REFERENCES

- (1) Hendrix, F., and Campbell, W. *Pythium* as plant pathogens. <u>Annu Rev</u> <u>Phytopathol 11 (1973):77-98.</u>
- (2) Carroll, G., and Tudzynski, P. The Mycota, vol V, part A. <u>Plant relationships</u>. New York: Springer, 1997.
- (3) Alexopoulos, C., Mims, C., and Blackwell, M.. <u>Introductory mycology. 4 ed</u>. New York: Wiley & Sons, 1996.
- (4) Tabosa, I.M., Riet-Correa, F., Nobre, V.M., Azevedo, E.O., Reis-Junior, J.L., and Medeiros, R.M. Outbreaks of pythiosis in two flocks of sheep in northeastern Brazil. <u>Vet Pathol</u>. 41(Jul 2004):412-415.
- (5) Mendoza, L., Ajello, L., and Mcginnis, M. Infections caused by the oomycetous pathogen *Pythium insidiosum*. Journal de Mycologie <u>Me'dicale</u>. 6 (1996):151-164.
- (6) De Cock, A.W., Mendoza, L., Padhye, A.A., Ajello, L., and Kaufman, L. Pythium insidiosum sp. nov., the etiologic agent of pythiosis. <u>J Clin</u> <u>Microbiol</u>. 25 (Feb 1987):344-349.
- Triscott, J.A., Weedon, D., and Cabana, E. Human subcutaneous pythiosis. J
 <u>Cutan Pathol</u>. 20 (Jun 1993):267-271.
- (8) Krajaejun, T., Pracharktam, R., Wongwaisayawan, S., Rochanawutinon, M., Kunakorn, M., and Kunavisarut, S. Ocular pythiosis: is it underdiagnosed? <u>Am J Ophthalmol</u>. 137 (Feb 2004):370-372.
- Lekhanont, K., Chuckpaiwong, V., Chongtrakool, P., Aroonroch, R., and Vongthongsri, A. *Pythium insidiosum* keratitis in contact lens wear: a case report. <u>Cornea</u>. 28 (Dec 2009):1173-1177.

- Pupaibool, J., Chindamporn, A., Patrakul, K., Suankratay, C., Sindhuphak,
 W., and Kulwichit, W. Human pythiosis. <u>Emerg Infect Dis</u>. 12 (Mar 2006):517-518.
- (11) Imwidthaya, P. Human pythiosis in Thailand. <u>Postgrad Med J</u>. 70 (Aug 1994):558-560.
- Mendoza, L., and Alfaro, A.A. Equine pythiosis in Costa Rica: report of 39 cases. <u>Mycopathologia</u>. 94 (May 1986):123-129.
- (13) Mendoza, L., Arias, M., Colmenarez, V., and Perazzo, Y. Intestinal canine pythiosis in Venezuela confirmed by serological and sequencing analysis. <u>Mvcopathologia</u>. 159 (Feb 2005):219-222.
- Rivierre, C., Laprie, C., Guiard-Marigny, O., Bergeaud, P., Berthelemy, M., and Guillot, J. Pythiosis in Africa. <u>Emerg Infect Dis</u>. 11 (Mar 2005):479-481.
- (15) Krajaejun, T., Sathapatayavongs, B., Pracharktam, R., Nitiyanant, P., Leelachaikul, P., Wanachiwanawin, W., et al. Clinical and epidemiological analyses of human pythiosis in Thailand. <u>Clin Infect</u> <u>Dis</u>. 43 (Sep 2006):569-576.
- (16) Kaufman, L. Penicilliosis marneffei and pythiosis: emerging tropical diseases. <u>Mycopathologia</u>. 143 (1998):3-7.
- (17) Laohapensang, K., Rutherford, R. B., Supabandhu, J., and Vanittanakom, N.
 Vascular pythiosis in a thalassemic patient. <u>Vascular</u>. 17 (Jul-Aug 2009):234-238.

- (18) Sathapatayavongs, B., Leelachaikul, P., Prachaktam, R., Atichartakarn, V., Sriphojanart, S., Trairatvorakul, P., et al. Human pythiosis associated with thalassemia hemoglobinopathy syndrome. J Infect Dis. 159 (Feb 1989):274-280.
- (19) Prasertwitayakij, N., Louthrenoo, W., Kasitanon, N., Thamprasert, K., andVanittanakom, N. Human pythiosis, a rare cause of arteritis: case report and literature review. <u>Semin Arthritis Rheum</u>. 33 (Dec 2003):204-214.
- (20) Mendoza, L., Prasla, S.H., and Ajello, L. Orbital pythiosis: a non-fungal disease mimicking orbital mycotic infections, with a retrospective review of the literature. <u>Mycoses</u>. 47 (Feb 2004):14-23.
- (21) Cavalheiro, A.S., Zanette, R.A., Spader, T.B., Lovato, L., Azevedo, M.I., Botton, S., et al. In vitro activity of terbinafine associated to amphotericin B, fluvastatin, rifampicin, metronidazole and ibuprofen against Pythium insidiosum. <u>Vet Microbiol</u>. 137 (Jun 2009):408-411.
- (22) Argenta, J.S., Santurio, J.M., Alves, S.H., Pereira, D.I., Cavalheiro, A.S., Spanamberg, A., et al. In vitro activities of voriconazole, itraconazole, and terbinafine alone or in combination against *Pythium insidiosum* isolates from Brazil. <u>Antimicrob Agents</u> <u>Chemother</u>. 52 (Feb 2008):767-769.
- (23) Imwidthaya, P., and Srimuang, S. Immunodiffusion test for diagnosing human pythiosis. <u>Mycopathologia</u>. 106 (May 1989):109-112.

- (24) Mendoza, L., Kaufman, L., Mandy, W., and Glass, R. Serodiagnosis of human and animal pythiosis using an enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol. 4 (Nov 1997):715-718.
- (25) Jindayok, T., Piromsontikorn, S., Srimuang, S., Khupulsup, K., and Krajaejun, T. Hemagglutination test for rapid serodiagnosis of human pythiosis. <u>Clin Vaccine Immunol</u>. 16 (Jul 2009):1047-1051.
- (26) Schurko, A.M., Mendoza, L., De Cock, A.W., Bedard, J.E., and Klassen, G.R. Development of a species-specific probe for *Pythium insidiosum* and the diagnosis of pythiosis. <u>J Clin Microbiol</u>. 42 (Jun 2004):2411-2418.
- (27) Grooters, A.M., and Gee, M.K. Development of a nested polymerase chain reaction assay for the detection and identification of *Pythium insidiosum*. J Vet Intern Med. 16 (Mar-Apr 2002):147-152.
- (28) Wanachiwanawin, W., Mendoza, L., Visuthisakchai, S., Mutsikapan, P., Sathapatayavongs, B., Chaiprasert, A., et al. Efficacy of immunotherapy using antigens of *Pythium insidiosum* in the treatment of vascular pythiosis in humans. <u>Vaccine</u>. 22 (Sep 2004):3613-3621.
- (29) Lamour, K.H., Win, J., and Kamoun, S. Oomycete genomics: new insights and future directions. <u>FEMS Microbiol Lett</u>. 274 (Sep 2007):1-8.
- (30) Vichit, T. <u>Sequence analysis in intergenic spacer I region in Pythium</u> <u>insidiosum</u> Master's Thesis, Interciplinary program of Medical Microbiology Graduate School Chulalongkorn University, 2006.

- (31) Schurko, A.M., Mendoza, L., Levesque, C.A., Desaulniers, N.L., De Cock,
 A.W., and Klassen, G.R. A molecular phylogeny of *Pythium* insidiosum. <u>Mycol Res</u>. 107 (May 2003):537-544.
- (32) Mendoza, L., Mandy, W., and Glass, R. An improved *Pythium insidiosum*vaccine formulation with enhanced immunotherapeutic properties in horses and dogs with pythiosis. <u>Vaccine</u>. 21 (Jun 2003):2797-2804.
- (33) Hensel, P., Greene, C.E., Medleau, L., Latimer, K.S., and Mendoza, L. Immunotherapy for treatment of multicentric cutaneous pythiosis in a dog. <u>J Am Vet Med Assoc</u>. 223 (Jul 2003):215-218.
- (34) Krajaejun, T., Kunakorn, M., Niemhom, S., Chongtrakool, P., and Pracharktam, R. Development and evaluation of an in-house enzyme-linked immunosorbent assay for early diagnosis and monitoring of human pythiosis. <u>Clin Diagn Lab Immunol</u>. 9 (Mar 2002):378-382.
- (35) Brown, T.A., Grooters, A.M., and Hosgood, G.L. In vitro susceptibility of *Pythium insidiosum* and a *Lagenidium* sp to itraconazole, posaconazole, voriconazole, terbinafine, caspofungin, and mefenoxam. <u>Am J Vet Res</u>. 69 (Nov 2008):1463-1468.
- (36) Pereira, D.I., Santurio, J.M., Alves, S.H., Argenta, J.S., Potter, L., Spanamberg, A., et al. Caspofungin in vitro and in vivo activity against Brazilian Pythium insidiosum strains isolated from animals. J <u>Antimicrob Chemother</u>. 60 (Nov 2007):1168-1171.
- (37) Hogan, L., Bruce, S.K., and Stuart, M.L. Virulence Factors of Medically Important Fungi. <u>Clinical Microbiology Reviews</u>. 9 (1996):469-488.

- (38) Ravishankar, J.P., Davis, C.M., Davis, D.J., Macdonald, E., Makselan, S.D., Millward, L., et al. Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. <u>Fungal Genet Biol</u>. 34 (Dec 2001):167-175.
- (39) Davis, D.J., Lanter, K., Makselan, S., Bonati, C., Asbrock, P., Ravishankar, J. P., et al. Relationship between temperature optima and secreted protease activities of three *Pythium* species and pathogenicity toward plant and animal hosts. <u>Mvcol Res</u>. 110 (Jan 2006):96-103.
- (40) Avrova, A.O., Whisson, S.C., Pritchard, L., Venter, E., De Luca, S., Hein, I., et al. A novel non-protein-coding infection-specific gene family is clustered throughout the genome of *Phytophthora infestans*. <u>Microbiology</u>. 153 (Mar 2007):747-759.
- (41) Wang, Z., Wang, Y., Chen, X., Shen, G., Zhang, Z., and Zheng, X. Differential screening reveals genes differentially expressed in lowand high-virulence near-isogenic Phytophthora sojae lines. <u>Fungal</u> <u>Genet Biol</u>. 43 (Dec 2006):826-839.
- (42) Sioud, M. Target <u>Discovery and Validation Reviews and Protocols: Volume</u>
 <u>1. Emerging Strategies for Targets and Biomarker Discovery</u>.
 Humana Press Inc., 2006.
- (43) Luckenbach, J.A., Iliev, D.B., Goetz, F.W., and Swanson, P. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. <u>Reprod Biol Endocrinol</u>. 6 (Jan 2008):2.

- (44) De Long, S.K., Kinney, K.A., and Kirisits, M.J. Prokaryotic suppression subtractive hybridization PCR cDNA subtraction, a targeted method to identify differentially expressed genes. <u>Appl Environ Microbiol</u>. 74 (Jan 2008):225-232.
- (45) Zhao, C.J., Wang, A.R., Shi, Y.J., Wang, L.Q., Liu, W.D., Wang, Z.H., et al. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. <u>Theor Appl Genet</u>. (Dec 2007):501-516.
- (46) Zhang, W., Li, H., Cheng, G., Hu, S., Li, Z., and Bi, D. Avian influenza virus infection induces differential expression of genes in chicken kidney.
 <u>Res Vet Sci</u>. (Aug 2007):374-381.
- (47) Yuan, L., Chen, J., Lin, B., Zhang, J., and Zhang, S. Differential expression and functional constraint of PRL-2 in hibernating bat. <u>Comp</u> <u>Biochem Physiol B Biochem Mol Biol</u>. 148 (Dec 2007):375-381.
- (48) Sun, M.M., Li, L.H., Xie, H., Ma, R.C., and He, Y.K. Differentially expressed genes under cold acclimation in *Physcomitrella patens*. J <u>Biochem Mol Biol</u>. 40 (Nov 2007):986-1001.
- (49) Dios, S., Poisa-Beiro, L., Figueras, A., and Novoa, B. Suppression subtraction hybridization (SSH) and macroarray techniques reveal differential gene expression profiles in brain of sea bream infected with nodavirus. <u>Mol Immunol</u>. 44 (Mar 2007):2195-2204.

