CATALYTIC EPOXIDATION OF CYCLOHEXENE OVER DIFFERENT OXIDE CATALYSTS

Kittisak Woragamon

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2009

522096

Thesis Title:	Catalytic Epoxidation of Cyclohexene over Different Oxide
	Catalysts
By:	Kittisak Woragamon
Program:	Petrochemical Technology
Thesis Advisors:	Asst. Prof. Siriporn Jongpatiwut
	Asst. Prof. Thammanoon Sreethawong

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst/Prof. Pomthong Malakul)

Thesis Committee:

Jim/

(Asst. Prof. Siriporn Jongpatiwut)

T. Sn. they

(Asst. Prof. Thammanoon Sreethawong)

Sumath Churdy

(Assoc. Prof. Sumaeth Chavadej) (Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

5071010063: Petrochemical Technology Program
Kittisak Woragamon: Catalytic Epoxidation of Cyclohexene over
Different Oxide Catalysts
Thesis Advisors: Asst. Prof. Siriporn Jongpatiwut and Asst. Prof.
Thammanoon Sreethawong 102 pp.
Keywords: Cyclohexene Epoxidation/ Impregnation/ Sol-gel/ Mesoporosity/

 $RuO_2/TiO_2/SiO_2/Al_2O_3/Fe_3O_4/H_2O_2/Recyclability$

Cyclohexene oxide is an important intermediate in several chemical industries. It can be produced via partial oxidation of cyclohexene, so-called cyclohexene epoxidation. Many research works have been focused on the development of new active and selective catalysts for cyclohexene epoxidation that can avoid undesired reactions. The purpose of this work is to investigate the cyclohexene epoxidation using different catalysts, i.e. commercial TiO₂ (TiO₂ (P-25)), sol-gel-synthesized mesoporous-assembled TiO₂ (TiO₂ (SG)), SiO₂, Al₂O₃, and Fe₃O₄. The experimental results showed that TiO₂ (SG) provided the highest cyclohexene conversion and cyclohexene oxide selectivity. The addition of RuO₂ is investigated on TiO₂ (SG) prepared by two methods: (1) incipient wetness impregnation (IWI) method (RuO₂/TiO₂ (IWI)) and (2) single-step sol-gel (SSSG) method (RuO₂/TiO₂ (SSSG)). Between RuO₂/TiO₂ (IWI) and RuO₂/TiO₂ (SSSG), 1 mol% RuO₂/TiO₂ (IWI) calcined at 550°C for 4 h was found to possess selectively high catalytic performance based on cyclohexene oxide production. The optimum reaction conditions found are H₂O₂-to-cyclohexene ratio of 1, t-butanol as solvent, catalyst amount of 0.5 g, and reaction temperature of 70°C. The recyclability of the RuO₂/TiO₂ (IWI) and RuO₂/TiO₂ (SSSG) catalysts is also investigated. It was found that after three cycles, RuO₂/TiO₂ (IWI) exhibits slight decrease in cyclohexene conversion with significant decrease in cyclohexene oxide selectivity. On the other hand, RuO₂/TiO₂ (SSSG) exhibits almost unchanged in both conversion and selectivity, indicating its higher stability.

บทคัดย่อ

กิตติศักดิ์ วรกมล : ปฏิกิริยาอิพอกซิเดชันของไซโคลเฮกซีนโดยใช้โลหะออกไซด์เป็น ตัวเร่งปฏิกิริยา (Catalytic Epoxidation of Cyclohexene over Different Oxide Catalysts) อ.ที่ปรึกษา: ผศ.ดร. ศิริพร จงผาติวุฒิและผศ.ดร. ธรรมนูญ ศรีทะวงศ์ 102 หน้า

