PYROLYSIS OF SEWAGE SLUDGE: PRODUCTS ANALYSIS, UPGRADING AND UTILIZATIONS

Charothon Ung-jinda

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2009 522100

Thesis Title:	Pyrolysis of Sewage Sludge: Products Analysis, Upgrading	
	and Utilizations	
By:	Charothon Ung-jinda	
Program:	Petrochemical Technology	
Thesis Advisors:	Assoc. Prof. Vissanu Meeyoo	
	Prof. David Trimm	
	Assoc. Prof. Thirasak Rirksomboon	
	Assoc. Prof. Pramoch Rangsunvigit	
	Asst. Prof. Boonyarach Kitiyanan	

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Somchai Osuwan)

(Prof. David Trimm)

harmoch B

(Assoc. Prof. Pramoch Rangsunvigit)

Mony

(Asst. Prof. Apanee Leungnarumitchai)

(Assoc. Prof. Vissanu Meeyoo)

(Assoc. Prof. Thirasak Rirksomboon)

B. Kitiyanan

(Asst. Prof. Boonyarach Kitiyanan)

(Assoc. Prof. Metta Chareonpanich)

ABSTRACT

4581001063: Petrochemical Technology Charothon Ung-jinda: Pyrolysis of Sewage Sludge: Products Analysis, Upgrading and Utilizations Thesis Advisors: Assoc. Prof. Vissanu Meeyoo, Prof. David Trimm, Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof. Pramoch Rangsunvigit, and Asst. Prof. Boonyarach Kitiyanan 176 pp.
Keywords: Thermal decomposition / Kinetics / Pyrolysis / Sewage sludge / Bio-oil / Char reactivity / Deoxygenation / Adsorption

Pyrolysis, thermal decomposition, is applied to simultaneously treat and stabilize sewage sludge. Liquid and solid products are generated and be able to utilized for providing energy and valuable chemicals. Thermal decomposition of sewage sludge was carried out under atmospheres N₂ and CO₂ by means of thermogravimetric analysis (TGA). The results show that the thermal decomposition of sewage sludge under N₂ and CO2 atmospheres are quite similar and can be described by a pseudo bi-component separated state model (PBSM). The decomposition shows two decomposition steps under both N₂ and CO₂ atmospheres. Under CO₂ atmosphere, however, the primary reaction was significantly accelerated whereas the secondary reaction temperature was shifted to a lower temperature. The apparent activation energies for the first reaction corresponded to the main decomposition temperature under N₂ and CO₂ atmospheres at 305°C is 72 kJ mol⁻¹, while that of the second decomposition at ca. 400-500°C is found to decrease from 154 to 104 kJ mol⁻¹ under CO₂ atmosphere. Typical reaction order is in the range of 1.0-1.5. In the presence of CO₂, the solid yield is slightly reduced while the gas and liquid yields are improved. Furthermore, CO₂ influenced the liquid product by increasing the oxygenated compounds and lessoning the olefins through the insertion of CO₂ to the unsaturated compounds. To improve the pyrolytic liquid to meet the requirement of the conventional diesel fuel, the upgrading via deoxygenation of pyrolytic liquid is required. The result showed that the deoxygenation of pyrolytic liquid model compound, oleic acid (C₁₇H₃₃COOH), over Ce_{1-x}Zr_xO₂ catalyst can be achieved by direct removal of the carboxylic part of oleic acid and generating CO and CO₂ as major product in the gas phase. The upgraded liquid contained mainly C17hydrocarbons. Moreover, the utilization of pyrolytic solid (sewage sludge char) to provide energy in the form of heat and as a cheap adsorbent for dye removal were also studied.