- (50) Ghorbel, M.T., Sharman, G., Hindmarch, C., Becker, K.G., Barrett, T., and Murphy, D. Microarray screening of suppression subtractive hybridization-PCR cDNA libraries identifies novel RNAs regulated by dehydration in the rat supraoptic nucleus. <u>Physiol Genomics</u>. 24 (Jan 2006):163-172.
- (51) Brown, M., Davies, I.M., Moffat, C.F., and Craft, J.A. Application of SSH and a macroarray to investigate altered gene expression in Mytilus edulis in response to exposure to benzo[a]pyrene. <u>Mar Environ Res</u>. 62 (Jul 2006):S128-135.
- (52) Rim, K.T., Park, K.K., Sung, J.H., Chung, Y.H., Han, J.H., Cho, K.S., et al. Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure. <u>Toxicol Ind Health</u>. 20 (Jun 2004):77-88.
- (53) Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. <u>Proc Natl Acad Sci</u>. 93 (1996):6025-6030.
- (54) Moy, P., Qutob, D., Chapman, B.P., Atkinson, I., and Gijzen, M. Patterns of gene expression upon infection of soybean plants by *Phytophthora sojae*. <u>Mol Plant Microbe Interact</u>. 17 (Oct 2004):1051-1062.
- (55) Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. <u>Nat Genet</u>. 26 (Dec 2000):403-410.

- (56) Cao, C., Li, R., Wan, Z., Liu, W., Wang, X., Qiao, J., et al. The effects of temperature, pH, and salinity on the growth and dimorphism of *Penicillium marneffei*. <u>Med Mycol</u>. 45 (Aug 2007):401-407.
- (57) Marques, E.R., Ferreira, M.E., Drummond, R.D., Felix, J.M., Menossi, M., Savoldi, M., et al. Identification of genes preferentially expressed in the pathogenic yeast phase of *Paracoccidioides brasiliensis*, using suppression subtraction hybridization and differential macroarray analysis. <u>Mol Genet Genomics</u>. 271 (Jul 2004):667-677.
- (58) Pääkkönen V, and Tjäderhane, L. High-throughput gene and protein expression analysis in pulp biologic research: review. Journal of <u>Endodontics</u>. 36 (2010):179-189.
- (59) Manchado, M., Infante, C., Asensio, E., Planas, J.V., and Canavate, J.P. Thyroid hormones down-regulate thyrotropin beta subunit and thyroglobulin during metamorphosis in the flatfish *Senegalese sole* (Solea senegalensis Kaup). <u>Gen Comp Endocrinol</u>. 155 (Jan 2008):447-455.
- (60) Pantoja, S., Lee, C., Marecek, J.F., and Palenik, B.P. Synthesis and use of fluorescent molecular probes for measuring cell-surface enzymatic oxidation of amino acids and amines in seawater. <u>Anal Biochem</u>. 211 (Jun 1993):210-218.

- (61) Livak, K.J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. <u>PCR Methods Appl.</u> 4 (Jun 1995):357-362.
- (62) Wittwer, C.T., Herrmann, M.G., Moss, A.A., and Rasmussen, R.P. Continuous fluorescence monitoring of rapid cycle DNA amplification. <u>Biotechniques</u>. 22 (Jan 1997):130-131.
- (63) Ririe, K.M., Rasmussen, R.P., and Wittwer, C.T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. <u>Anal Biochem</u>. 245 (Feb 1997):154-160.
- (64) Morrison, T.B., Weis, J.J., and Wittwer, C.T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. <u>Biotechniques</u>. 24 (Jun 1998):954-958, 960, 962.
- (65) Kreisel, M. Physiopathological treatment of morpheic epilepsy. <u>Rev Med</u> <u>Chir Soc Med Nat Iasi</u>. 73 (Oct-Dec 1969):887-893.
- (66) Brasierc, M. Evolutionary biology of phytophthora. I. Genetic system, sexuality and the generation of variation. <u>Annu Rev Phytopathol</u>. 30 (1992):153-171.
- (67) Sansome, E. Meiosis in the oogonium and antheridium of *Pythium debaryanum* Hesse. <u>Nature (London)</u>. 191 (1961):827-828.
- (68) Barr, D. Evolution and kingdoms from the perspective of a mycologist. <u>Mycologia</u>. 84 (1992):1-11.

- (69) Simpson, A., and Roger, A.J. Eukaryotic evolution: getting to the root of the problem. <u>Curr Biol</u>. 12 (Oct 2002):R691-693.
- Dick, M.W. <u>Straminipilous Fungi</u>. Dordrecht: Kluwer Academic Publishers, 2001.
- (71) Kwon-Chung, K. Phylogenetic spectrum of fungi that are pathogenic to humans. <u>Clin Infect Dis</u>. 19 (Aug 1994):S1-7.
- (72) Kamoun, S. Molecular genetics of pathogenic oomycetes. <u>Eukaryot Cell</u>. 2
 (Apr 2003):191-199.
- Paul, B. A new species of *Pythium* isolated from a vineyard in France. <u>FEMS</u>
 <u>Microbiol Lett</u>. 263 (Oct 2006):194-199.
- (74) Paul, B., Bala, K., Lassaad, B., Calmin, G., Sanchez-Hernandez, E., and Lefort, F. A new species of *Pythium* with ornamented oogonia: morphology, taxonomy, internal transcribed spacer region of its ribosomal RNA, and its comparison with related species. <u>FEMS</u> <u>Microbiol Lett</u>. 254 (Jan 2006):317-323.
- (75) Levesque, C.A., and De Cock, A.W. Molecular phylogeny and taxonomy of the genus *Pythium*. <u>Mycol Res</u>. 108 (Dec 2004):1363-1383.
- (76) Bala, K., Gautam, N., and Paul, B. Pythium rhizo-oryzae sp. nov. isolated from paddy fields: taxonomy, ITS region of rDNA, and comparison with related species. <u>Curr Microbiol</u>. 52 (Feb 2006):102-107.
- Badenoch, P.R., Coster, D.J., Wetherall, B.L., Brettig, H.T., Rozenbilds,
 M.A., Drenth, A., et al. Pythium insidiosum keratitis confirmed by
 DNA sequence analysis. <u>Br J Ophthalmol</u>. 85 (Apr 2001):502-503.

- (78) Chandler, F., Kaplan, W., and Ajello, L. <u>In: A color atlas and textbook of the histopathology of mycotic diseases</u>.: Year Book Medical Publishers, 1980.
- (79) Thianprasit, M., Chaiprasert, A., and Imwidthaya, P. Human pythiosis. <u>Curr</u> <u>Top Med Mvcol</u>. 7 (Dec 1996):43-54.
- (80) Smith, F. The pathology of bursattee. . <u>Vet J.</u> 19 (1884):16-17.
- (81) Drouin, V. Sur une nouvelle mycose du cheval. <u>Rec Med Vet.</u> 30 (1896):337-344.
- (82) De Haan, J., and Hoogkamer, L. Hyphomycosis destruen-equi. <u>Arch Wis</u> <u>Prakt Tierheilk</u>. 29 (1903):395-410.
- (83) Bridges, C., and Emmons, C.A phycomycosis of horse caused by Hyphomyces destruens. J Am Vet Med Assoc. 138 (1961):579-589.
- (84) Austwick P.K., and Copland, J. Swamp cancer. <u>Nature</u>. 250 (1974):84.
- (85) Thianprasit, M. Human pythiosis. <u>Trop Dermatol</u>. 4 (1990):1-4.
- (86) Santurio, J.M., Monteiro, A.B., Leal, A.T., Kommers, G.D., De Sousa, R.S., and Catto, J.B. Cutaneous Pythiosis insidiosi in calves from the Pantanal region of Brazil. <u>Mvcopathologia</u>. 141 (1998):123-125.
- (87) Thomas, F., and Poulin, R. Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? <u>Parasitology</u>. 116 (May 1998):431-436.
- (88) Camus, A C., Grooters, A.M., and Aquilar, R.E. Granulomatous pneumonia caused by *Pythium insidiosum* in a central American jaguar, Panthera onca. <u>J Vet Diagn Invest</u>. 16 (Nov 2004):567-571.

(89) Kamoun, S. Molecular genetics of pathogenic oomycetes. <u>Eukaryot Cell</u>. 2
 (2003):191-199.

×

- (90) Lin, C., and Aronson, J.M. . Chitin and cellulose in the cell walls of the oomycete, *Apodachlya sp.* <u>Arch Mikrobiol</u> 72 (1970):111-114.
- (91) Aronson, J., and Lin, C.C. Hyphal wall chemistry of *Leptomitus lacteus*. .
 <u>Mvcologia</u> 70 (1978):363-369.
- (92) Fischer, R. <u>Biology of the Fungal Cell. 2 ed.</u> Springer Berlin Heidelberg, 2007.
- (93) Carlile, M., Gooday, G.W., and Watkinson, S.C. <u>The Fungi. 2 ed</u>. London: Academic Press, 2001.
- (94) Garcia, R.B., Pastor, A., and Mendoza, L. Mapping of *Pythium insidiosum* hyphal antigens and ultrastructural features using TEM. <u>Mycol Res</u>. 111 (Nov 2007):1352-1360.
- (95) Deacon, J. Fungal biology. 3 ed. Blackwell Publishing Ltd, 2006.
- (96) Shipton, W.A. Pythium destruens sp. nov., an agent of equine pythiosis. J <u>Med Vet Mycol</u>. 25 (Jun 1987):137-151.
- (97) Mendoza, L., Hernandez, F., and Ajello, L. Life cycle of the human and animal oomycete pathogen *Pythium insidiosum*. <u>J Clin Microbiol</u>. 31 (Nov 1993):2967-2973.
- (98) Agrios, G. <u>Plant pathology. 5 ed</u>. Elsevier Academic Press, 2005.
- (99) Šamaj, J., and Thelen, J. <u>In Plant Proteomics</u>. Springer; 2007.
- (100) Fuller, M. The zoospore, hallmark of the aquatic fungi. <u>Mycologia</u>. 69
 (1977):1-20.

- (101) Newell, S., and Fell, J. Distribution and experimental response to substrate of marine oomycetes (*Halophytophthora* spp.), in a mangrove ecosystem. <u>Mycol Res</u>. 96 (1992):851-856.
- (102) Nicole, M., and Gianinazzi-Pearson. <u>Histology,ultrastructure and molecular</u> <u>cvtology of plantmicroorganism interactions.</u> 5 ed. Dordrecht: Kluwer Academic, 1996.
- (103) Tucker, S., and Talbot, N.J. Surface attachment and prepenetration stage development by plant pathogenic fungi. <u>Annu Rev Phytopathol</u>. 39 (2001):385-417.
- (104) Chaiprasert, A., Samerpitak, K., Wanachiwanawin, W., and Thasnakorn, P. Induction of zoospore formation in Thai isolates of *Pythium insidiosum*. <u>Mycoses</u>. 33 (Jun 1990):317-323.
- (105) Miller, R.I. Investigations into the biology of three 'phycomycotic' agents pathogenic for horses in Australia. <u>Mycopathologia</u>. 81 (Jan 1983):23-28.
- (106) Murdoch, D., and Parr, D. Pythium insidiosum keratitis. Aust N Z J Ophthalmol. 25 (May 1997):177-179.
- (107) Heath, J.A., Kiehn, T.E., Brown, A.E., Laquaglia, M.P., Steinherz, L.J., Bearman, G., et al. Pythium insidiosum pleuropericarditis complicating pneumonia in a child with leukemia. <u>Clin Infect Dis</u>. 35 (Sep 2002):E60-64.