้ใซโคลเฮกซีนออกไซด์ เป็นสารมัธยันต์ที่สำคัญและมีประโยชน์สำหรับกระบวนการ อุตสาหกรรมเคมี ซึ่งสามารถสังเคราะห์ได้โดยปฏิกิริยาอิพอกซิเดชันของไซโคลเฮกซีน ดังนั้น ้นักวิจัยจึงมีความพยายามที่จะพัฒนาตัวเร่งปฏิกิริยาให้มีความสามารถในการเร่งปฏิกิริยา และ ความจำเพาะเจาะจงในการเลือกเกิดผลิตภัณฑ์ สำหรับปฏิกิริยาอิพอกซิเดชันของไซโกลเฮกซีน ้เพื่อที่จะหลีกเลี่ยงการเกิดปฏิกิริยาข้างเคียงซึ่งส่งผลต่อการเกิดผลิตภัณฑ์ที่ไม่ต้องการ ด้วยเหตุนี้ วัตถุประสงค์ของงานวิจัยนี้ คือ ทำการศึกษาปฏิกิริยาอิพอกซิเคชันของไซ โคลเฮกซีน โคยการใช้ ้ตัวเร่งปฏิกิริยาหลายชนิด ได้แก่ ไทเทเนียที่ใช้ในเชิงทางการค้า, ไทเทเนียที่ได้จากการสังเคราะห์ ้โดยวิธีโซลเจล, ซิลิกา, อลูมินา, และ แมกนีไทด์ จากการทดลองแสดงให้เห็นว่า ไทเทเนียที่ได้จาก การสังเคราะห์นั้น เป็นตัวรองรับที่ดีที่สุดเนื่องจากทำให้ได้ก่าการเปลี่ยนแปลงของไซโคลเฮกซีน ้ และ ค่าการเลือกเกิดของไซ โคลเฮกซีนออกไซด์มากที่สุด การเติมรเทเนียมไดออกไซด์บนพื้นผิว ้ของไทเทเนียที่ได้จากการสังเคราะห์ถูกเตรียมโดยวิธีการฝังตัวแบบแห้งและโซลเจลแบบขั้นตอน ้เดียว ซึ่งจากผลการเปรียบเทียบพบว่า รูเทเนียมไดออกไซด์ปริมาณ 1 โมลเปอร์เซ็นต์ บนพื้นผิวไท เทเนีย ที่ถูกเตรียม โดยวิธีการฝังตัวแบบแห้งและเผาที่อุณหภูมิ 550 องศาเซลเซียส เป็นเวลา 4 ้ชั่วโมง นั้นเป็นตัวเร่งปฏิกิริยาที่เหมาะสมที่สุดเนื่องจากมีประสิทธิภาพในการเร่งปฏิกิริยาสูงที่สุด เมื่อพิจารณาจากค่าการเลือกเกิดของไซ โคลเฮกซีนออกไซค์ สภาวะของปฏิกิริยาที่เหมาะสมที่สุด ใค้แก่ อัตราส่วนระหว่างไฮโครเจนเปอร์ออกไซด์ต่อไซโคลเฮกซีน = 1, ปริมาณตัวเร่งปฏิกิริยา = 0.5 กรัม, อุณหภูมิในการทำปฏิกิริยา = 70 องศาเซลเซียส ยิ่งไปกว่านั้นยังได้ศึกษาการนำตัวเร่ง ้ปฏิกิริยากลับมาใช้ใหม่เป็นจำนวน 3 ครั้งต่อเนื่อง ซึ่งผลจากการศึกษาพบว่า ค่าการเปลี่ยนแปลง ้ของไซโคลเฮกซีน มีค่าลคลงเล็กน้อย แต่ ค่าการเลือกเกิดของไซโคลเฮกซีนออกไซด์ มีค่าลคลง ้อย่างมาก เมื่อใช้รูเทเนียมไคออกไซค์บนไทเทเนียที่ถูกเตรียมโคยวิธีการฝังตัวแบบแห้ง ในทาง ตรงข้าม รเทเนียม ใดออก ใชค์บน ไทเทเนียที่ถกเตรียม โดยวิธี โซลเจลแบบขั้นตอนเดียวมีความ เสถียรมากกว่าเนื่องจากมีค่าการเปลี่ยนแปลงของไซโคลเฮกซีน และ ค่าการเลือกเกิดของไซโคล เฮกซีนออกไซค์ น้อยเมื่อเทียบกับผลที่ได้จากการทำปฏิกิริยาครั้งแรก

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to Asst. Prof. Siriporn Jongpatiwut and Asst. Prof. Thammanoon Sreethawong, served as my thesis advisors, for their invaluable guidance, understanding, and constant encouragement throughout the course of this research. Their positive attitude contributed significantly to inspiring and maintaining my enthusiasm in the field. I feel proud to have been their student.

