

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A system of LiNH₂/LiAlH₄/MgH₂ was investigated for its hydrogen storage capacity and reversibility. LiNH₂ was modified by adding with LiAlH₄ and MgH₂ to suppress the NH₃ emission from LiNH₂. Moreover, Ti and Ti compounds (TiO₂ and TiCl₃) were used to enhance the hydrogen capacity of the hydrogen storage material and improve the reversibility of the hydrides. The results showed that adding LiAlH₄ or MgH₂ in LiNH₂ led to the decrease in the desorption temperature and increase in the hydrogen capacity up to 3.1 wt% and 3.6 wt%, respectively. The hydrogen reabsorption capacity was also possible-0.8 wt% for 2:1 LiNH₂/LiAlH₄ and 2.3 wt% for 2:1 LiNH₂/LiAlH₄. Moreover, the NH₃ emission was suppressed by MgH₂ and LiAlH₄. However, a small amount of NH₃ emission and the lower temperature of the emission was obtained. Mixing LiNH₂ with LiAlH₄ and MgH₂ (2:1:1 LiNH₂/LiAlH₄/MgH₂) suppressed the NH₃ emission from the decomposition reaction, destabilized the LiNH₂ by decreasing the onset desorption temperature of the hydride, and increased the hydrogen capacity up to 3.2 wt%. However, it was not reversible. Types of catalysts had an effect on the amount of hydrogen desorption/absorption. The mixture of 2:1:1 LiNH₂/LiAlH₄/MgH₂ doped with 5 mol%TiO₂ provided a higher hydrogen capacity with 3.7 wt%, followed by doped with TiCl₃ and Ti with hydrogen capacity 3.3 wt% and 3.0 wt%, respectively. The mixture of 2:1:1 LiNH₂/LiAlH₄/MgH₂ doped with 5 mol%Ti gave the best performance in the reversibility, which re-absorbed hydrogen about 0.38 wt%, followed by doped with TiCl₃ and TiO₂. In addition, carbon nanotube was added in 2:1:1 LiNH₂/LiAlH₄/MgH₂ to improve the hydrogen re-absorption capacity in the mixture. The mixture of 2:1:1 LiNH₂/LiAlH₄/MgH₂ added with 10 wt% carbon nanotube had higher performance in the reversibility than that added with 5 wt% carbon nanotube, 0.7 wt% and 0.5 wt%, respectively. This result implied the higher the surface area, the higher the hydrogen re-absorbed.

5.2 Recommendations

Because all samples were prepared in the glove box, which was purified with nitrogen gas; therefore, the accuracy of sample weight in the jar was difficult to maintain. Moreover, the samples usually sticked on the wall of the beaker, which undermined the experimental results inaccuracy. An adequate amount of sample should be used to compensate all possible errors and the sample loading must be carefully performed in order to reduce errors.

A reading pressure value could be expressed with higher resolution by using higher bit of computer processing unit (CPU) in AI module 210 data logger (A/D).

The operating condition especially the temperature has an affect on the displayed pressure. As a result, the adsorption condition should be operated at a constant temperature in order to enhance the pressure precision.

The ratio of ball to powder affects the homogeneity of the mixture, which is important for the hydrogen desorption/absorption. Therefore, the milling process should be used with consistent ratio of the ball to powder.