- (108) Shenep, J.L., English, B. K., Kaufman, L., Pearson, T.A., Thompson, J.W., Kaufman, R.A., *et al.* Successful medical therapy for deeply invasive facial infection due to Pythium insidiosum in a child. <u>Clin</u> <u>Infect Dis</u>. 27 (Dec 1998):1388-1393.
- (109) Virgile, R., Perry, H.D., Pardanani, B., Szabo, K., Rahn, E.K., Stone, J., et al. Human infectious corneal ulcer caused by *Pythium insidiosum*. <u>Cornea</u>. 12 (Jan 1993):81-83.
- (110) Kunavisarut, S., Nimvorapan, T., and Methasiri, S. *Pythium* corneal ulcer in Ramathibodi Hospital. <u>J Med Assoc Thai</u>. 86 (Apr 2003):338-342.
- (111) Vanittanakom, N., Supabandhu, J., Khamwan, C., Praparattanapan, J., Thirach, S., Prasertwitayakij, N., et al. Identification of emerging human-pathogenic Pythium insidiosum by serological and molecular assay-based methods. J Clin Microbiol. 42 (Sep 2004):3970-3974.
- (112) Reis, J.L., Jr., De Carvalho, E.C., Nogueira, R.H., Lemos, L.S., and Mendoza, L. Disseminated pythiosis in three horses. <u>Vet Microbiol</u>. 96 (Oct 2003):289-295.
- (113) Mendoza, L. Pythium insidiosum. 2008; Available from: http://bld.msu.edu/mendoza.html#MENU.
- (114) Alfaro, A.A., and Mendoza, L. Four cases of equine bone lesions caused by *Pythium insidiosum*. Equine Vet J. 22 (Jul 1990):295-297.
- Bentinck-Smith, J., Padhye, A.A., Maslin, W.R., Hamilton, C., Mcdonald,
 R. K., and Woody, B.J. Canine pythiosis--isolation and identification of Pythium insidiosum. <u>J Vet Diagn Invest</u>. 1 (Oct 1989):295-298.

- (116) Chaffin, M.K., Schumacher, J., and Mcmullan, W.C. Cutaneous pythiosis in the horse. <u>Vet Clin North Am Equine Pract</u>. 11 (Apr 1995):91-103.
- (117) Liljebjelke, K.A., Abramson, C., Brockus, C., and Greene, C.E. Duodenal obstruction caused by infection with *Pythium insidiosum* in a 12-week-old puppy. J Am Vet Med Assoc. 220 (Apr 2002):1188-1191, 1162.
- (118) Mendoza, L., Alfaro, A.A., and Villalobos, J. Bone lesions caused by *Pythium insidiosum* in a horse. <u>J Med Vet Mycol</u>. 26 (Feb 1988):5-12.
- Miller, R.I., Olcott, B.M., and Archer, M. Cutaneous pythiosis in beef calves.
 <u>J Am Vet Med Assoc</u>. 186 (May 1985):984-986.
- (120) Patton, C.S., Hake, R., Newton, J., and Toal, R.L. Esophagitis due to Pythium insidiosum infection in two dogs. <u>J Vet Intern Med</u>. 10 (May-Jun 1996):139-142.
- (121) Purcell, K.L., Johnson, P.J., Kreeger, J.M., and Wilson, D.A. Jejunal obstruction caused by a *Pythium insidiosum* granuloma in a mare. J <u>Am Vet Med Assoc</u>. 205 (Jul 1994):337-339.
- (122) Rakich, P.M., Grooters, A.M., and Tang, K.N. Gastrointestinal pythiosis in two cats. <u>J Vet Diagn Invest</u>. 17 (May 2005):262-269.
- (123) Miller, R.I., and Campbell, R.S. Experimental pythiosis in rabbits. Sabouraudia. 21 (Dec 1983):331-341.
- (124) Rippon, J.W. <u>Medical mycology: the pathogenic fungi and the pathogenic</u> <u>actinomycetes. 3 ed.</u> Philadelphia: W. B. Saunders Co, 1998.

- (125) Thomas, R., and Lewis, D.T. Pythiosis in dogs and cats. <u>Compendium</u>. 20 (1998):63-75.
- (126) Buergelt, C. If it's not neoplasia, it may be pythiosis. <u>Vet Med</u>. 95(2000):198-200.
- (127) Wanachiwanawin, W. Infections in E-beta thalassemia. <u>J Pediatr Hematol</u> <u>Oncol.</u> 6 (2000):581-587.
- (128) Thitithanyanont, A., Mendoza, L., Chuansumrit, A., Pracharktam, R., Laothamatas, J., Sathapatayavongs, B., et al. Use of an immunotherapeutic vaccine to treat a life-threatening human arteritic infection caused by *Pythium insidiosum*. <u>Clin Infect Dis</u>. 27 (Dec 1998):1394-1400.
- (129) Mendoza, L., and Newton, J.C. Immunology and immunotherapy of the infections caused by Pythium insidiosum. <u>Med Mycol</u>. 43 (Sep 2005):477-486.
- (130) Mendoza, L., and Prendas, J. A method to obtain rapid zoosporogenesis of *Pythium insidiosum*. <u>Mvcopathologia</u>. 104 (Oct 1988):59-62.
- (131) Pracharktam, R., Changtrakool, P., Sathapatayavongs, B., Jayanetra, P., and Ajello, L. Immunodiffusion test for diagnosis and monitoring of human pythiosis insidiosi. <u>J Clin Microbiol</u>. 29 (Nov 1991):2661-2662.
- (132) Mendoza, L., Kaufman, L., and Standard, P.G. Immunodiffusion test for diagnosing and monitoring pythiosis in horses. <u>J Clin Microbiol</u>. 23 (May 1986):813-816.

- (133) Grooters, A.M., Leise, B.S., Lopez, M.K., Gee, M.K., and O'reilly, K.L. Development and evaluation of an enzyme-linked immunosorbent assay for the serodiagnosis of pythiosis in dogs. <u>J Vet Intern Med</u>. 16 (Mar-Apr 2002):142-146.
- (134) Chindamporn, A., Vilela R, Hoag Ka, and Mendoza L. Antibodies in the sera of host species with pythiosis recognize a variety of unique immunogens in geographically divergent *Pythium insidiosum* strains. <u>Clin Vaccine Immunol</u>. 16 (Mar 2009):330-336.
- (135) Roselle, G., and Kauffman, C. Amphotericin B and 5-Fluorocytosine: In Vitro Effects on Lymphocyte Function. <u>Antimicrobial agents and</u> <u>chemotherapy</u>. 3 (1978):398-402.
- (136) Krajaejun, T., Sathapatayavongs, B., Chaiprasert, A., and Srimuang, S. Do you know human pythiosis ? <u>J Infect Dis Antimibrob Agents</u>. 25 (2008):45-51.
- (137) Miller, R. Treatment of equine phycomycosis by immunotherapy and surgery. <u>Aust Vet J</u> 57 (1981):377-382.
- (138) Newton, J., and Ross, P. Equine pythiosis: an overview of immunotherapy.
 <u>Compendium</u>. 15 (1993):491-493.
- (139) Wanachiwanawin, W., Thianprasit, M., Fucharoen, S., Chaiprasert, A., Sudasna, N., Ayudhya, N., et al. Fatal arteritis due to Pythium insidiosum infection in patients with thalassaemia. <u>Trans R Soc Trop</u> <u>Med Hvg</u>. 87 (May-Jun 1993):296-298.
- (140) Goffeau, A., Barrell, B., Bussey, H., Davis, R., Dujon, B., Feldmann, H., et al. Life with 6000 genes. <u>Science</u>. 274 (1996):563-567.

- (141) Martin, F. Electrophoretic karyotype in the genus *Pythium*. <u>Mycologia</u>. 87
 (1995):333-353.
- (142) Mao, Y., and Tyler, B.M. Genome organization of *Phytophthora* megasperma f. sp. glycinea. <u>Exp Mycol</u>. 15 (1991):283-291.
- (143) Supabandhu, J., Fisher M.C., Mendoza L, and Vanittanakom, N. Isolation and identification of the human pathogen *Pythium insidiosum* from environmental samples collected in Thai agricultural areas. <u>Med</u> <u>Mycol</u>. 46 (Feb 2008):41-52.
- (144) Stirling, G., Eden, L.M., and Ashley, M.G. Sudden wilt of capsicum in tropical and subtropical Australia: a severe form of *Pythium* root rot exacerbated by high soil temperatures. <u>Australasian Plant Pathology</u>. 33 (2004):357-366.
- (145) Narberhaus, F., Waldminghaus, T., and Chowdhury, S. RNA thermometers. <u>FEMS Microbiol Rev</u>. 30 (2006):3-16.
- (146) Cutler, J.E., and Hahn, Y.<u>Human and Animal Relationships</u>. Springer-Verlag; 1996.
- (147) Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.
 <u>Molecular biology of the cell.</u> Garland Publishing; 1998.
- (148) Bonaldo, M.F., Lennon, G., and Soares, M.B. Normalization and subtraction: two approaches to facilitate gene discovery. <u>Genome Research</u>. 6 (1996):791-806.
- (149) Jones, M. The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? <u>Microbiology</u>. 153 (2007):1-6.

- (150) Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A., and Lukyanov, S.A. An improved PCR method for walking in uncloned genomic DANN. <u>Nucleic Acids Res</u>. 23 (1995):1087,1088.
- (151) Gurskaya, N.G., Diatchenko, L., Chenchik, A., Siebert, P. D.Khaspekov, G.L. Lukyanov, K.A, *et al.* Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12myristate 13-acetate. <u>Anal Biochem</u>. 240 (1996):90-97.
- (152). Lukyanov, K., Diatchenko, L., Chenchik, A., Nanisetti, A., Siebert, P., Usman, N., et al.Construction of cDNA libraries from small amounts of total RNA using the suppression PCR effect. <u>Biochem</u> <u>Biophys Res Commun.</u> 230 (1997):285-288.
- (153) Wei, H., Scherer, M., Singh, A., Liese, R., and Fischer, R. Aspergillus nidulans α-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutant. <u>Fungal Genet Biol</u>. 34 (2001):217-227.
- (154) Osherov, N., Mathew, J., Romans, A., and May, G.S. Identification of conidial-enriched transcripts in *Aspergillus nidulans* using suppression subtractive hybridization. <u>Fungal_Genet_Biol</u>. 37 (2002):197-204.
- (155) Dai, Z., Mao, X., Jon, M.K., and Lasure, L.L. Identification of genes associated with morphology in *Aspergillus niger* by using suppression subtractive hybridization. <u>Appl Environ Microbiol</u>. 70 (2004):2474-2485.

- (156) Dogra, N., and Breuil, C. Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of *Ophiostoma piceae*. <u>FEMS Microbiol</u> Lett Appl Microbiol. 238 (2004):175-181.
- (157) Cramer, R., and Lawrence, C.B. Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana. Fungal Genet Biol. 41 (2004):115-128.
- (158) Grenville-Briggs, L., Avrova, A., Bruce, C., Williams, A., Whisson, S., Birch, P., and Van West, P. Elevated amino acid biosynthesis in *Phytophthora infestans* during appressorium formation and potato infection. <u>Fungal Genet Biol</u>. 42 (Mar 2005):244-256.
- (159) Lu, J., Liu, T.B., and Lin, F.C. Identification of mature appressoriumenriched transcripts in *Magnaporthe girsea*, the rice blast fungus, using suppression subtractive hybridization. <u>FEMS Microbiol Lett Appl</u> <u>Microbiol</u>. 245 (2005):131-137.
- (160) Pel, H.J., De Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap,
 P.J., et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. <u>Nat Biotechnol</u>. 25 (2007):221-231.
- (161) Akopyants, N., Fradkov, A., Diatchenko, L., Hill, J.E., Siebert, P.D., Lukyanov, S.A., Sverdlov, E.D., and Berg, D.E. PCR-based subtractive hybridization and differences in gene content among strains of *Helicobacter pylori*. <u>Proc Natl Acad Sci USA</u>. 95 (1998):13180-13113.