•

บทคัดย่อ

ชโรธร อึ้งจินคา (จินคารมย์): การไพโรไลซีสของกากตะกอน: การวิเคราะห์ การปรับปรุง-กุณภาพและการประยุกต์ใช้ผลิตภัณฑ์ที่ได้ (Pyrolysis of Sewage Sludge: Products Analysis, Upgrading and Utilizations) อ. ที่ปรึกษา: รศ. คร. วิษณุ มีอยู่, ศ. คร. เควิค ทริม, รศ. คร. ธีรศักดิ์ ฤกษ์ สมบูรณ์, รศ. คร. ปราโมช รังสรรค์วิจิคร และ ผศ. คร. บุญรัชต์ กิติยานันท์ และ176 หน้า

ไพโรไลซีสเป็นการทำให้เกิดการสลายดัวด้วยความร้อนภายใต้บรรยากาศที่มีออกซิเจนต่ำ นอกจากจะเป็นวิธีบำบัดกากตะกอนของเสียแล้วยังเพิ่มเสถียรภาพให้แก่กากตะกอนของเสียอีกด้วย ผลิตภัณฑ์ ก๊าซ ของเหลวและของแข็งที่ได้ นอกจากจะนำไปผลิตเป็นเชื้อเพลิงในรูปแบบของความ ร้อนแล้ว ยังสามารถนำไปผลิตเคมีภัณฑ์ที่มีมูลก่าสูงขึ้นได้อีกด้วย จากการศึกษาการไพโรไลซีสของ กากตะกอนของเสียภายใต้บรรยากาศของในโดรเจนและคาร์บอนไดออกไซด์ ด้วยเทคนิค Thermogravimetric Analysis (TGA) พบว่าการไพโรไลซีสของกากตะกอนของเสียภายใต้บรรยากาศ ในโตรเจนและคาร์บอนไดออกไซด์มีความคล้ายคลึงกัน อันประกอบไปด้วยปฏิกิริยาการสลายตัว 2 ปฏิกิริยาที่แยกออกจากกันอย่างไม่สมบูรณ์ ซึ่งสามารถอธิบายได้ด้วยแบบจำลองการสลายตัวประเภท สององค์ประกอบเทียมที่แยกจากกัน (Pseudo Bi-Component Separated State Model, PBSM) ปฏิกิริยาที่หนึ่งเกิดขึ้นที่อุณหภูมิ 300°C สำหรับปฏิกิริยาที่สองเกิดขึ้นที่อุณหภูมิ 420°C ก่าพลังงาน กระดุ้นของปฏิกิริยาที่หนึ่งและสองมีก่าเท่ากับ 72 และ 154 กิโลจูลต่อโมล ตามลำดับ ร่าอันดับของ ปฏิกิริยาการ ส ลายตัวอยู่ในช่วง 1.0-1.5 สำหรับการ ส ลายด้วภายใต้บรรยากาศพอง ปฏิกิริยากร์ส ลายมร้อมกายให้บรรยากาศของ การ์บอนไดออกไซด์ พบว่าอัตราเร็วของปฏิกิริยาการส ลายด้วที่หนึ่งสูงขึ้น ก่าอุณหภูมิของปฏิกิริยา การส ลายตัวที่สองลดลงจาก 420 มาที่ 370°C และก่าพลังงานกระดุ้นของปฏิกิริยาที่สองลดลงเหลือ 104 กิโลจูลต่อโมล

ผลได้ของผลิตภัณฑ์ก๊าซ ของเหลวและของแข็งมีค่าอยู่ในช่วงร้อยละ 10-20 20-25 และ 60-80 ตามลำดับ อิทธิพลของบรรยากาศการ์บอนไดออกไซค์ส่งผลกระทบต่อผลได้ของผลิตภัณฑ์ กล่าวคือผลิตภัณฑ์ที่เป็นก๊าซและของเหลวเพิ่มขึ้นร้อยละ 5 โดยประมาณ สำหรับของแข็งลดลงร้อย ละ 8 โดยประมาณ

