

LIST OF TABLES

TABLE

PAGE

CHAPTER II

2.1	Hydrogen storage capacities of hydrides	10
2.2	Examples of alkali metal hydrides and their properties	12
2.3	Examples of inter-metallic compounds	13

CHAPTER III

3.1	The molar ratio of the sample preparation step	25
3.2	Compressibility factors at different temperature ranges	
	(Perry et al., 1995)	28

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	Van't Hoff diagram showing dissociation pressures and	
	Temperature of various hydrides	
	(http://www.sc.doe.gov/bes/hydrogen.pdf)	6
2.2	Model of the metal hydrides interaction	
	(http://www.ovonic-hydrogen.com/solutions/technology1.htm)	7
2.3	The potential energy of a hydrogen molecule and of two	
	hydrogen atoms. The hydrogen molecule approaches to	
	the metal atom by Van der Waals forces and forms a physisorbed state.	
	Before diffusion into the metal, the hydrogen molecule has to	
	overcome the activation barrier and dissociates to form a	
	chemisorbed state (Züttel, 2003)	8
2.4	Pressure-concentration-temperature curve (PCT diagram)	
	and Van't Hoff plot (Logarithm of the equilibrium against	
	the reciprocal temperature)	
	(http://www.ovonic-hydrogen.com/solutions/technology1.htm)	9
2.5	Comparison of metal hydrides, carbon nanotubes, petrol and other	
	hydrocarbons. (Storing in hydrogen per mass and per volume)	
	(Schlapbach and Zuttel, 2001)	14

CHAPTER III

3.1	Schematic diagram of the experimental set-up	26
3.2	Schematic diagram of the actual set-up	26

CHAPTER IV

4.1	MS spectra of LiNH ₂ : a) hydrogen ($m/z = 17$) and	
	b) hydrogen (m/z = 2)	30
4.2	Hydrogen desorption profiles of LiAlH ₄	31
4.3	Hydrogen desorption profiles of MgH ₂	32
4.4	Hydrogen desorption profiles of 2:1 $LiNH_2/LiAlH_4$ and	
	its subsequent desorption.	33
4.5	MS spectra of 2:1 $LiNH_2/LiAlH_4$: a) hydrogen (m/z = 2) and	
	b) ammonia (m/z = 17)	34
4.6	Hydrogen desorption profiles of $2:1 \text{ LiNH}_2/\text{MgH}_2$ and	
	its subsequent desorption.	35
4.7	MS spectra of 2:1 $LiNH_2/MgH_2$: a) hydrogen (m/z = 2) and	
	b) ammonia (m/z = 17)	35
4.8	Hydrogen desorption profiles of 2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ :	
	Milled for 2 h (—) and Milled for 5 h ()	36
4.9	Hydrogen desorption profiles of 2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	
	milled for 5 h and its subsequent desorption	37
4.10	Hydrogen desorption profiles of 2:1:1 $LiNH_2/LiAlH_4/MgH_2$ (—),	
	$5 \text{ mol}\%\text{TiO}_2-2:1:1 \text{ LiNH}_2/\text{LiAlH}_4/\text{MgH}_2 (\dots),$	
	$5 \text{ mol}\%\text{TiCl}_3-2:1:1 \text{ LiNH}_2/\text{LiAlH}_4/\text{ MgH}_2(),$	
	and 5 mol%Ti-2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ (\cdot)	38
4.11	XRD patterns of 2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ :	
	a) after milling for 2 h, b) after hydrogen desorption	39
4.12	Hydrogen desorption profiles of 5 mol% TiO_2 -2:1:1 LiNH ₂ /	
	LiAlH ₄ /MgH ₂ and its subsequent desorption	40
4.13	XRD patterns of 5 mol%TiO ₂ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ :	
	a) after milling for 2 h, b) after hydrogen desorption, and	
	c) after hydrogen re-absorption	41

FIGURE

4.14	Hydrogen desorption profiles of 5 mol%TiCl ₃ -2:1:1 LiNH ₂ /	
	LiAlH ₄ /MgH ₂ and its subsequent desorption	43
4.15	XRD patterns of 5 mol%TiCl ₃ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ :	
	a) after milling for 2 h, b) after hydrogen desorption, and	
	c) after hydrogen re-absorption.	43
4.16	Hydrogen desorption profiles of 5 mol%Ti-2:1:1 LiNH ₂ /	
	LiAlH ₄ /MgH ₂ and its subsequent desorption	44
4.17	XRD patterns of 5 mol%Ti-2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ :	
	a) after milling for 2 h, b) after hydrogen desorption, and	
	c) after hydrogen re-absorption	45
4.18	Hydrogen desorption profiles in the subsequent cycles of	
	5 mol%TiO ₂ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ (),	
	5 mol%TiCl ₃ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ (),	
	and 5 mol%Ti–2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂ ()	46
4.19	Hydrogen desorption profiles of 5 wt% carbon nanotube +	
	2:1:1 LiNH ₂ / LiAlH ₄ /MgH ₂ and its subsequent desorption	48
4.20	Hydrogen desorption profiles of 10 wt% carbon nanotube +	
	2:1:1 LiNH ₂ / LiAlH ₄ /MgH ₂ and its subsequent desorption	49
4.21	MS spectra of ammonia ($m/z = 17$): a) LiNH ₂ ,	
	2:1 LiNH ₂ /LiAlH ₄ , and c) 2:1 LiNH ₂ /MgH ₂	50
4.22	MS spectra of hydrogen (m/z = 2): a) LiNH ₂ ,	
	2:1 LiNH ₂ /LiAlH ₄ , and c) 2:1 LiNH ₂ /MgH ₂ .	51
4.23	MS spectra of ammonia $(m/z = 17)$: a) LiNH2 and	
	b) 2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	52
4.24	MS spectra of hydrogen $(m/z = 2)$: a) LiNH ₂ and	
	b) 2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	53
4.25	MS spectra of ammonia (m/z = 17): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%TiO ₂ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	54

FIGURE

4.26	MS spectra of ammonia (m/z = 17): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%TiCl ₃ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	54
4.27	MS spectra of ammonia (m/z = 17): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%Ti-2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	55
4.28	MS spectra of hydrogen (m/z = 2): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%TiO ₂ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	55
4.29	MS spectra of hydrogen (m/z = 2): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%TiCl ₃ -2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	56
4.30	MS spectra of hydrogen (m/z = 2): a) 2:1:1 $LiNH_2/LiAlH_4/MgH_2$	
	and b) 5 mol%Ti-2:1:1 LiNH ₂ /LiAlH ₄ /MgH ₂	56