- (162) Agron, P., Walker, R.L., Kinde, H., Sawyer, S.J., Hayes, D.C., Wollard, J., and Andersen, G.L. Identification by subtractive hybridization of sequences specific for *Salmonella enterica* serovar *Enteritidis*. <u>Appl</u> Environ Microbiol. 67(11) (2001):4894-4991.
- (163) Agron, P., Macht, M., Radnedge, L., Skowronski, E.W., Miller, W., and Andersen, G.L. Use of subtractive hybridization for comprehensive surveys of prokaryotic genome differences. <u>FEMS Microbiol Lett</u>. 211 (2002):175-182.
- (164) Radnedge, L., Gamez-Chin, S., Mccready, P.M., Worsham, P.L., and Andersen, G.L.Identification of nucleotide sequences for the specific and rapid detection of *Yersinia pestis*. <u>Appl Environ Microbiol</u>. 67 (2001):3759-3762.
- (165) Dai, E., Tong, Z., Wang, X., Li, M., Cui, B., Dai, R., et al. Identification of different regions among strains of Yersinia pestis by suppression subtractive hybridization. <u>Res Microbiol Res</u>. 156 (2005):785-789.
- (166) Emmerth, M., Goebel, W., Miller, S.I., and Hueck, C.J. Genomic subtraction identifies Salmonella typhimurium prophages, Frelated plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol. 181 (1999):5652-5661.
- (167) Janke, B., Dobrindt, U., Hacker, J., and Blum-Oehler, G. A subtractive hybridization analysis of genomic difference between the uropathogenic *E. coli* strain 536 and the *E. coli* K-12 strain MG1655. <u>FEMS Microbiol Lett</u>. 199 (2001):61-66.

- (168) Deshazer, D., Waag, D.M., Fritz, D.L., and Woods, D.E. Identification of a *Burkholderia mallei* polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. <u>Microb Pathog</u>. 30 (2001):253-269.
- Bahn, S., Bae, M.S., Park, Y.B., Oh, S.I., Jeung, J.U., Bae, J.M., Chung,
 Y.S., and Shin, J.S. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (*Hordeum vulgare L*). <u>Biochimica et Biophysica Acta</u>. 1522 (2001):134-137.
- (170) Hinderhofer, K., and Zentgraf, U. Identification of a transcription factor specifically expressed at the onset of leaf senescence. <u>Planta</u>. 213 (2001):469-473.
- Mahalingam, R., Gomez-Buitrago, A., Eckardt, N., Shah, N., Guevara-Garcia,
 A., Day, P., Raina, R., and Fedoroff, N.V. Characterizing the stress/defense transcriptome of Arabidopsis. <u>Genome Biol</u>. 4 (2003):R20.
- (172) Moyano, E., Portero-Robles, I., Medina-Escobar, N., Valpuesta, V., Blanco, J.M., and Caballero, J.L. A fruit-specific putative dihydroflavonol 4reductase gene is differentially expressed in strawberry during the ripening process. <u>Plant Physiol</u>. 117 (1998):711-716.
- (173) Kim, M., Kim, S., Kim, S., and Ki, B.D. Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. <u>Mol Cells</u>. 11(2001):213-219.

- (174) Liao, H., Wong, F.L., Phang, T.H., Cheung, M.Y., Li, W.Y., Shao, G., Yan, X., and Lam, H.M. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. <u>Gene</u>. 318 (2003):103-111.
- (175) Wang, W., Wu, P., Xia, M., Wu, Z., Chen,Q., and Liu, F. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. <u>Gene</u>. 297 (2002):93-102.
- (176) Happe, T., and Kaminski, A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga *Chlamydomonas reinhardtii*. <u>Eur J Biochem</u>. 269 (2002):1022-1032.
- (177) Zhang, X., Wang, H., Qu, Z.C., Ye, M.M., and Shen, D.L. Cloning and prokaryotic expression of a salt-induced cDNA encoding a chloroplastic fructose-1,6-diphosphate aldolase in *Dunaliella salina* (Chlorophyta). <u>DNA Seq</u>. 13 (2002):195-202.
- (178) Mullis, K. Target amplification for DNA analysis by the polymerase chain reaction. <u>Ann Biol Clin</u>. 48 (1990):579-582.
- (179) Vu, H., Troubetzkoy, S., Nguyen, H.H., Russell, M.W., and Mestecky J.A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. <u>Nucleic</u> <u>Acids Res</u>. 28 (2000):E18.
- (180) Heid, C., Stevens, J., Livak, K.J., and Williams, P.M. Real time quantitative PCR. <u>Genome Res 6</u> (1996):986-994.

- (181) Canales, R., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C., et al. Evaluation of DNA microarray results with quantitative gene expression platforms. <u>Nat Biotechnol</u>. 24 (2006):1115-1122.
- (182) Henegariu, O., Heerema, N.A., Dlouhy, S.R., Vance, G.H., and Vogt, P.H. Multiplex PCR: Critical parameters and step-by-step protocol. <u>Biotechniques</u>. 23 (1997):504-511.
- (183) Elnifro, E.M., Ashshi, A.M., Cooper, R.J., and Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. <u>Clin Microbiol</u> <u>Rev</u>. 13 (2000):559-570.
- (184) Lakowicz, J. Principles of fluorescence spectroscopy. Plenum Press, 1983.
- (185) Selvin, P. Fluorescence resonance energy transfer. <u>Methods Enzymol</u>. 246 (1995):300-334.
- (186) Dorak, M. <u>Real-time PCR</u>. Taylor & Francis Group, 2006.
- (187) Shumann, W. Thermosensors in eubacteria: role and evolution. J Biosci. 23
 (2007):549-557.
- (188) Holm, C., Meeks-Wagner, D.W., Fangman, W.L., and Botstein, D.A rapid, efficient method for isolating DNA from yeast. <u>Gene</u>. 42 (1986):169-173.
- (189) White, T.J., Bruns, T., Lee, S., and Taylor, J. <u>Amplification and direct</u> <u>sequencing of fungal ribosomal RNA genes for phylogenetics</u>. Academic Press, 1990.
- (190) Kohrer, K., and Domdey, H. Preparation of high molecular weight RNA. <u>Methods Enzymol</u>. 194 (1991):398-405.

- (191) Hull, C.C., and Crofts, N.C. Determination of the total attenuation coefficient for six contact lens materials using the Beer-Lambert law. Ophthalmic Physiol Opt. 16 (Mar 1996):150-157.
- (192) Ausubel, F. <u>Short protocols in molecular biology: a compendium of current</u> protocols in molecular biology. 5 ed. John Wiley and Sons, Inc., 2002.
- (193) Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman D.J. Basic local alignment search tool. <u>Journal of Molecular Biology</u>. 215 (1990):403-410.
- (194) Villa, N.O., Kageyama, K., Asano, T., and Suga, H. Phylogenetic relationships of *Pythium* and *Phytophthora* species based on ITS rDNA, cytochrome oxidase II and beta-tubulin gene sequences. Mycologia. 98 (May-Jun 2006):410-422.
- (195) White, T.J., Bruns, T., Lee, S., and Taylor, J. <u>Amplification and direct</u> sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, 1990.
- (196) Livak, K.J., and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. <u>Methods</u>. 25 (Dec 2001):402-408.
- (197) White, T.J., Bruns, T., Lee, S., and Taylor, J. <u>Amplification and direct</u> <u>sequencing of fungal ribosomal RNA genes for phylogenetics</u>. Academic Press, 1990.

- (198) Hall, T. Bioedit: a user- friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <u>Nucl Acids Symp Ser</u>. 41 (1999):95-98.
- (199) Tamura, K., Dudley, J., Nei, M., and Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. <u>Molecular Biology and Evolution</u> 24 (2007):1596-1599.
- (200) Prieto-Alamo, M.J., Abril, N., Osuna-Jimenez, I., and Pueyo, C. Solea senegalensis genes responding to lipopolysaccharide and copper sulphate challenges: large-scale identification by suppression subtractive hybridization and absolute quantification of transcriptional profiles by real-time RT-PCR. <u>Aquat Toxicol</u>. 91 (Mar 2009):312-319.
- (201) Goidin, D., Mamessier, A., Staquet, M.J., Schmitt, D., and Berthier-Vergnes,
 O. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate
 dehydrogenase and beta-actin genes as internal standard for
 quantitative comparison of mRNA levels in invasive and
 noninvasive human melanoma cell subpopulations. <u>Anal Biochem</u>.
 295 (Aug 2001):17-21.
- (202) Radonic, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., and Nitsche,
 A. Guideline to reference gene selection for quantitative real-time
 PCR. <u>Biochem Biophys Res Commun</u>. 313 (Jan 2004):856-862.

- (203) Garcia-Vallejo, J J., Van Het Hof, B., Robben, J., Van Wijk, J.A., Van Die, I., Joziasse, D.H., *et al.* Approach for defining endogenous reference genes in gene expression experiments. <u>Anal Biochem</u>. 329 (Jun 2004):293-299.
- (204) Romanowski, T., Markiewicz, A., Bednarz, N., and Bielawski, K.P. [Housekeeping genes as a reference in quantitative real-time RT-PCR]. <u>Postepy Hig Med Dosw</u>. 61 (2007):500-510.
- (205) Arany, Z.P. High-throughput quantitative real-time PCR. <u>Curr Protoc Hum</u> <u>Genet.</u> 11 (Jul 2008):Unit 1110.
- (206) Ragno, S., Estrada-Garcia, I., Butler, R., and Colston, M.J. Regulation of macrophage gene expression by *Mycobacterium tuberculosis*: downregulation of mitochondrial cytochrome c oxidase. <u>Infect Immun</u>. 66 (Aug 1998):3952-3958.
- (207) Richardson, M.D. Opportunistic and pathogenic fungi. <u>J Antimicrob</u> <u>Chemother</u>. 28 (Jul 1991):1-11.
- (208) Hensel, M., and Holden, D.W. Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. <u>Microbiology</u>. 142 (May 1996):1049-1058.
- (209) Odds, F.C. Pathogenic fungi in the 21st century. <u>Trends Microbiol</u>. 8 (May 2000):200-201.
- (210) Medoff, G., Maresca, B., Lambowitz, A.M., Kobayashi, G., Painter, A., Sacco, M., et al . Correlation between pathogenicity and temperature sensitivity in different strains of *Histoplasma capsulatum*. J Clin Invest. 78 (1986):1638-1647.

- (211) Paakkonen, V., and Tjaderhane, L. High-throughput gene and protein expression analysis in pulp biologic research: review. <u>J Endod</u>. 36 (Feb 2010):179-189.
- (212) Zhang, Y., Mian, M.A., Chekhovskiy, K., So, S., Kupfer, D., Lai, H., et al. Differential gene expression in Festuca under heat stress conditions. <u>J Exp Bot</u>. 56 (Mar 2005):897-907.
- (213) Maestrini, P., Cavallini, A., Rizzo, M., Giordani, T., Bernardi, R., Durante, M., et al. Isolation and expression analysis of low temperatureinduced genes in white poplar (*Populus alba*). Journal of Plant <u>Physiology</u>. 166 (2009):1544-1556.
- (214) Nguyen, H.T., Leipner, J., Stamp, P., and Guerra-Peraza, O. Low temperature stress in maize (*Zea mays* L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. <u>Plant Physiol Biochem</u>. 47 (Feb 2009):116-122.
- (215) Hoare, R. Weather station BANGKOK Buttle and Tuttle Ltd., 2008.
- (216) Asante, D.K., Yakovlev, I.A., Fossdal, C.G., Timmerhaus, G., Partanen, J., and Johnsen, O. Effect of bud burst forcing on transcript expression of selected genes in needles of *Norway spruce* during autumn. <u>Plant</u> <u>Physiol Biochem</u>. 47 (Aug 2009):681-689.
- (217) Schmitt, M., Neupert, W., and Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J <u>Cell Biol</u>. 134 (Sep 1996):1375-1386.