ผลิตภัณฑ์ของเหลวประกอบด้วย 6 องค์ประกอบ ดังนี้ (1) โมโนอะโรมาติก (2) อะลิฟาติก (3) ไฮโดรคาร์บอนที่มีออกซิเจนเป็นองค์ประกอบ (4) ไฮโดรคาร์บอนที่มีไนโตรเจนเป็นองค์-ประกอบ (5) สารประกอบโพลิอะโรมาติก (6) สเตอรอยค์ การไพโรไลซีสภายใต้บรรยากาศของ การ์บอนไดออกไซค์ พบว่าผลิตภัณฑ์ของเหลวมีไฮโดรการ์บอนที่ออกซิเจนเป็นองก์ประกอบสูงขึ้น เนื่องจากโมเลกุลของการ์บอนไดออกไซด์ทำปฏิกิริยากับสารประกอบที่ไม่อิ่มตัวในผลิตภัณฑ์ ของเหลว

เพื่อที่จะนำผลิตภัณฑ์ของเหลวไปใช้เป็นเชื้อเพลิงจำเป็นต้องปรับปรุงคุณภาพให้ได้เท่า เทียมมาตรฐานของน้ำมันเชื้อเพลิงเสียก่อน ดังนั้นผลิตภัณฑ์ของเหลวจำเป็นต้องปรับปรุงคุณภาพด้วย การกำจัดอะตอมของออกซิเจน (Deoxygenation Reaction) จากการศึกษาปฏิกิริยาการกำจัดออกซิเจน ของกรดโอเลอิก (ในที่นี้ใช้เป็นสารตัวแทนของผลิตภัณฑ์ของเหลวที่ได้จากการไพโรไลซีสของกาก ตะกอน)โดยใช้โลหะออกไซด์ของซีเรีย-เซอร์โคเนียเป็นตัวเร่งปฏิกิริยา พบว่าสามารถกำจัดอะตอม ออกซิเจนที่อยู่ในหมู่การ์บอกซิลของกรดโอเลอิก ออกมาในรูปของก๊าซการ์บอนมอนอกไซด์และก๊าซ การ์บอนไดออกไซด์ ผลิตภัณฑ์ของเหลวที่ได้มีสารประกอบไฮโดรการ์บอนที่มีจำนวนการ์บอน เท่ากับ 17 และ 18 อะตอมเป็นองก์ประกอบหลัก นอกจากนี้งานวิจัยนี้ยังได้ทำการศึกษาการ ประยุกต์ใช้ของผลิตภัณฑ์ของแข็งสำหรับให้ความร้อนด้วยการเผาไหม้และยังศึกษาการประยุกต์ใช้ ผลิตภัณฑ์ของแข็งเป็นตัวดูดซับสำหรับสีย้อมผ้าอีกด้วย

ACKNOWLEDGEMENTS

I have realized the experience gained at PPC and CEIC-UNSW as great opportunity and this dissertation might not become realistic without the assistance of the following individuals.

First of all, I deeply indebted to Assoc. Prof. Vissanu Meeyoo, Assoc. Prof. Thirasak Rirksomboon, Assoc. Prof. Pramoch Rangsunvigit, Asst. Prof. Boonyarach Kitiyanan and Prof. David Trimm, my thesis supervisors, for their useful recommendations, creative comments and encouragement, in an entire period of degree preparation. Informally, Asst. Prof. Kitipat Siemanon is also acknowledged. I was in a happy time working with all of them. An appreciable gratitude is also conveyed to the thesis committees, Prof. Somchai Osuwan, Asst. Prof. Apanee Leungnarumitchai, Asst. Prof. Suparin Chaiklangmuang and Assoc. Prof. Metta Chareonpanich.

I would like to take this opportunity to thank other unmentioned faculties and all staffs of both PPC and UNSW, the owners of friendliness and valuable help.

This thesis work is partially funded by Center for Petroleum, Petrochemicals, and Advanced Materials Chulalongkorn University. The supports are also from the Thailand Research Fund through the RGJ-PhD program (Grant 0061/45) and Waste-to-Energy project and Ratchadapiseksomphot Endowment of Chulalongkorn University. I also thank the School of Chemical Engineering and Industrial Chemistry of UNSW where part of this research was carried out.