I would like to sincerely thank Assoc. Prof. Sumaeth Chavadej and Assoc. Prof. Vissanu Meeyoo for kindly serving on my thesis committee. Their sincere suggestions are definitely imperative for accomplishing my thesis.

My gratitude is absolutely extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for all their kind assistance and cooperation.

This thesis work is funded by the Petroleum and Petrochemical College, and the Center for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Furthermore, I would like to take this opportunity to thank all of my graduate friends for their friendly help, creative suggestions, and encouragement. I had a very good time working with them all.

Finally, I really would like to express my sincere gratitude to my parents and family for their support, love, understanding, and cheering.

TABLE OF CONTENTS

PAGE

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

Ι	INTRODUCTION	1	
п	LITERATURE REVIEW	3	
11	2.1 Theoretical Background		
	2.1.1 Epoxidation Reaction	3	
	2.1.2 Types of Epoxidation Reaction	5	
	2.1.2.1 Jacobsen-Katsuki	5	
	2.1.2.2 Prilezhaev	5	
	2.1.2.3 Sharpless	6	
2.1.3 Incipient Wetness Impregnation Technique		7	
	2.1.4 Sol-Gel Process	8	
	2.1.5 RuO ₂ Catalyst for Epoxidation Reaction	9	
2.1.6 Support Material for Epoxidation Reacti	2.1.6 Support Material for Epoxidation Reaction	9	
	2.1.6.1 Ferrous-Ferric Oxide or Magnetite	9	
	2.1.6.2 Silicon Dioxide or Silica	11	
	2.1.6.3 Aluminum Oxide or Alumina	14	
	2.1.6.4 Titanium Dioxide or Titania	15	
	2.1.7 Porous Materials	16	
	2.2 Literature Review	18	

III

EXPERIMENTAL

PAGE
26
26

	3.1 Materials	26
	3.2 Equipments	27
	3.3 Methodology	28
	3.3.1 Experimental Procedure	28
	3.3.2 Preparation of Magnetite (Fe ₃ O ₄) Support	29
	3.3.3 Preparation of TiO_2 (SG) and RuO_2/TiO_2 (SSSG)	30
	3.3.4 Preparation of RuO_2/TiO_2 (IWI)	32
	3.3.5 Catalyst Characterization	33
	3.3.6 Catalytic Activity Testing	37
	3.3.7 Product Analysis by GC-FID	40
IV	RESULTS AND DISCUSSION	43
	4.1 Standard Analysis Chromatogram	43
	4.2 Catalyst Characterizations	45
	4.2.1 TG-DTA Analysis	45
	4.2.2 N ₂ Adsorption-Desorption Analysis	51
	4.2.3 X-ray Diffraction Analysis	59
	4.2.4 TEM Analysis	63
	4.3 Catalytic Activity of Cyclohexene Epoxidation	66
	4.3.1 Blank Test	66
	4.3.2 Effect of Catalysts	67
	4.3.3 Effect of Calcination Temperature	70
	4.3.4 Effect of Calcination Time	72
	4.3.5 Effect of RuO ₂ Loading	72
	4.3.5.1 Effect of mol% RuO ₂ /TiO ₂ (IWI)	72
	4.3.5.2 Effect of mol% RuO ₂ /TiO ₂ (SSSG)	73
	4.3.6 Effect of Reaction Parameters	77