- (218) Trinel, P.A., Plancke, Y., Gerold, P., Jouault, T., Delplace, F., Schwarz, R. T., et al. The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of beta-1,2-linked mannose residues. J Biol Chem. 274 (Oct 1999):30520-30526.
- (219) Jouault, T., Bernigaud, A., Lepage, G., Trinel, P.A., and Poulain, D. The *Candida albicans* phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. <u>Immunology</u>. 83 (1994):268-273.
- (220) Rosok, O., Odeberg, J., Rode, M., Stokke, T., Funderud, S., Smeland, E., et al. Solid-phase method for differential display of genes expressed in hematopoietic stem cells. <u>Biotechniques</u>. 21 (Jul 1996):114-121.
- Wang, Z., and Brown, D.D. A gene expression screen. <u>Proc Natl Acad Sci</u> <u>USA</u>. 88 (Dec 1991):11505-11509.
- (222) Meng, S., Torto-Alalibo, T., Chibucos, M.C., Tyler, B.M., and Dean, R.A. Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms. <u>BMC Microbiol</u>. 9 (2009):S7.
- (223) Ferre, F. Quantitative or semi-quantitative PCR: reality versus myth. <u>Genome</u>
 <u>Res</u>. 2 (1992):1-9.
- (224) Karge, W.H., 3rd, Schaefer, E.J., and Ordovas, J.M. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. <u>Methods Mol Biol</u>. 110 (1998):43-61.

- (225) Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., et al. Housekeeping genes as internal standards: use and limits. J <u>Biotechnol</u>. 75 (Oct 1999):291-295.
- Radonic, A., Thulke, S., Bae, H.G., Muller, M.A., Siegert, W., and Nitsche,
 A. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections. <u>Virol J.</u> 2 (2005):7.
- (227) Glare, E.M., Divjak, M., Bailey, M.J., and Walters, E.H. beta-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. <u>Thorax</u>. 57 (Sep 2002):765-770.
- (228) Salem, N.M., Miller, W.A., Rowhani, A., Golino, D.A., Moyne, A.L., and Falk, B.W. Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. <u>Virology</u>. 375 (Jun 2008):354-360.
- (229) Liu, Z.L., and Slininger, P.J. Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR. J <u>Microbiol Methods</u>. 68 (Mar 2007):486-496.
- (230) Bower, N.I., Moser, R.J., Hill, J.R., and Lehnert, S.A. Universal reference method for real-time PCR gene expression analysis of preimplantation embryos. <u>Biotechniques</u>. 42 (Feb 2007):199-206.

- (231) Nicot, A., Kurnellas, M., and Elkabes, S. Temporal pattern of plasma membrane calcium ATPase 2 expression in the spinal cord correlates with the course of clinical symptoms in two rodent models of autoimmune encephalomyelitis. <u>Eur J Neurosci</u>. 21 (May 2005):2660-2670.
- (232) Pfaffl, M.W., Tichopad, A., Prgomet, C., and Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. <u>Biotechnol Lett</u>. 26 (Mar 2004):509-515.
- (233) Gvozdjáková, A. <u>Mitochondrial Medicine</u>; <u>Mitochondrial Metabolism</u>, <u>Diseases</u>, <u>Diagnosis and Therapy</u>. Springer Science plus Business Media, 2008.
- (234) Pratje, E., Mannhaupt, G., Michaelis, G., and Beyreuther, K. A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in Saccharomyces cerevisiae. <u>EMBO J.</u> 2 (1983):1049-1054.
- (235) Maeshima, M., and Yoshida, S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. <u>J Biol Chem</u>. 264 (Nov 1989):20068-20073.
- Meyer, W., Bauer, M., and Pratje, E. A mutation in cytochrome oxidase subunit 2 restores respiration of the mutant pet ts1402. <u>Curr Genet</u>. 3 (May 1997):401-407.

- (237) Martin, P., Kaygorodova, I., Sherbakov, D.Y., and Verheyen, E. Rapidly evolving lineages impede the resolution of phylogenetic relationships among Clitellata (Annelida). <u>Mol Phylogenet Evol</u>. 15 (Jun 2000):355-368.
- (238) Martin, F., and Tooley, P. Phylogenetic relationships of *Phytophthora ramorum*, *P. nemorosa*, and *P. pseudosyringae*, three species recovered from areas in California with sudden oak death. <u>Mvcol Res</u>. 107 (Dec 2003):1379-1391.

APPENDICES

,

APPENDIX A

REAGENTS PREPARATION

1) Luria-Bertani (LB) Medium

Bacto – tryptone	10	g
Bacto – Yeast extrct	5	g
NaCl	10	g
Adjust pH to 7.5 with $1M$ NaOH, add ddH ₂ O up to	1,000	ml

Shake until the solutes are dissolved. Sterilize by autoclaving for 20 min at 15 lbs on liquid cycle. To make an agar medium add 20 g of agar to the 1 L solution and sterile by autoclaving 121at °C at 15 lb/sq.in..min 15for

2) Sabouraud Dextrose Agar (SDA) pH 6.9

Dehydrated SDA agar (Difco)	65	g
Distilled water	1,000	ml

Mixed well thoroughly, and sterile by autoclaving.

3) Sabouraud Dextrose Broth (SDB) pH 6.9

Dehydrated SDB (Difco)	30	g
Distilled water	1,000	ml

Mixed well thoroughly, and sterile by autoclaving.

4) Zoospore induction medium

4.1) Solution 1			
K ₂ HPO ₄ .3H ₂ O		11.4	g
KH ₂ PO ₄		6.8	g
NH4H2PO4	1.15	5.75	g
Distilled water up to		50 .	mL
4.2) Solution 2			
MgCl ₂ .6H ₂ O		2.54	g
CaCl ₂ .2H ₂ O		1.84	g
Distilled water up to		25	mL

The medium is prepared by mixing 0.5 ml of solution 1 and 0.1 ml of solution 2. Adjust the volume of the medium to 1000 ml with distilled water.

5) Ampicillin (Amp 50)

Ampicillin	0.50	g
Sterile distilled water	10	mL

Mix by shaking until Ampicillin has dissolved. Filter and aliquot 1 mL. Store aliquots at -20°C.
6)	X-gal
----	-------

X-gal	0.2	g
DMF (DiMethyl Formamide)	10.0	mL
or 50% DMSO (DiMethyl-Sulfoxide)		

Mix by shaking until X-gal has dissolved. Aliquot 1.0 ml. Store aliquots at -20°C

7) Ethidium Bromide	5 mg/mL – in distilled water
---------------------	------------------------------

8) 6X agarose-gel loading buffer

Bromophenol blue	4	0.025	g
Xylene cyanol FF		0.025	g
Glycerol		3.00	mL
Distilled water		6.95	mL

9) 10 X TBE buffer

Tris base	108	g.
Boric acid	55	g.
0.5 M EDTA (pH 8.0)	40	mL

add DW to final volume of 1 Liter.

10) 5.5 M Guanidinium thiocyanate

Guanidinium thiocyanate	65.0	g.
1M Sodium citrate,pH 7.0	2.5	mL
Sodium lauryl sarcosine	0.5	g.
add DW to final volume of 100 ml.		

MOPS	104.7	g.
DEPC H ₂ O	400	mL
Adjust pH to 7 with NaOH fill up to 500 ml with DEPC H_2O		
12) 5X gel running buffer		
1 M MOPS	25.0	mL
3 M NaAc	3.33	mL
0.35M EDTA, pH 8.0	2.5	mL
	-	

11) 1M MOPS (3-(N-morpholino)propan sulfonic acid)

Adjust to 250 mL with DEPC H₂O. Filter-sterilize through a 0,2 μ m. Store at 4°C, protect from light.

13) 1.5% Agarose gel

Agarose	0	1.5	g
1x TBE		35	mL

Dissolve by heating in microwave oven and occasional mix unit no granules of garose are visible.

14) 10X MOPS buffer

MOPS	83.6	g
NaOAC	8.2	g
Add DEPC - treated DW	800	mL
adjust pH to 7.0 with NaOH		
DEPC – treated 0.5 M EDTA (pH 8.0)	10	mL

Adjust the volume to 1 L with DEPC treat DW. Sterilize by filtration, store at RT, wrapped in foil to protect from light.

15) 0.5 M EDTA (pH 8.0)

	$Na_2EDTA - 2H_2O$	37.22	g
	DW	160	mL
	adjust pH to 8.0 with NaOH		
	DEPC	0.2	mL
Stir c	overnight, and sterilize by autoclaving.		
16)	Loading buffer		
	Formamide	420	μL
	10 x MOPS	100	μL
	37 % Formaldehyde	135	μL
	88% glycerol	50	μL
	Bromphenol blue	1	μg

APPENDIX B

List of up-regulated transcripts in temperature response (27°C) in *P.insidiosum* strain PC7.

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C1-17/4	245	mitochondrion (Phy. infestans)	U17009	1.00E-66	88%	ND		-	-
C2-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C3-17/4	323	NM	-	- 21	-	protein enhancer of rudimentary [<i>Phy. infestans</i> T30-4]	EEY55861	2.00E-16	97%
C4-17/4	246	mitochondrion (Phy. ramorum)	EU427470	3.00E-57	85%	cytochrome c oxidase subunit 3 [<i>Phy. ramorum</i>]	YP001165347	4.00E-22	66%
C5-17/4	537	mitochondrion (Phy. infestans)	AY898627	0	94%	ND	-	-	-
C6-17/4	749	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (Picea abies)	ACA04850	5.00E-55	71%
C7-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	91%	ND	-	-	-
C8-17/4	419	Mitochondrion (Phy. sojae)	DQ832717	3.00E-135	90%	NADH dehydrogenase subunit 5 [<i>Phy. sojae</i>].	YP001165399	2.00E-66	96%
C9-17/4	286	Mitochondrion (Phy. sojae)	DQ832717	2.00E-60	84%	NADH dehydrogenase subunit 2 [<i>Phy. ramorum</i>]	YP001165351	3.00E-18	68%
C10-17/4	391	NM	-	1.50	-	ribosomal protein L2 [Phy. sojae]	YP001165413	4.00E-16	45%
C11-17/4	637	mitochondrion (Phy. ramorum)	EU427470	0	95%	conserved hypothetical protein [Onion yellows phytoplasma OY-M]	BAD04335	9.00E-26	78%
C12-17/4	611	mitochondrion (Phy. ramorum)	EU427470	0	96%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C13-17/4	306	28S ribosomal RNA (P.megasperma)	X75631	2.00E-104	91%	ND	-	-	-
C14-17/4	490	Uncultured bacterium partial 16S ribosomal RNA	FM956611	0	95%	predicted protein [<i>Populus trichocarpa</i>]	XP002337573	8.00E-05	60%
C15-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		0 to	-
C16-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C17-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C18-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C19-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C20-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C21-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C22-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	1.2	-	-
C23-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C24-17/4	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C25-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C26-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C27-17/4	561	Mitochondrion (Phy. sojae)	DQ832717	0	94%	ND	-	-	
C28-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C29-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C30-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C31-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C32-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C33-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C34-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C35-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C37-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C40-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C41-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C44-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C67-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C68-17/4	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C70-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C72-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C77-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C78-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C79-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C80-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C81-17/4	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C82-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-

 $T = s_{0}$

.