A special thank is directed toward PPC friends, inside and outside the pyrolysis group, for their friendly assistance, cheerfulness, and encouragement. Also, I am greatly indebted to my lovely parents and family for their support, love and understanding.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	viii
List of Tables	xiv
List of Figures	xvii

CHAPTER

I	INTRODUCTION	1
	1.1 Energy Situation in Thailand	1
	1.2 Waste to Energy	1
	1.3 Objective	2
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Sewage Sludge: Formation, Treatment and Disposal	3
	2.1.1 Formation of Sewage Sludge	3
	2.1.2 Sewage Sludge Compositions	4
	2.2 Sewage Sludge Treatment and Disposal in Practice	8
	2.2.1 Application of Sewage Sludge as Fertilizers	10
	2.2.2 Disposal of Sewage Sludge through Land Filling	11
	2.2.3 Dumping of Sewage Sludge into the Sea	11
	2.2.4 Disposal of Sewage Sludge through Incineration	11
	2.3 Production of Valuable Products from Sewage Sludge	12
	2.3.1 Thermochemical Conversion Processes	
	for Sewage Sludge	12
	2.3.1.1 Combustion	12
	2.3.1.2 Gasification	18
	2.3.1.3 Liquefaction	23
	2.3.1.4 Pyrolysis	24

PAGE

	2.3.2 Biological Conversion Processes for Sewage Sludge	25
	2.3.2.1 Anaerobic Digestion	25
	2.3.2.2 Fermentation	22
	2.4 Sewage Sludge Pyrolysis	28
	2.4.1 Principle	28
	2.4.2 Pyrolytic Yield	29
	2.4.3 Pyrolytic Product and Their Applications	32
	2.4.3.1 Gas	32
	2.4.3.2 Liquid or Bio-oil	32
	2.4.3.3 Solid Residue	37
	2.4.4 Pyrolysis Mechanisms	38
	2.4.5 Pyrolysis Kinetics	41
	2.5 Pyrolysis Reactor	46
	2.5.1 Fixed Bed Reactor	46
	2.5.2 Fluidized Bed Reactor	47
	2.5.3 Other Reactors	50
	2.6 Upgrading of Pyrolytic Liquid	52
	2.6.1 Hydrodeoxygenation	55
	2.6.2 Catalytic Cracking of Pyrolysis Vapor	58
	2.6.3 Emulsification	60
	2.6.4 Steam Reforming	60
	2.6.5 Extraction	61
	2.7 Sewage Sludge Char Combustion	62
III	EXPERIMENTAL	65
	3.1 Raw Material	67
	3.1.1 Sample Collection	67
	3.1.2 Proximate and Elemental Analysis	67
	3.2 Pyrolysis Experiments	67
	3.2.1 Batch-typed Pyrolysis	67
	3.2.2 Rotating Fixed Bed Pyrolysis	68
	3.3 Products Analysis	68

PAGE

CHAPTER

3.3.1 Gas Chromatography (GC)	68
3.3.2 Thermogravimetric Analysis (TGA)	68
3.3.3 Fourier Transform Infrared Spectroscopy (FTIR)	69
3.3.4 BET Surface Area Measurement	69
3.3.5 Acid/Basic Neutralization	70
3.4 Upgrading and Utilizations of Pyrolysis Products	70
3.4.1 Deoxygenation of Oleic Acid	70
3.4.2 Dye Adsorption Experiments	71

IV THERMOCHEMICAL DECOMPOSITION OF SEWAGE SLUDGE

IN CO ₂ AND N ₂ ATMOSPHERE	
4.1 Abstract	74
4.2 Introduction	74
4.3 Experimental	75
4.3.1 Sewage Sludge	75
4.3.2 Thermochemical Conversion	75
4.3.2.1 Thermogravimetric Analysis (TGA)	75
4.3.2.2 Batch-type Thermal Decomposition	76
4.3.2.3 Product Analysis	76
4.4 Results and Discussion	77
4.4.1 Thermogravimetric Analysis (TGA)	77
4.4.2 Kinetic Modeling	80
4.4.3 Product Analysis	82
4.4.4 Gases	82
4.4.5 Liquids	86
4.5 Conclusion	91
4.6 Acknowledgements	91
4.7 References	92