CHAPTER				PAGE
	4.3.	6.1 E	ffect of Reaction Temperature	77
	4.3.	6.2 E	ffect of Catalyst Amount	79
	4.2.0	6.3 Ei	ffect of Hydrogen Peroxide-to-Cyclohexene	
		Ra	atio	81
	4.3.7 Rec	ycling	g of the Spent Catalysts	82
	4.4 Characteri	izatior	n and Catalytic Activity Results of	
	RuO ₂ /TiO	9 ₂ (SSS	SG)	86
V	CONCLUSIC	DNS A	ND RECOMMENDATIONS	93
	5.1 Conclusio	ns		93
	5.2 Recomme	ndatio	ons	93
	REFERENCE	ES	2 ° 24	94
	APPENDICE	S		99
	Appendix A	Produc	cts Identification by GC-MS in	
	(Cycloł	hexene Epoxidation	99
	Appendix B I	Result	s of Percent Concentration of	
	-	ГіO ₂ а	nd RuO_2 of RuO_2/TiO_2 (IWI)	
	2	and Ru	uO ₂ /TiO ₂ (SSSG) by XRF Analysis	101
	CURRICULU	J M VI	ITAE	102

LIST OF TABLES

TABL	TABLE	
2.1	Crustalling former of SiO	10
2.1	Crystalline forms of SiO_2	13
2.2	Definitions about porous solids	17
3.1	Physical properties of substances used in cyclohexene	
	epoxidation	27
3.2	GC conditions for the product analysis	41
4.1	Retention time and response factor of each substance	
	from GC analysis	44
4.2	Thermal decomposition behavior of the uncalcined	
	TiO_2 (SG) and uncalcined 1 mol% RuO_2/TiO_2 (SSSG)	
	from TG-DTA analysis	.47
4.3	Surface OH density (OH/nm ²) and surface OH-to-catalyst	
	weight ratio (OH/g) of RuO ₂ /TiO ₂ (IWI)	.50
4.4	Surface OH density (OH/nm ²) and surface OH-to-catalyst	
	weight ratio (OH/g) of RuO ₂ /TiO ₂ (SSSG)	50
4.5	Summary of textural properties obtained from N2 adsorption-	
	desorption results of the TiO ₂ (SG), RuO ₂ /TiO ₂ (IWI),	
	RuO_2/TiO_2 (SSSG), TiO ₂ (P-25), SiO ₂ , Al ₂ O ₃ , and Fe ₃ O ₄	57
4.6	Summary of XRD analysis of the RuO_2/TiO_2 (IWI) and	
	RuO ₂ /TiO ₂ (SSSG) (A: Anatase, R: Rutile)	62
4.7	Control experiment by 1) no catalysts, 2) no oxidant,	
	and 3) no both catalyst and oxidant for cyclohexene	
	epoxidation. Reaction conditions: cyclohexene 30 mmol;	
	tert-butanol 30 ml; reaction temperature 70°C	67
4.8	Summary of RuO2 weight loss (%) of RuO2/TiO2 (IWI)	
	and RuO_2/TiO_2 (SSSG)	82
4.9	Surface OH density (OH/nm ²) and surface OH-to-catalyst	
	weight ratio (OH/g) of 1 mol% RuO ₂ /TiO ₂ (SSSG) calcined for 4 h	
	with different calcination temperatures	87

TABLE

4.10	Summary of textural properties obtained from N ₂	
	adsorption-desorption results of 1 mol% RuO ₂ /TiO ₂ (SSSG)	
	calcined for 4 h with different calcination temperatures	89
4.11	Summary of XRD analysis of 1 mol% RuO ₂ /TiO ₂ (SSSG)	
	calcined for 4 h with different calcination temperatures	
	(A: Anatase, R: Rutile)	91