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C83-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C87-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C88-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C89-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	
C90-17/4	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C92-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C93-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C97-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C98-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C99-17/4	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C100-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C101-17/4	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C102-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C105-17/4	245	mitochondrion (Phy. infestans)	U17009	1.00E-66	88%	ND	-	-	-
C107-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C108-17/4	245	mitochondrion (Phy. infestans)	U17009	1.00E-66	88%	ND		-	-
C109-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C1-3/6	427	Uncultured bacterium partial 16S ribosomal RNA	FM956611	5.00E-177	95%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C2-3/6	519	28S ribosomal RNA (<i>P.megasperma</i>)	X75631	0	98%	similar to predicted protein, partial [Hydra magnipapillata]	XP002168570	9.00E-33	78%
C3-3/6	245	mitochondrion (Phy. infestans)	U17009	3.00E-63	87%	ND	-	-	-
C4-3/6	366	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	100%	ND	-	-	-
C5-3/6	270	Uncultured bacterium clone GASP- MA1W3_F02 16S ribosomal RNA gene	EF662800	8.00E-114	99%	ND	-	-	-
C6-3/6	699	NM	-	-	-	NM	-	-	-
C7-3/6	763	28S ribosomal RNA (P.megasperma)	X75631	0	96%	unknown [Medicago truncatula]	ACJ85262	93-38	72%
C8-3/6	712	28S ribosomal RNA (P.megasperma)	X75631	0	96%	hypothetical protein [<i>Arabidopsis thaliana</i>]	BAF01964	1.00E-55	77%
C9-3/6	245	mitochondrion (Phy. infestans)	U17009	1.00E-66	88%	ND	-	-	-
C10-3/6	419	Mitochondrion (Phy. sojae)	DQ832717	3 .00E-134	89%	NADH dehydrogenase subunit 5 [<i>Phy. sojae</i>].	YP001165399	3.00E-22	51%
C11-3/6	322	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C12-3/6	417	ND	-	-	-	ribosomal protein L2 [Phy. sojae]	YP001165413	2.00E-49	92%
C13-3/6	324	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	91%	ND	-	-	-
C14-3/6	389	Uncultured bacterium partial 16S ribosomal RNA	EF663023	5.00E-167	97%	ND	-	200	1

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C15-3/6	330	28S ribosomal RNA (P.megasperma)	X75631	8.00E-100	90%	ND	-	-	-
C16-3/6	324 -	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C17-3/6	269	mitochondrion (Phy. ramorum)	EU427470	6.00E-60	85%	cytochrome c oxidase subunit 3 [<i>Phy. ramorum</i>]	YP001165347	4.00E-23	67%
C18-3/6	257	NM	-	-	-	NM	-	-	-
C20-3/6	366	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	100%	ND	-	-	0.00
C21-3/6	365	mitochondrion (Phy. ramorum)	EU427470	5.00E-142	95%	ND	-		-
C22-3/6	527	<i>Phy. infestans</i> isolate 16/99 tRNA- Pro (trnP(ugg)) and tRNA-Met (trnM(cau)) genes	EF366732	2.00E-87	86%	ribosomal protein L14 [<i>Phy.</i> ramorum]	YP001165335	5.00E-21	71%
C23-3/6	427	Uncultured bacterium partial 16S ribosomal RNA	FM956511	3.00E-175	95%	ND	-	-	_ *
C24-3/6	436	Uncultured bacterium partial 16S ribosomal RNA	FM956511	2.00E-177	95%	ND	-	-	-
C26-3/6	358	mitochondrion (Phy. infestans)	U17009	1.00E-147	96%	ND	-	-	-
C27-3/6	595	P. insidiosum 18S ribosomal RNA gene	AF442497	0	99%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C28-3/6	442	Uncultured bacterium partial 16S ribosomal RNA	FM956511	0	96%	ND	-	-	-
C29-3/6	196	NM	-	-	-	NM	-	-	-
C30-3/6	367	mitochondrion (Phy. ramorum)	EU427470	5.00E-142	95%	ND	-	-	-
C31-3/6	255	NM	2	-	-	NM	-	-	-
C32-3/6	192	NM	-	-	-	ND	-	-	-
C33-3/6	364	NM	-	-	-	ND	-	-	-
C34-3/6	324	NM	-	-	-	ND	-	-	-
C35-3/6	367	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	100%	ND	-	-	-
C36-3/6	428	<i>Phy. lateralis</i> strain PL33 NADH dehydrogenase subunit 5	AY423337	1.00E-74	88%	NADH dehydrogenase subunit 5 [<i>Phy. sojae</i>].	YP001165399	8.00E-56	86%
C37-3/6	335	Uncultured bacterium gene for 16S rRNA	AB075125	1.00E-128	95%	ND	-	-	-
C38-3/6	332	Uncultured bacterium gene for 16S rRNA	AB075125	9.00E-129	95%	, ND	-	-	-
C39-3/6	326	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C40-3/6	326	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C41-3/6	256	NM	-	-	-	ND	-	-	-
C43-3/6	520	28S ribosomal RNA (P.megasperma)	X75 631	0	99%	similar to predicted protein, partial [<i>Hydra magnipapillata</i>]	XP002168570	6.00E-34	78%

.

202

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C44-3/6	405	Uncultured bacterium clone GASP- MA1W3_F02 16S ribosomal RNA gene	EF662800	9.00E-120	100%	ND	-	-	-
C46-3/6	255	NM	-	-	-	NM	-	-	-
C47-3/6	367	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	100%	ND	-	-	-
C48-3/6	595	P. insidiosum 18S ribosomal RNA gene	AF442497	0	99%	ND	-	-	-
C50-3/6	366	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	100%	ND	-	-	-
C52-3/6	321	NM	-	-	-	protein enhancer of rudimentary [<i>Phy. infestans</i> T30-4]	EEY55861	2.00E-16	97%
C53-3/6	335	Uncultured bacterium gene for 16S rRNA	AB075125	1.00E-128	95%	ND	-	-	-
C55-3/6	332	Uncultured bacterium gene for 16S rRNA	AB075125	9.00E-129	95%	ND	-	-	-
C61-3/6	326	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C62-3/6	326	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C63-3/6	389	Uncultured proteobacterium clone GASP-MA2S3_B04 16S ribosomal RNA	EF663023	5.00E-167	97%	ND	-	-	-
C66-3/6	330	28S ribosomal RNA (P.megasperma)	X75631	8.00E-100	90%	ND	-	-	
C67-3/6	324	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C68-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C70-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C71-3/6	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C72-3/6	427	Uncultured proteobacterium clone GASP-MA2S3_B04 16S ribosomal RNA	EF663023	3.00E-175	95%	ND	-	-	-
C76-3/6	324	28S ribosomal RNA (P.megasperma)	X75631	3.00E-104	91%	ND	-	-	-
C77-3/6	389	Uncultured proteobacterium clone GASP-MA2S3_B04 16S ribosomal RNA	EF663023	5.00E-167	97%	ND	-	-	-
C78-3/6	330	28S ribosomal RNA (P.megasperma)	X75631	8.00E-100	90%	ND	-	-	-
C79-3/6	324	28S ribosomal RNA (P.megasperma)	X75631	6.00E-101	90%	ND	-	-	-
C80-3/6	330	28S ribosomal RNA (P.megasperma)	X75631	8.00E-100	90%	ND	-	-	-
C81-3/6	367	28S ribosomal RNA (P.megasperma)	X75631	1.00E-72	84%	ND	-	-	-
C83-3/6	130	mitochondrion (Phy. ramorum)	EU427470	2.00E-37	98%	ND	-	-	-
C84-3/6	742	NM	-	-	-	ND	-	-	-
C85-3/6	130	mitochondrion (Phy. ramorum)	EU427470	2.00E-37	98%	ND	-	-	G.
C86-3/6	527	mitochondrion (Phy. ramorum)	EU427470	0	96%	ND	-	-	-
C87-3/6	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C88-3/6	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C89-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C90-3/6	130	mitochondrion (Phy. ramorum)	EU427470	2.00E-37	98%	ND	-	-	-

Clone	Size (bp.)	Search result by BLASTN Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C91-3/6	428	Uncultured bacterium partial 16S ribosomal RNA	FM956511	2.00E-167	94%	ND	-	-	-
C92-3/6	361	28S ribosomal RNA (P.megasperma)	X75631	5.00E-122	91%	ND	-	-	-
C93-3/6	337	mitochondrion (Phy. infestans)	U17009	2.10E-134	96%	ND	-	-	-
C94-3/6	365	mitochondrion (Phy. ramorum)	EU427470	3.00E-139	94%	ND	-	-	-
C95-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	·	-	-
C97-3/6	559	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C98-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C99-3/6	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C101-3/6	130	mitochondrion (Phy. ramorum)	EU427470	2.00E-37	98%	ND	-	-	-
C102-3/6	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-140	95%	ND	-	-	-
C103-3/6	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	ND	-	-	-
C104-3/6	130	mitochondrion (Phy. ramorum)	EU427470	2.00E-37	98%	ND	-	-	-
C105-3/6	527	mitochondrion (Phy. ramorum)	EU427470	0	96%	ND	-	-	-

APPENDIX C

List of up-regulated transcripts in temperature response (37°C) in *P.insidiosum* strain PC7.

Class	Size	Search result by BLASTn	GeneBank	E -	Idaatita	Search result by BLASTx	GeneBank	E -	Idontitu
Cione	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C2-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C3-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C4-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C6-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C8-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C12-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C13-6/1	456	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND		-	-
C14-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C17-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C20-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	0 1 0	-	-
C21-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C22-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	1.1	-
C25-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C26-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C30-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C31-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C32-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C33-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C35-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	_	0 1 0	-
C35-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	_	-

* L

.,

· · ·

	Size	Search result by BLASTn	GeneBank	E -	Identity	Search result by BLASTx	GeneBank	E -	Idontity
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	
C38-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C39-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C45-6/1	457	Mitochondrion (Phy. sojae)	DQ832717	3.00E-179	95%	ND	-	-	-
C2-14/2	464	Mitochondrion (Phy. sojae)	DQ832717	4.00E-133	89%	ND	-	-	-
C40-14/2	471	Mitochondrion (Phy. sojae)	DQ832717	6.00E-171	95%	ND	-	-	-
C40-14/2	471	Mitochondrion (Phy. sojae)	DQ832717	6.00E-171	95%	ND	-	-	-
C20-17/4	589	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C31-17/4	590	Mitochondrion (Phy. sojae)	DQ832717	0	96%	ND	-	-	-
C33-17/4	591	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	
C34-17/4	586	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	- 1
C215-17/4	520	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C250-17/4	750	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C253-17/4	590	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C260-17/4	387	Mitochondrion (Phy. sojae)	DQ832717	0	86%	, ND	-	-	-
C267-17/4	767	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C268-17/4	588	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C270-17/4	590	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C281-17/4	590	Mitochondrion (Phy. sojae)	DQ832717	0	96%	ND	-	-	-
C285-17/4	589	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-
C311-17/4	5.90	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	-	-	-

Clone	Size	Search result by BLASTn	GeneBank	E -	T 1 4*4	Search result by BLASTx	GeneBank	E -	T. D
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	
C318-17/4	537	Mitochondrion (Phy. sojae)	DQ832717	0	95%	ND	<u>e</u>	-	
C320-17/4	580	Mitochondrion (Phy. sojae)	DQ832717	0	96%	ND	-	- -	
C6-14/2	369	mRNA (Phy. caposi)	BT032625	1.00E-92	86%	phosphate carrier protein (<i>Phy.infestan</i>)	EEY66591	6.00E-46	80%
C52-14/2	556	myo-inositol-phosphate synthase (Anopheles gambiae)	XM320685	6.00E-88	81%	inositol-3-phosphate synthase (Phy.infestan)	EEY61403	7.00E-55	94%
C1-17/4	159	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C10-17/4	296	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C12-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C13-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P. insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C18-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C19-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C21-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P.insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C22-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C25-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P. insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C27-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-

÷

Clone	Size	Search result by BLASTn	GeneBan k	F - value	Identit	Search result by BLASTx	GeneBank	E -	Identity
Clone	(bp.)	Annotation (species)	Accession	E - value	У	Annotation (species)	Accession	value	ruentity
C28-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P.insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C29-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	2
C30-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	
C35-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	•
C67-17/4	239	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	2.00E-98	82%	ND	-	-	- 19 1
C240-17/4	270	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	6.00E-104	98%	ND	-	-	2
C249-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND		-	- <u>-</u>
C255-17/4	288	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	17
C258-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND		-	1
C261-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	1.25
C262-17/4	264	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	3.00E-109	99%	ND	-	-	
C263-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-

Clana	Size	Search result by BLASTn	GeneBank	E -	T.J	Search result by BLASTx	GeneBank	E -	T.L
Cione	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C264-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C265-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	
C269-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C271-17/4	296	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C273-17/4	296	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C275-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	A¥598637	8.00E-56	100%	ND	-	-	-
C282-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C290-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	- >	-	-
C298-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND		-	-
C299-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C300-17/4	296	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	4	-	-
C301-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	÷.

. .

.

.

