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APPENDICES

Appendix A The Standard Color of Some Iron Oxides (Cornell, 2003)

Goethite Lepidocrocite Akaganéite

Haematite Magnetite Maghemite

Ferrihydrite Feroxyhyte Schwertmannite

Figure A The standard color o f some iron oxides.
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Appendix B Energy-Dispersive X-ray Analysis Results

The elemental analysis data from Energy-Dispersive X-ray Analysis for both 
platinum films formed on the inside and outside carbon steel surfaces are shown in 
Table B.



Table B .l Energy-Dispersive X-ray analysis results for platinum-coated inside surface o f carbon steel

Selected Area
Fraction (Weight %)

Pt Fe o C Na C1 Si Cr Total
Figure 4.9a
Spctrum 1 7.28 65.65 22.22 3.09 1.51 0.25 - - 100

Figure 4.9b
Spectrum 1 10.22 65.90 21.91 1.44 0.42 0.11 100
Spectrum 2 4.65 94.71 - - ''■ 1 . -- 0.48 0.16 100
Spectrum 3 17.46 78.59 - 2.83 0.85 0.27 100
Figure 4.9c
Spectrum 1 5.81 91.59 - 1.95 0.51 0.14 - - 100
Spectrum 2 4.53 70.55 23.17 1.42 0.28 0.05 100
Spectrum 3 3.68 93.71 - 2.06 0.42 0.13 100
Figure 4.9d
Spectrum 1 3.41 93.1 - 3.49 - - - - 100
Spectrum 2 - 94.65 - 5.35 - - - - 100

Mean 7.13 83.16 22.43 2.70 0.64 0.16 - - 100



Table B.2 Energy-Dispersive X-ray analysis results for platinum-coated outside surface o f carbon steel

Selected Area
Fraction (พ eight %)

Pt Fe o C Na C1 Si Cr Total
Figure 4.10a
Spectrum 1 27.38 72.14 - - 0.40 0.08 - - 100
Spectrum 2 24.32 70.33 - 4.7 0.42 0.14 - 0.09 100
Spectrum 3 17.05 78.17 - 3.54 0.33 0.07 0.26 0.58 100
Spectrum 4 14.68 84.54 - 0.73 - - - 0.05 100

Figure 4.10b
Spectrum 1 63.46 31.25 - 3.21 1.09 0.31 - 0.68 100
Spectrum 2 27.79 68.62 - 2.57 0.6 0.19 - 0.23 100
Spectrum 3 23.94 73.09 - , 2,30 0.5 0.17 - - 100
Spectrum 4 26.59 68.93 - 2.54 1.14 0.3 0.4 0.1 100

Mean 28.15 68.38 - 2.80 0.64 0.18 0.33 0.29 100

N)o



Appendix c  Raman Shift of Haematite in Different Studies



Table c  Raman shift o f haematite in different studies

Reference Raman Shift (cm'1)
T. Ohtsuka e t a l ,  1986 225 (ร) 245 (m) 295 (ร) 415 (ร) 500 (พ) 615 (m) 1320 (พ)
R. J. Thibeau e t a l., 1978 227 245 293 298 414 501 612
R.K. Singh e t a l., 1998 290 410 505 621 670 1320-1330

293 415,412 500 613
293 414 501 612

D. Thierry e t a l, 1988 226 245 293 298 413 500 612
225 247 299 412 500 613

* ร refers to strong peaks 
m refers to medium peaks 
พ refers to weak peaks 
underline refers to strongest peaks

totô
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Appendix D Hydrogen Diffusion Coefficient in Carbon Steel Tube

Hydrogen diffusion for cylindrical coordinate equation:
dyi 2.7dDH ACm d t ln(r2 / r, )

The ideal gas is applied to estimate the changing moles in hydrogen diffusion and
concentration o f  hydrogen in the tube.

dn _  V  d P  
d t

And

R T  d t

c  = 7 7 =V
f  „ A

Fin
So, the equation for hydrogen diffusion through the tube is D H = \ r\ J

r  ท  \
In

บ
l7Üt

The hydrogen diffusivity in tube can be calculated from the equation above. 
It is assumed that the thickness o f platinum film formed on the carbon steel tube is so 
small for calculation o f hydrogen diffusivity in platinum-filmed tube.