LIST OF FIGURES

FIGURE

2.1	The formation of epoxide from alkene.	3
2.2	The formation of ethylene oxide from ethane.	4
2.3	The formation of cyclopentene oxide from cyclopentene.	5
2.4	The formation of epoxide from Jacobsen-Katsuki epoxidation.	5
2.5	The formation of epoxide from Prilezhaev epoxidation.	5
2.6	The formation of epoxide from Sharpless epoxidation.	6
2.7	An epoxidation of alkenes using hydrogen peroxide.	6
2.8	An epoxidation of allylic alcohols using new catalytic system.	7
2.9	Tentative reaction mechanism for epoxidation of cyclohexene.	19
2.10	Proposed pathway for cyclohexene epoxidation at TiO ₂ surface.	21
2.11	Proposed mechanism for the Al ₂ O ₃ -catalyzed alkene epoxidation.	23
2.12	The reaction mechanism of cyclohexene epoxidation in the	
	Presence of TBHP as oxidant.	24
2.13	Mechanism of cyclohexene epoxidation in the presence of	
	Modified Mo-silicalite.	25
3.1	Overview of experimental procedure.	28
3.2	Schematic of the synthetic procedure of magnetite.	29
3.3	Synthesis procedure for mesoporous-assembled TiO_2 nanocrystal:	
	(a) for TiO_2 (SG) and (b) for RuO_2/TiO_2 (SSSG).	31
3.4	Schematic of the catalyst preparation of RuO_2/TiO_2 catalyst.	32
3.5	Schematic of epoxidation reaction experiment.	38
3.6	Flow diagram of catalyst recycle.	38
4.1	Chromatogram of the mixed standards: (1) tert-butanol,	
	(2) cyclohexene, (3) cyclohexene oxide, (4) 2-cyclohexen-1-ol,	
	(5) 2-cyclohexen-1-one, (6) (18,28)-trans-1,2-cyclohexanediol,	
	and (7) dodecane.	43

FIGURE

4.2	TG-DTA curves of (a) uncalcined TiO_2 (SG) and (b) uncalcined	
	1 mol% RuO ₂ /TiO ₂ (SSSG).	46
4.3	TGA comparison of 1 mol% RuO ₂ /TiO ₂ (IWI) calcined for 4 h	
	with different calcination temperatures. The surface OH is	
	based on the weight loss of between 120 and 500°C.	48
4.4	TGA comparison of 1 mol% RuO ₂ /TiO ₂ (IWI) calcined at 550°C	
	with different calcination times. The surface OH is based	
	on the weight loss of between 120 and 500°C.	48
4.5	TGA comparison of RuO_2/TiO_2 (IWI) calcined at 550°C	
	for 4 h with different RuO_2 loading. The OH surface is based	
	on the weight loss of between 120 and 500°C.	49
4.6	TGA comparison of RuO_2/TiO_2 (SSSG) calcined at 550°C	
	for 4 h with different RuO_2 loading. The OH surface is based	
	on the weight loss of between 120 and 500°C.	49
4.7	N_2 adsorption-desorption isotherms of the TiO ₂ (SG)	
	calcined at 550°C for 4 h (Inset: pore size distribution).	52
4.8	N_2 adsorption-desorption isotherms of the 1 mol%RuO_2/TiO_2	
	(IWI) calcined at 550°C for 4 h (Inset: pore size distribution).	52
4.9	N_2 adsorption-desorption isotherms of the 1 mol% RuO_2/TiO_2	
	(SSSG) calcined at 550°C for 4 h (Inset: pore size distribution).	53
4.10	N_2 adsorption-desorption isotherms of the TiO ₂ (P-25)	
	(Inset: pore size distribution).	54
4.11	N_2 adsorption-desorption isotherms of the SiO_2	
	(Inset: pore size distribution).	54
4.12	N_2 adsorption-desorption isotherms of the Fe_3O_4	
	(Inset: pore size distribution).	55
4.13	N ₂ adsorption-desorption isotherms of the Al ₂ O ₃	
	(Inset: pore size distribution).	55