Class	Size	Search result by BLASTn	GeneBank	E -	T 1 1 1	Search result by BLASTx	GeneBank	E -	T T A A
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C302-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P.insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C303-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND		-	-
C304-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C305-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C314-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	
C315-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P.insidiosum)	AY598637	8.00E-56	100%	ND	-	-	-
C317-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	AY598637	8.00E-56	100%	ND	-	-	-
C321-17/4	297	internal transcribed spacer 1, 5.8S ribosomal RNA (P.insidiosum)	A¥598637	8.00E-56	100%	ND	-	-	-
C322-17/4	296	internal transcribed spacer 1, 5.8S ribosomal RNA (<i>P.insidiosum</i>)	A¥598637	8.00E-56	100%	ND	-	-	-
C2-17/4	. 488	28S ribosomal RNA (P.megasperma)	X75631	0	99%	ND	-	-	-
C5-17/3	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C16-17/3	383	28S ribosomal RNA (P.megasperma)	X75631	4.00E-132	91%	ND	5	-	-
C23-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C37-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-

\$0-

1¥1

Clone	Size (bp.)	Search result by BLASTn Annotation (species)	GeneBank Accession	E - value	Identity	BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C38-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C39-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C40-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C42-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C43-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C44-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C45-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C46-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C47-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C48-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C49-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C50-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C51-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C52-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	- ,	-
C53-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C54-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-		-
C55-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C56-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	14	-	-
C57-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	_	-	-
	225	288 ribosomal RNA (P megasperma)	X75631	$1.00E_{-}102$	90%	ND			

A

Clone	Size	Search result by BLASTn	GeneBan k	E - value	Identit	Search result by BLASTx	GeneBank	E -	Identity
	(bp.)	Annotation (species)	Accession		y	Annotation (species)	Accession	value	
C59-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C60-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C61-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C62-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C63-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C64-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C66-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C68-17/4	379	28S ribosomal RNA (P.megasperma)	X75631	1.00E-131	99%	ND	-	-	o j n
C69-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C70-17/4	324	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C71-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C72-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C74-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C75-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C77-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C79-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C81-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C83-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
* 									

× 00

Class	Size	Search result by BLASTn	GeneBank	E -	T T T T	Search result by BLASTx	GeneBank	E -	
	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	
C84-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C85-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C86-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C87-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C88-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C89-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C90-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C91-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C92-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C95-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C96-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C97-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C98-17/4	379	28S ribosomal RNA (P.megasperma)	X75631	1.00E-131	92%	ND	-	-	-
C100-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C102-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C103-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	
C104-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C107-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C110-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	4	-	-
C111-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	_1

•

.

	Size	Search result by BLASTn	GeneBank	E -		Search result by BLASTx	GeneBank	Е -	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C114-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C115-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C116-17/4	313	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	
C117-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C119-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C120-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C121-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C123-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C125-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C126-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C127-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	- 1 -1	-	-
C129-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C130-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C132-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C134-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C136-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	·	-	-
C137-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C138-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C139-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C140-17/4	328	28S ribosomal RNA (P. megasperma)	X75631	5.00E-101	90%	ND	-	-	-

.....

Clone	Size (bp.)	Search result by BLASTn	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation	GeneBank Accession	E - value	Identity
		Annotation (species)		<u> </u>		(species)		· .	
C141-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C142-17/4	328	28S ribosomal RNA (P.megasperma)	X75631	1.00E-97	89%	ND	-	-	-
C143-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C144-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C145-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C146-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C147-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C148-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C149-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C150-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C151-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C152-17/4	305	28S ribosomal RNA (P.megasperma)	X75631	3.00E-87	87%	ND	-	-	-
C153-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C155-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C156-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C157-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C159-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C160-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-		-
C161-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C162-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-

÷

	Size	Search result by BLASTn	GeneBank	F -	<u>-</u>	Search result by BLASTy	GeneBank	F	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C163-17/4	325 ,	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C164-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C165-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C166-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C167-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C168-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C169-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C170-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C171-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C172-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	4
C173-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C174-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C175-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C177-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C178-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C179-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C180-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C181-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C182-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-

Clone	Size	Search result by BLASTn	GeneBank	E -	Identity	Search result by BLASTx	GeneBank	E -	Identity
	(65.)	Annotation (species)	Accession	value		Annotation (species)	Accession	value	
C183-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C184-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C186-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C187-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C1 88- 17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C190-17/4	325	28S ribosomal RNA (<i>P.megasperma</i>)	X75631	1.00E-102	90%	ND	-	-	_
C191-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C192-17/4	325	28S ribosomal RNA (<i>P.megasperma</i>)	X75631	1.00E-102	90%	ND	-	-	-
C195-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C196-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	- 1
C198-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C200-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C201-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C202-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	. ND	-	-	-
C203-17/4	270	28S ribosomal RNA (P.megasperma)	X75631	2.00E-64	89%	ND	-	-	-
204-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C205-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C206-17/4	270	28S ribosomal RNA (P.megasperma)	X75631	2.00E-64	89%	ND	-	-	-
C207-17/4	270	28S ribosomal RNA (P.megasperma)	X75631	2.00E-64	89%	ND	-	-	-
C208-17/4	325	28S ribosomal RNA (<i>P.megasperma</i>)	X75631	1.00E-102	90%	ND	-	-	-

-1

.

	Size	Search result by BLASTn	GeneBank	E -		Search result by BLASTx	GeneBank	E -	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C209-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C210-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C211-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C213-17/4	270	28S ribosomal RNA (P.megasperma)	X75631	2.00E-64	89%	ND	-	-	-
C219-17/4	240	28S ribosomal RNA (P.megasperma)	X75631	1.00E-64	89%	ND	-	-	-
C220-17/4	270	28S ribosomal RNA (P.megasperma)	X75631	2.00E-64	89%	ND	- .	-	1
C221-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C222-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-		-
C224-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C226-17/4	324	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C227-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND		-	-
C228-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C229-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C230-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C231-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C232-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C233-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C235-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C237-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	
C238-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
									22
									20

Clone	Size (bp.)	Search result by BLASTn Annotation (species)	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C241-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C242-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C243-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C244-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C245-17/4	325	28S ribosomal RNA (P. megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C246-17/4	325	28S ribosomal RNA (P.megasperma)	X75631	1.00E-102	90%	ND	-	-	-
C251-17/4	437	28S ribosomal RNA (P. megasperma)	X75631	4.00E-123	87%	ND	-	-	-
C36-17/4	461	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	2.00E-26	80%
C78-17/4	485	28S ribosomal RNA (P.megasperma)	X75631	0	98%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	3.00E-34	78%
C94-17/4	485	28S ribosomal RNA (P.megasperma)	X75631	0	98%	predicted protein (Hydra magnipapillata)	XP002168570	3.00E-34	78%
C128-17/4	485	28S ribosomal RNA (P.megasperma)	X75631	0	98%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	3.00E-34	78%
C252-17/4	461	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	2.00E-26	80%
C266-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	5.00E-31	82%
C276-17/4	461	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	2.00E-26	80%
C277-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	5.00E-31	82%
									2

....

.

4

221

÷.

	Size	Search result by BLASTn	GeneBank	E -	T. D	Search result by BLASTx	GeneBank	E -	X X
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C280-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	5.00E-31	82%
C291-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	5.00E-31	82%
C312-17/4	461	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	2.00E-26	80%
C316-17/4	463	28S ribosomal RNA (P.megasperma)	X75631	0	99%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	5.00E-31	82%
C323-17/4	461	28S ribosomal RNA (P.megasperma)	X75631	0	98%	predicted protein (<i>Hydra</i> magnipapillata)	XP002168570	2.00E-26	80%
C41-17/4	597	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	1.00E-52	70%
C65-17/4	593	28S ribosomal RNA (P.megasperma)	X75631	0	99%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	1.00E-52	70%
C76-17/4	597	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	1.00E-52	70%
C80-17/4	592	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	7.00E-52	70%
C93-17/4	596	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	1.00E-52	70%
C109-17/4	593	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	1.00E-52	70%

. .

4,

4

Clone	Size	Search result by BLASTn	GeneBank Accession	E - value	Identity	Search result by BLASTx	GeneBank Accession	E - value	Identity
	(bp.)	Annotation (species)				Annotation (species)			
C124-17/4	594	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	7.00E-52	70%
C135-17/4	568	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	2.00E-48	69%
C158-17/4	601	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	3.00E-54	71%
C176-17/4	513	28S ribosomal RNA (P.megasperma)	X75631	0	95%	senescence-associated protein (Picea abies)	ACA04850	2.00E-36	66%
C236-17/4	576	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	5.00E-50	70%
C234-17/4	587	28S ribosomal RNA (P.megasperma)	X75631	0	96%	senescence-associated protein (<i>Picea abies</i>)	ACA04850	2.00E-51	70%
C3-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C17-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C223-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C232-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%

•

.

Clone	Size	Search result by BLASTn	GeneBank	E - value	Identity	Search result by BLASTx	GeneBank Accession	E - value	Identity
	(bp.)	Annotation (species)	Accession			Annotation (species)			
C272-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C278-17/4	436	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [Heterosigma akashiwo]	BAI70606	7.00E-07	89%
C279-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C284-17/4	436	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C287-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C292-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C292-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C295-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%

.

224

Clone	Size	Search result by BLASTn	GeneBank Accession	E - value	Identity	Search result by BLASTx	GeneBank	E - value	Identity
	(bp.)	Annotation (species)				Annotation (species)	Accession		
C296-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [Heterosigma akashiwo]	BAI70606	7.00E-07	89%
C307-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C310-17/4	436	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BAI70606	7.00E-07	89%
C354-17/4	437	mitochondrion (Phy. ramorum)	EU427470	5.00E-123	87%	NADH dehydrogenase subunit 7 [<i>Heterosigma</i> akashiwo]	BA170606	7.00E-07	89%
C14-17/4	416	mitochondrion (Phy. ramorum)	EU427470	9.00E-165	95%	hypothetical protein (Providencia stuartii)	ZP02997467	9.00E-18	61%
C297-17/4	418	mitochondrion (<i>Phy. ramorum</i>)	EU427470	4.00E-123	93%	NM	-	-	-
C26-17/4	365	mitochondrion (Phy. ramorum)	EU427470	2.00E-104	95%	ND	-	-	-
C194-17/4	328	28S rRNA (Pythium sp.)	AB254193	8.00E-74	93%	ND	-	-	-
C9-6/1	650	NM			-	serine carboxypeptidase (<i>Phy.infestan</i>)	EEY53505	1.00E-21	40%

,

а Ч

-

225

Clone	Size	Search result by BLASTn	GeneBank	E - value	Idontity	Search result by BLASTx	GeneBank	E -	Idontity
	(bp.)	Annotation (species)	Accession		Identity	Annotation (species)	Accession	value	Identity
C1 5-6 /1	650	NM	-	-	•	serine carboxypeptidase (Phy.infestan)	EEY53505	1.00E-21	40%
216-6/1	650	NM	-	-	-	serine carboxypeptidase (<i>Phy.infestan</i>)	EEY53505	1.00E-21	40%
18-6/1	329	NM	-	-	-	60S ribosomal protein L6 (Phy.infestan)	EEY65770	2.00E-19	86%
43-14/2	358	NM	-	-	-	60S ribosomal protein L6 (Phy.infestan)	EEY65770	4.00E-20	81%
47-14/2	411	NM	-	-	÷	60S ribosomal protein L6 (Phy infestan)	EEY65770	2.00E-23	65%
52-6/1	645	NM	<u>.</u>	-		hypothetical protein (Ajellomyces capsulatus NAm1)	XP001536497	1.00E-15	34%
.9-14/2	718	NM	-	-	÷	hypothetical protein (Ajellomyces capsulatus NAm1)	XP001535830	9.00E-40	38%
4-14/2	590	NM	4			hypothetical protein (Dunaliella viridis)	ABG38270	5.00E-18	34%
8-14/2	589	NM	-	-		hypothetical protein (Dunaliella viridis)	ABG38270	5.00E-18	34%
57-14/2	816	NM	-	-	÷	hypothetical protein (Dunaliella viridis)	ABG38270	3.00E-18	34%
56-14/2	692	NM	-	-	-	reverse transcriptase (Phy.ramorum)	ABG66535	2.00E-32	38%
24-14/2	411	NM	-	-	÷	nucleocapsid protein (C.neoformans)	XP571377	3.00E-11	36%
6-17/4	587	NM	-	-	÷,	pol protein (Phy.infestan)	EU427470	3.00E-15	42%

*

226

ř

Clone	Size (bp.)	Search result by BLASTn	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
		Annotation (species)							
C8-17/4	650	NM	-	-	-	pol protein (Phy.infestan)	AAV92918	1.00E-27	56%
C225-17/4	360	NM	-	-	-	reverse transcriptase (Phy.ramorum)	ABG66535	1.00E-09	35%
C248-17/4	475	NM	-	-	-	reverse transcriptase (Phy.ramorum)	ABG66535	7.00E-07	29%
C1-6/1	600	NM	-	-	-	NM	-	-	-
C5-6/1	712	NM	-	-	-	NM	-	-	-
C7-6/1	629	NM	-	-	-	NM	-	-	-
C10-6/1	711	NM	-	-	-	NM	-	-	-
C11-6/1	629	NM	-	-	-	NM	-	-	-
C23-6/1	711	NM	-	-	-	NM	-	-	-
C24-6/1	251	NM	-	-	-	NM	-	-	-
C28-6/1	250	NM	-	-	-	NM	-	-	-
C29-6/1	629	NM	-	-	-	NM	-	-	-
C34-6/1	629	NM	-	-	-	NM	-	-	-
C36-6/1	251	NM	-	-	-	NM	-	-	-
C37-6/1	629	NM	-	-	-	NM	-	-	-
C40-6/1	628	NM	-	-	-	NM	-	-	-
C41-6/1	251	NM	-	-	-	NM	-	-	-
C42-6/1	251	NM	-	-	-	NM	-	-	-
C43-6/1	628	NM	-	-	-	NM	-	-	-

.