V CHARACTERIZATION OF PRODUCTS DERIVED FROM THE PYROLYSIS OF DIFFERENT RAW MATERIALS

95

CHAPTER		PAGE	
	5.1 Abstract	95	
	5.2 Introduction	95	
	5.3 Experimental	96	
	5.3.1 Materials	96	
	5.3.2 Pyrolysis	97	
	5.3.3 Product Analysis	97	
	5.4 Results and Discussion	98	
	5.4.1 Product Yields	98	
	5.4.2 Gas and Oil Compositions	101	
	5.5 Conclusion	107	
	5.6 Acknowledgements	107	
	5.7 References	107	
VI	CATALYTIC DEOXYGENATION OF		
	OLFIC ACID OVER Ce. 7r O. CATALVSTS	110	

OLEIC ACID OVER Ce _{1-x} Zr _x O ₂ CATALYSTS	
6.1 Abstract	110
6.2 Introduction	110
6.3 Materials and Methods	112
6.3.1 Catalysts Preparation and Characterizations	112
6.3.2 Activity Test	112
6.4 Results and Discussion	113
6.4.1 Catalytic Activities for Oleic Acid	113
6.4.2 Kinetics Studies	120
6.5 Conclusion	127
6.6 Acknowledgements	127
6.7 References	127

VII	TEMPERATURE-PROGRAMMED COMBUSTION		
	OF SEWAGE SLUDGE CHARS PREPARED BY		
	THERMAL DECOMPOSITION UNDER N2 AND CO2		
	ATMOSPHERE	130	
	7.1 Abstract	130	

CHAPTER		PAGE
	7.2 Introduction	130
	7.3 Experimental	131
	7.4 Results and Discussion	134
	7.4.1 Proximate Analysis and Textural Properties	134
	7.4.2 Temperature-Programmed Combustion of Sewage	
	Sludge Chars	135
	7.5 Conclusion	143
	7.6 Acknowledgments	143
	7.7 References	143
VIII	SURFACE CHARACTERIZATION AND DYE	
	ADSORPTION CAPACITIES OF CHAR OBTAINED	
	FROM PYROLYSIS/GASIFICATION OF SEWAGE	
	SLUDGE	146
	8.1 Abstract	146
	8.2 Introduction	146
	8.3 Materials and Methods	148
	8.3.1 Production of the Sewage Sludge Derived Char	148
	8.3.2 Characterization of the Sewage Sludge Derived Char	148
	8.3.2.1 BET Surface Area and SEM	148
	8.3.2.2 FTIR and Total Surface Acidity/Basicity	148
	8.3.3 Dye Adsorption Experimental	149
	8.4 Results and Discussion	151
	8.4.1 BET Surface Area and SEM	151
	8.4.2 FTIR and Total Acidity/Basicity	152
	8.4.3 Equilibrium Adsorption Isotherm	158
	8.4.4 Adsorption Mechanism	159
	8.5 Conclusion	162
	8.6 Acknowledgements	163
	8.7 References	163

CHA	PTEI	R	PAGE
	IX	CONCLUSION AND RECOMMENDATIONS	165
		9.1 Conclusions	165
		9.2 Recommendations	167
		REFERENCES	168
		CURRICULUM VITAE	175
			175