FIGURE

4.14	XRD patterns of 1 mol% RuO ₂ /TiO ₂ (IWI) calcined for 4 h	
	with different calcination temperatures: (a) 500°C, (b) 550°C,	
	(c) 600°C, and (d) 700°C (A: Anatase, R: Rutile).	60
4.15	XRD patterns of RuO_2/TiO_2 (IWI) calcined at 550°C for 4 h	
	with different RuO_2 amount: (a) unloaded, (b) 0.5 mol%,	
	(c) 1 mol%, (d) 1.5 mol%, and (e) 2 mol%	
	(A: Anatase, R: Rutile).	61
4.16	XRD patterns of RuO_2/TiO_2 (SSSG) calcined at 550°C for 4 h	
	with different RuO_2 amount: (a) 0.5 mol%, (b) 1 mol%,	
	(c) 1.5 mol%, and (d) 2 mol% (A: Anatase, R: Rutile).	61
4.17	TEM image and EDX elemental point mapping of	
	1 mol% RuO ₂ /TiO ₂ (IWI) calcined at 550°C for 4 h.	64
4.18	TEM image and EDX elemental point mapping of	
	1 mol% RuO_2/TiO_2 (SSSG) calcined at 550°C for 4 h.	65
4.19	Cyclohexene epoxidation catalyzed by TiO ₂ (SG)	
	calcined at 500°C for 4 h, TiO ₂ (P-25), SiO ₂ , Al ₂ O ₃ , and Fe ₃ O ₄ :	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	68
4.20	Cyclohexene epoxidation catalyzed by 1 mol% RuO_2/TiO_2 (IWI)	
	calcined for 4 h with different calcination temperatures:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	71

4.21	Cyclohexene epoxidation catalyzed by 1 mol% RuO ₂ /TiO ₂ (IWI)	
	calcined at 550°C with different calcination times:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	74
4.22	Cyclohexene epoxidation catalyzed by RuO ₂ /TiO ₂ (IWI)	
	calcined at 550°C for 4 h with different RuO ₂ amount:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H_2O_2 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	75
4.23	Cyclohexene epoxidation catalyzed by RuO ₂ /TiO ₂ (SSSG)	
	calcined at 550°C for 4 h with different RuO ₂ amount:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	76
4.24	Effect of reaction temperature on cyclohexene epoxidation	
	catalyzed by 1 mol% RuO_2/TiO_2 (IWI) calcined at 550°C for 4 h:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 ml;	
	H_2O_2 30 mmol; catalyst 0.5 g; reaction time 5 h.	78
4.25	Effect of catalyst amount on cyclohexene epoxidation	
	catalyzed by 1 mol% RuO_2/TiO_2 (IWI) calcined at 550°C for 4 h:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 ml;	
	H_2O_2 30 mmol; reaction temperature 70°C; reaction time 5 h.	80

FIGURE

4.26	Effect of H ₂ O ₂ -to-cyclohexene ratio on cyclohexene epoxidation	
	catalyzed by 1 mol% RuO ₂ /TiO ₂ (IWI) calcined at 550°C for 4 h:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 ml;	
	catalyst 0.5 g; reaction temperature 70°C; reaction time 5 h.	83
4.27	Recyclability of 1 mol% RuO ₂ /TiO ₂ (IWI) calcined at 550°C	
	for 4 h: (a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	84
4.28	Recyclability of 1 mol% RuO ₂ /TiO ₂ (SSSG) calcined at 550°C	
	for 4 h: (a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	85
4.29	TGA comparison of 1 mol% RuO_2/TiO_2 (SSSG) calcined for 4 h	
	with different calcination temperatures. The OH surface is based	
	on the weight loss of between 120 and 500°C.	87
4.30	N_2 adsorption-desorption isotherms of the 1 mol% RuO_2/TiO_2	
	(SSSG) calcined at 450°C for 4 h (Inset: pore size distribution).	88
4.31	XRD patterns of 1 mol% RuO ₂ /TiO ₂ (SSSG) calcined for 4 h	
	with different calcination temperatures: (a) 400°C, (b) 450°C,	
	(c) 500°C, and (d) 550°C (A: Anatase, R: Rutile).	90
4.32	Cyclohexene epoxidation catalyzed by 1 mol% RuO_2/TiO_2	
	(SSSG) calcined for 4 h with different calcination temperatures:	
	(a) cyclohexene conversion and (b) product selectivity.	
	Reaction conditions: cyclohexene 30 mmol; tert-butanol 30 mmol;	
	H ₂ O ₂ 30 mmol; catalyst 0.5 g; reaction temperature 70°C;	
	reaction time 5 h.	92