.
Size Size		Search result by BLASTn	GeneBank	E -	Idontity	Search result by BLASTx	GeneBank	E -	
Clone	Clone (bp.) Annotation (species) Ac		Accession	value	Identity	Identity Annotation (species)		value	Identity
C47-6/1	450	NM	-		-	NM		-	
C49-6/1	659	NM	-		-	NM	-	•	
C50-6/1	609	NM	-		-	NM	-	•	1.1
C51-6/1	358	NM	-	-	-	NM			
C53-6/1	548	NM	-	-	-	NM	2.00		- 1
C55-6/1	230	NM	-	. (e:	-	NM	-	-	19.00
C57-6/1	711	NM	-		+	NM		•	÷.
C58-6/1	629	NM	-			NM		-	-
C60-6/1	711	NM	-		+	NM		-	
C64-6/1	251	NM	-	•		NM	-	-	18 J
C72-6/1	251	NM	-	· · ·		NM	(1. E.)	-	÷
C73-6/1	628	NM	-	-	-	NM		•	-
C74-6/1	450	NM	-			NM		-	÷
C79-6/1	659	NM	-	-	-	NM		-	
C80-6/1	609	NM	-			NM	-	÷	
C81-6/1	358	NM	-		-	NM	÷	-	
C82-6/1	600	NM	-		-	NM	-	-	
C85-6/1	712	NM	-	-		NM		-	-
C87-6/1	629	NM	-			NM		÷	4
C88-6/1	250	NM	-			NM	-		-

.

228

ĩ

Clone	Size	Search result by BLASTn	GeneBank	E -	Identity	Search result by BLASTx	GeneBank	E -	Idontita
	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	
C90-6/1	711	NM	-	-	2 C 1	NM			-
C91-6/1	629	NM	-	-	-	NM	÷.	-	
C93-6/1	711	NM	-	-		NM	-	÷.	-
C94-6/1	251	NM	-	-	1.4	NM		· •	
C95-6/1	251	NM	-	-	1.0	NM		-	
C99-6/1	629	NM		-	- 2,7	NM		÷.	
C100-6/1	711	NM	_	•	-	NM		di de la	
C103-6/1	628	NM	-	-	-	NM		-	-
C104-6/1	629	NM	-	-	-	NM		-	1.20
C106-6/1	251	NM	•	-	-	NM	-		
C107-6/1	251	NM	-	-	- -	NM	- 3 <u>t</u> 0	-	1 .
C109-6/1	659	NM	-	-	-	NM	-	-	-
C110-6/1	712	NM	-	-		NM		7	1.50
C1-14/2	426	NM	-	-	-	NM		-	-
C3-14/2	113	NM	-	-		NM	-	0. 1 00	1.5
C5-14/2	400	NM	-	-	-	NM	0 - 1ê (-	÷.
C7-14/2	588	NM	-	-	-	NM			÷
C9-14/2	659	NM	-	-		NM	-	-	
C10-14/2	. 547	NM	-	-		NM		÷.	1 ÷ 1
C11-14/2	550	NM	-	-	-	NM	-		-
			197 - E						
									22

.....

	Size	Search result by BLASTn	GeneBank	E -		Search result by BLASTx	GeneBank	E -	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C12-14/2	545	NM	-	-		NM	-	0.00	-
C14-14/2	573	NM		-		NM	-	с÷ с	- ÷
C15-14/2	687	NM	-	-	+	NM	-	-	-
C16-14/2	619	NM	-	-	-	NM	-	i i j	
C17-14/2	670	NM	-	-	18	NM	-	-	
C18-14/2	683	NM	-	-	1 to 1	NM	-	÷	
C19-14/2	710	NM	-	-	1.0	NM		-	4
C20-14/2	692	NM	-	-		NM	-	1.71	-
C21-14/2	409	NM	-	-	-	NM			
C23-14/2	476	NM	-	-		NM	 - 25 	÷	-
C25-14/2	492	NM	-	-	-	NM	-	-	-
C26-14/2	451	NM	-	-	-	NM	der i	-	-
C30-14/2	593	NM	-	-		NM		÷.	
C32-14/2	591	NM	-	-	-	NM	4	-	-
C33-14/2	626	NM	-	-	-	NM	-	-	
C34-14/2	113	NM	-	-	÷	NM		-	-
C35-14/2	683	NM	-	-	-	NM	-	÷	
C36-14/2	426	NM	-	-	14	NM	2.1		
C37-14/2	537	NM	-	-		NM	-		14.1
C38-14/2	261	NM	-	-	-	NM	-	÷	4

	Size	Search result by BLASTn	GeneBank	E -		Search result by BLASTx	GeneBank	E -	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C39-14/2	543	NM	-	÷	÷	NM	0-01		-
C41-14/2	411	NM	-	4	-	NM		-	-
C42-14/2	661	NM	-	- 1 7 0	-	NM	1 e 1	0 3 1	÷
C44-14/2	635	NM		-	-	NM		- 1	- 2-1
C45-14/2	236	NM	1.5	3 7 0	-	NM	245	1.4	1
C48-14/2	676	NM	-	-		NM	÷	-	-
C50-14/2	695	NM	-		-	NM		€	÷.
C51-14/2	565	NM	1.00	-	-	NM	-	-	-
C53-14/2	592	NM	-		-	NM			-+;
C54-14/2	541	NM		- ÷	-	NM	÷	1.4.5	+
C55-14/2	277	NM	-	÷	- ÷	NM		2.0	-
C56-14/2	377	NM	÷	-	4	NM		-	-
C58-14/2	386	NM	-	-		NM	-	÷	(1-1)
C60-14/2	628	NM	- 14 - C	4	-	NM	4		<u> </u>
C62-14/2	604	NM	-	-	-	NM	-	-	20
C63-14/2	511	NM	1.5	÷.		NM	-	4.1	cki p
C64-14/2	626	NM	-	-	-	NM	-	-	68
C65-14/2	696	NM	1.0	4	-	NM		÷	1.0
C67-14/2	563	NM	-	-		NM	-		
C68-14/2	653	NM	-	÷	-	NM		-	-

.

Clana	Size	Search result by BLASTn	GeneBank	E - Identity	Search result by BLASTx	GeneBank	E -	I.J	
Cione	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C69-14/2	694	NM	-	-		NM	-	-	
C70-14/2	668	NM	-	-		NM	÷.	-2	-
C71-14/2	550	NM	-	-		NM	-	-	
C75-14/2	683	NM	-	-	÷	NM	1.4		4
C76-14/2	426	NM	-	-		NM	-	1.5	-
C77-14/2	537	NM	-	-		NM	19 -		-
C80-14/2	695	NM	- -	-	2.1	NM	-	-	
C81-14/2	565	NM	-	-		NM			÷
C83-14/2	592	NM	-	-	1.0	NM	-	-	
C84-14/2	541	NM	-	-	÷	NM	1.5		-
C85-14/2	277	NM	-	-		NM	1.2	1.4	.4
C86-14/2	377	NM	-	-	-	NM		1.5	
C94-14/2	573	NM	-	-	14 mil	NM	(a)	-	-
C95-14/2	687	NM	-	-	4	NM	-	-	-
C96-14/2	619	NM	-	-	-	NM			1
C97-14/2	670	NM	-			NM	-	1.5	-
C7-17/4	284	NM	- 1	-	÷	NM		ri , în	-
C11-17/4	284	NM	-	-	-	NM	-	-	
C24-17/4	284	NM	-	-		NM		c. 1	4
C82-17/4	282	NM	-	-	- 	NM		-	-

.

.

	Size	Search result by BLASTn	GeneBank	F -		Search result by BLASTy	GeneBank	F -	
Clone	(bp.)	Annotation (species)	Accession	value	Identity	Annotation (species)	Accession	value	Identity
C99-17/4	284	NM	-	-		NM		-	
C101-17/4	284	NM	-	-	-	NM	14	1.21	4
C105-17/4	286	NM	-	-	-	NM	-	i es	
C108-17/4	284	NM	-	-	4	NM	-	12	1
C122-17/4	285	NM	-	-		NM	-		4
C154-17/4	284	NM	-	-		NM	-		-
C185-17/4	284	NM	-	-	2.5	NM		-	
C199-17/4	284	NM	-	-		NM	2	140	4.5
C214-17/4	284	NM	-	-	4.5	NM	- 41	-	
C217-17/4	283	NM	-	-	4.0	NM	-	1.00	-
C257-17/4	286	NM	-	-	13. Inc.	NM	1,21	1,411	-
C286-17/4	284	NM	-	-	1.5	NM	1.2	÷	-
C289-17/4	284	NM	-	-		NM	1.14		4000
C293-17/4	284	NM	-	-		NM	0.00	-	2
C319-17/4	284	NM		-	- 2	NM	10 - 0	o t ji	2
C325-17/4	283	NM	12	-		NM	-		4
C329-17/4	284	NM	-	-		NM		0401	4
C331-17/4	284	NM	-	-	2	NM	-	- G	-
C333-17/4	284	NM	-	-	÷	NM	-	- - 1	-
C334-17/4	284	NM	-	-		NM	-	-	

.

Clone	Size (bp.)	Search	result by BLASTn	GeneBank Accession	E - value	Identity	Search result by BLASTx Annotation (species)	GeneBank Accession	E - value	Identity
C337-17/4	283		NM	-	-		NM	-	-	-
C340-17/4	284		NM	-	-		NM	-	-	4
C350-17/4	284		NM	-	-		NM	-	-	-

•

.

r,

VITAE

Name	Miss Patcharee Kammarnjassadakul
Date of Birth	March 2, 1977
Place of Birth	Bangkok, Thailand
Address	49/3 M.10 T. Bangyor A. Phapradang, Samutprakarn. 10130
Education	
1997	Bachelor of Science (Medical Technology)
	Chulalongkorn University, Bangkok, Thailand.
2001	Master of Science (Medical Microbiology)
	Interdisciplinary Program, Graduate School,
	Chulalongkorn University, Bangkok, Thailand.
Career:	
2001	Lecturer at Department of Microbiology, Faculty of
	Medical Technology, Huacheiw Chalermprakiat University.
Presentation	Phylogenetic relationships of Pythium insidiosum isolate

Phylogenetic relationships of *Pythium insidiosum* isolate using cytochrome oxidase II sequences Medical Mycology in the 21st Century: Scientific Base and Anticipated Challenges May 25-29, 2009. Tokyo, Japan.