LIST OF TABLES

TABLE

PAGE

	CHAPTER II	
2.1	Typical chemical composition and properties of	
	untreated/digested sludge	6
2.2	Typical metal content in wastewater sludge	8
2.3	Comparison of the in-bed char carbon concentration from	
	the sludge with those from coals	17
2.4	Temperature ranges for different groups of compounds to	
	decompose	28
2.5	Typical operating parameters for pyrolysis processes	29
2.6	Typical product yields obtained from wood pyrolysis and	30
	gasification	
2.7	Typical properties of wood derived crude bio-oil	34
2.8	Typical properties and characteristics of wood derived crude	
	bio-oil	35
2.9	An overview compound classes and some representative in	
	pyrolytic liquid	36
2.10	Several processes occur in temperature elevation of organics	41
2.11	The kinetic model functions $f(x)$ and corresponding $g(x)$	
	usually employed for the solid state reactions	42
2.12	Reaction rate constants for pyrolysis	46
2.13	Typical properties of wood pyrolysis bio-oil and of heavy	
	fuel oil	52
2.14	Summary for bio-oil upgrading methods	54
2.15	Characteristic temperatures of the sewage sludge char	
	combustion reactivity and burn-out time derived from DTG	
	curves	64

TABLE

CHAPTER III

3.1

CHAPTER IV

4.1	DTG peak temperature in accordance with the sewage	
	sludge decomposition	80
4.2	Relative proportion (%area) of the chemical compounds	
	containing in liquid product obtained from the	
	decomposition of the sewage sludge under N_2 and CO_2	
	atmosphere	87

CHAPTER V

5.1	The classification of pyrolyzed materials	97
5.2	Proximate analysis and elemental composition of starting	
	materials, and product distribution obtained from fixed-bed	
	pyrolysis of each type	100
5.3	Gaseous products obtained from fixed-bed pyrolysis of each	
	feed type	101
5.4	Major components in pyrolytic oils derived from each feed	
	type	105

CHAPTER VII

7.1	Proximate analysis, char yields, and textural properties of	
	raw sewage sludge and chars obtained from pyrolysis	133
7.2	Metal content of dried sewage sludge	134
7.3	Characteristic temperature of the DTG curves and burn-out	
	time	137

72

PAGE

TABLE

CHAPTER VIII

8.1	Dye characteristics	151
8.2	Total acidity/basicity and pH_{PZC} values of sewage sludge	
	derived char	157
8.3	Parameters of Langmuir model	157
8.4	Parameters of Freundlich model	158

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	A flow diagram of wastewater treatment plant	5
2.2	Sludge disposal routes in the European Community up to	
	2005	9
2.3	Thermochemical process and products for sewage sludge	14
2.4	Typical type of gasification system	22
2.5	Flow sheet for the anaerobic digestion of biomass	27
2.6	Variation of the yields of solid, liquid and gas products with	
	the pyrolysis conditions	31
2.7	Product yields of sewage sludge pyrolysis samples	31
2.8	Intraparticle and extraparticle pyrolytic product formation	39
	and conversion	
2.9	Kinetic models for pyrolysis	45
2.10	Fixed bed reactor	48
2.11	A vacuum fixed bed reactor	48
2.12	A fluidized bed reactor	49
2.13	An ablative reactor	49
2.14	A rotating cone reactor	51
2.15	The reaction network for the deoxygenation reaction of	
	benzoic acid	57
2.16	The deoxygenation reaction model of benzoic acid over both	
	non-reducible and reducible catalysts	57
2.17	Overview of the pathway for the deoxygenation of a	
	carboxylic acid	59
2.18	Example of TG and DTG profile of sewage sludge char	63
	combustion	

FIGURE

3.1	The schematic diagram for the summary of experiments	65
3.2	Schematic diagram of fixed-bed flow deoxygenation system	70
3.3	Molecular structures of (a) acid yellow 49, (b) basic blue 41	
	and (c) reactive red 198	73

CHAPTER III

CHAPTER IV

4.1	TG and DTG profiles of the sewage sludge decomposition	
	under (•) N_2 and (o) CO_2 atmosphere with a heating rate =	
	20°C min ⁻¹ : (a) this work (b) type III* and (c) type V*	79
4.2	Variation of yields of solid (\bullet , \circ), liquid (\blacktriangle , Δ) and gas (\blacksquare ,	
	□) products as a function of temperature. Filled symbol	
	represents the N_2 pyrolysis and open symbol represents the	
	CO ₂ pyrolysis	83
4.3	Evolved gas concentrations obtained from the sewage sludge	
	decomposition under N_2 and CO_2 atmosphere: (a) H_2 , (b)	
	CH_4 , C_2H_4 and C_2H_6 , (c) CO and CO_2	84
4.4	Typical TIC chromatograms of the liquid product obtained	
	at 650°C	85
4.5	The distribution of the different chemical classes containing	
	in the liquid product from: (a) N_2 atmosphere and (b) CO_2	
	atmosphere	90