The calculated hydrogen diffusivity in carbon steel tube coated with 
platinum on both the inside and outside surfaces is shown below.
T o ta l vo lu m e o f  h yd ro g en  g a s  in the system  
Volume of hydrogen gas in filmed carbon steel tube:

n d 2l  _  (3.1416X0-6223c7ft)2(l2cw) _  3

Volume o f hydrogen gas in copper tube:
y_ _  (3.1416Xo.6629cW)2(19cW) =  6 561511,

Volume o f hydrogen gas in stainless steel tube:
_  7tcfl_ _  (3.1416Xo.7036cw)2(l7.35cffl) _  6 3

4 4
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Volume o f hydrogen gas in brass fitting:
V = ÜÊ-L =  (3-1416Xo.6223cm)2(3cm ) = 0 9 lcm3 

Therefore, the total volume o f hydrogen gas in the system is 17.87 cm3.
P re ssu re  o f  h yd ro g en  g a s  in tube

p, =(101.325

f 2 = ( l0 1 .3 2 5 t f a /12t ‘4 '7f faS  ̂ 14.7 p s ia  J

= 962.93kP a  

= 184.04kP a

H yd ro g en  d iffu siv ity  in ca rb o n  s te e l  tube c o a te d  w ith  p la tin u m  on the in sid e  a n d  
o u ts id e  su rfa ces

Fin
D h =

( r 2 \ ( p A— InI f i J 1^ 2 J
2 r t t

(l 7 .87x1 O'6 พ 3)!ท-6 3 T f4 .7 6 2 5 x l0 " 3m )  1 f  96m H^insxio-Cj'T^
2(3.1416^0.15๓X4-25 X 3600s)D h =

962.93kP a
184.04kP a =  8.73x 10“10 m 2/ s

The hydrogen diffusivity calculation was done in the same manner as shown 
above for other cases; uncoated carbon steel tube, platinum film formed on the either 
inside or outside surface and platinum film formed on both the inside and outside 
surfaces.
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Appendix E Surface Resistance on Carbon Steel Tube and Estimated Surface 
Resistance on The Feeder Pipes at Point Lepreau Generating Station (PLGS)

Overall surface resistance equation: = ---- —d t  R,
The ideal gas is applied to estimate the changing moles in hydrogen diffusion and 
concentration o f hydrogen in the tube.

dn  _  V d P  
d t R T  d t

And c  = £  = -^ -V R T

Therefore, the equation for overall surface resistance becomes R t =  — ^y—
P\Fin pK 1 2 J

that is equal to the summation o f  the outside surface resistance, inside surface 
resistance and metal resistance; R, =  R 0 + R m +  R . .

A N
A: In

Where R„  = v r.y
2nD „ l

The calculation to determine resistance to hydrogen transport through tube 
is shown below.

By coating platinum on the inside surface o f carbon steel tube only, the 
inside surface resistance is assumed to be eliminated. Since the average hydrogen 
diffusivity at 306°c o f  tube surface temperature is known (8 .4 4 X l(T10m2/ร). The 
outside surface resistance can be determined from the experiment.
O v e ra ll su rfa ce  re s is ta n ce

* 1 = A ,t

Fin
\  *2 J
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?r -  .  1.94x10» ร/ท,
(l 7.87 X1 m3 |lnj 9 4 9 '15kF a\S 7 A 9 k P a

And R, =  R + R _

O u tside  su rfa ce  re s is ta n ce

A, Inf r \

R = R , - \ rน
2n D u l

^4.7625x10~3m ^

= 3 .7 2 x 1 0 5 s /m

Therefore, the outside surface resistance in this experiment is 3 .7 2 x1 0 5 s / m .  The 
calculation o f the outside surface resistance in another experiment was carried out the 
same manner as shown above.

On the other hand, by coating platinum on the outside surface o f carbon 
steel tube only, the outside surface resistance is assumed to be eliminated. Since the 
average hydrogen diffusivity at 306°c o f tube surface temperature is known 
(8 .44x lO “lom2/s). The inside surface resistance can be determined from the 
experiment.
O v e ra ll su rfa ce  re s is ta n ce

* 1 =
A .t

Fin f p ^
7

(2 . 9 3 2 5  X I0’3 m 2)(5 X 3600s) 6 ,

m . 3 8 k P a
And * 1 = R 0 + Rm
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In sid e  su rfa ce  re s is ta n ce

A, Inf r . '

R, =  R, \ rบ
2 7rDH l

(2 . 9 3 2 5 x i o -3w 2)in / "v ' 1^3.1115x1 o -3 m
2 (3 .1416)(8.44 X1 O 10 m 2l s \ o .  15™)

f  4.7625x1 O’3 m ไ
R, = 1.85 X106 = 2 .8 5 x 1 0 5 s /m

So, the inside surface resistance in this experiment is 2.85 X105 s / m . The calculation 
o f the inside surface resistance in another experiment was carried out the same 
manner as shown above.

In addition, since the hydrogen diffusivity is known (8 .7 3 x 1 0 ~]0 m 2/ s ) .  
The resistance o f the carbon steel tube itself can be determined from the carbon steel 
tube coated with platinum on both the inside and outside surfaces.

f .. \
A: In
2 7tD h l

z i s 1-'

f  4 .7625x10‘3
R -  =

The determination o f the resistance o f the carbon steel tube itself from another 
experiment was calculated in the same way.

Furthermore the resistance o f  the feerder pipe in the plant was 
estimated using the measured average hydrogen diffusivity in this study at the tube 
surface temperature o f 306°c. The calculation below shows the resistance o f the 
feeder pipe o f  6 mm o f wall thickness.

R 1 = l 6 x l 0 ‘3m
= 8.44xlO~10 m 2เร = 7.10x 106 ร / m

The estimation o f the resistance o f the feeder pipe o f 5 mm o f wall thickness was 
calculated in the same manner as shown above.
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Appendix F Estimated Hydrogen Diffusivity in Nickel-Alloy (Hastelloy-C) and 
Carbon Steel Tube Outside The Furnace Replaced With Copper Tube

In order to estimate the hydrogen diffusivity in nickel-alloy (Hastelloy-C) 
and carbon steel tube outside the furnace replaced with copper tube, it is assumed 
that the average outside surface resistance and inside surface resistance on nickel- 
alloy tube and carbon steel tube outside the furnace replaced with copper tube are 
equal to that on the platinum-filmed carbon steel tube surface.

The estimetd hydrogen diffusivity in nickel-alloy (Hastelloy-C) is shown
below.
O v e ra ll su rfa ce  re s is ta n ce  on  n ick e l-a llo y  (H a ste llo y -C )

And R, =  R0 +  R m +  Rt
N ic k e l-a llo y  re s is ta n ce  a n d  h yd ro g en  d iffu siv ity  in n ick e l-a llo y

R ท, =  Rt -  R o ~  R i
R m = 4 .4 6 X 10s - 3 .8 5 x l0 5 - 3 .1 7 x l0 5 = 4 .4 5 x l0 8 s /m

R = -------^2 n D  l
Where

D 11 = ------ - ^
2 2 ^ R ท,

So,
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D H =

1 3 r 4.7625 X1 O'3 m3.7341x10 3 พ 2 In .  .  , - - 1- - -v '  ^3.1115x l0_3m
2(3.1416X0.19๓X4.46x 10* ๓7 ร) = 2.97 xlO"12 ร/๓

The estimated hydrogen diffusivity in nickel-alloy (Hastelloy-C) is 2.97 X 10“12 ๓ 2/ s . 
The hydrogen diffusivity in carbon steel tube outside the furnace replaced with 
copper tube was calculated the same way as shown above.
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Appendix G Estimation of Time Before Hydrogen Pressure Inside The Carbon 
Steel Drop at Room Temperature

The concentration-time chart for a large flat slab is used to estimate the time 
before hydrogen pressure inside the carbon steel tube drop at room temperature in 
order to confirm that there is no hydrogen leak at room temperature for 2 days o f leak 
test. This calculation relies on the following assumptions:
1. The convective mass transfer coefficient o f hydrogen is very large relative to 

hydrogen diffusion coefficient. Therefore, the convective mass transfer coefficient 
is negligible, m = 0.

2. The hydrogen concentration is measured at the centre o f tube, ท = 0.
3. The hydrogen concentration at the tube surface is zero.
4. The hydrogen diffusion through the tube surface is similar to that in a large flat 

slab.
5. The initial hydrogen pressure inside the tube is 100 psig and the hydrogen pressure 

inside the tube at the end is 99 psig i f  there is a leak, Y = 0.99.
From the concentration-time chart for a large flat slab, the relative time (X)

is 0.2.

The estimated time required for hydrogen pressure drop 1 psig is 3,922.01 ร or 1.09 
h. But the leak test at room temperature for 2 days in this study shows that the 
hydrogen pressure inside the tube is essentially constant indicating there is no leak. 
This might be partially explained by the molecular hydrogen cannot dissociate to 
atomic hydrogen at room temperature.

Where
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Appendix H Structure and Hardness of Carbon Steel Tube (ASTM A179)

60 pm

(a) Grain structure along the length o f a carbon steel tube, hardness: 55.5

60pm

(b) Grain structure o f  a carbon steel tube in cross section direction, hardness: <30

Figure H Grain structure o f carbon steel tube (ASTM A179).
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