CHAPTER V

5.1 Total ion current chromatograms of oil derived from (a) polyethylene (PE), (b) polypropylene (PP), (c) polystyrene (PS), (d) tire waste (TR), (e) sewage sludge (SS), and (f) oil sludge (OS)
104

PAGE

FIGURE

PAGE

CHAPTER VI

6.1	The yield of (a) CO and (b) CO_2 as a function of reaction	
	temperature	115
6.2	The distribution of the liquid product obtained from the	
	deoxygenation of oleic acid under atmosphere at 385°C	116
6.3	Effects of temperature on oleic acid conversion for the	
	deoxygenation of oleic acid over ceria-zirconia catalysts and	
	non-catalytic system	117
6.4	CO-TPR profiles of the $Ce_{1-x}Zr_xO_2$ catalysts	118
6.5	CO_2/CO ratio as a function of reaction temperature for the	
	deoxygenation of oleic acid over ceria-zirconia catalysts	119
6.6	The plot of conversion against m/F_0 ratio	122
6.7	The plot of $ln(1-x)$ vs m/F_0 (hypothesis of n = 1)	123
6.8	The reaction order determination by power-law kinetic	125
	model	
6.9	Arrhenius plot for the determination of kinetic parameters	126

CHAPTER VII

7.1	TG and DTG profiles of sewage sludge chars combustion (a)	
	N350 and C350, (b) N550 and C550, (c) N750 and C750.	136
7.2	The plot of maximum reactivities (R_{max}) and temperature at	
	the maximum (T_m) as a function of pyrolysis temperature for	
	sewage sludge chars derived from pyrolysis under N_2 and	
	CO ₂ atmospheres	140
7.3	The plot of maximum reactivities (R_{max}) and temperature at	
	the maximum (T_m) as a function of BET surface area of	
	sewage sludge chars derived from pyrolysis under (a) N_2 and	
	(b) CO ₂ atmospheres	141

7.4	The plot of maximum reactivities (R_{max}) and temperature at	
	the maximum (T_m) as a function of total pore volume of	
	sewage sludge chars derived from pyrolysis under (a) N_2 and	
	(b) CO ₂ atmospheres	142

CHAPTER VIII

8.1	Molecular structures of (a) acid yellow 49, (b) basic blue 41	
	and (c) reactive red 198.	150
8.2	BET surface area of the N_2 -char and CO_2 -char as a function	
	of temperature.	154
8.3	SEM micrographs of sewage sludge derived chars (a) as-	
	received sludge, (b) N350, (c) C350, (d) N750 and (e) C750	155
8.4	FT-IR spectra of sewage sludge derived chars prepared at	
	different temperatures (a) under N ₂ atmosphere and (b)	
	under CO ₂ atmosphere	156
8.5	Dye adsorption isotherms of sewage sludge derived chars	
	prepared at different temperatures (a) acid dye adsorption on	
	N_2 -char, (b) acid dye adsorption on CO_2 -char, (c) basic dye	
	adsorption on N2-char, (d) basic dye adsorption on CO2-	
	char, (e) reactive dye adsorption on N ₂ -char and (f) reactive	
	dye adsorption on CO ₂ -char. (•) 350 °C, (o) 450°C, ($\mathbf{\nabla}$)	
	550°C, (∇) 650°C and (■) 750°C	160
8.6	Maximum adsorption capacities of (a) acid dyes, (b) basic	
	dyes and (c) reactive dyes over sewage sludge derived char	
	vs. pyrolysis temperature	161