การปรับปรุงสมบัติหน่วงไฟของเอบีเอสและออร์แกโนมอนต์มอริลโลไนต์นาโนคอมพอสิตด้วย สารประกอบซิสิกอนที่เตรียมจากวัสดุเหลือใช้ทางการเกษตร

นางสาวศิริลักษณ์ บุญไกร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาวัสดุศาสตร์ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 สิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

IMPROVEMENT OF FLAME RETARDANT PROPERTIES OF ABS/ORGANOMONTMORILLONITE NANOCOMPOSITES WITH SILICON COMPOUNDS PREPARED FROM AGRICULTURAL WASTES

Miss Sirilak Boonkrai

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Materials Science Department of Materials Science Faculty of Science Chulalongkorn University Academic Year 2009 Copyright of Chulalongkorn University

522395

Thesis Title	IMPROVEMENT OF FLAME RETARDANT PROPERTIES OF
	ABS/ORGANOMONTMORILLONITE NANOCOMPOSITES
	WITH SILICON COMPOUNDS PREPARED FROM
	AGRICULTURAL WASTES
Ву	Miss Sirilak Boonkrai
Field of Study	Materials Science
Thesis Advisor	Associate Professor Duangdao Aht-Ong, Ph.D

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

angle Dean of the Faculty of Science (Professor Supot Hannongbua, Dr.rer.nat.) THESIS COMMITTEE Suit J. Chairman (Assistant Professor Sirithan Jiemsirilers, Ph.D.) Lingthin At-of Thesis Advisor

(Associate Professor Duangdao Aht-Ong, Ph.D.)

kaver Snikullet Examiner

(Associate Professor Kawee Srikulkit, Ph.D.)

Sirverat Charuchinde Examiner

(Assistant Professor Sireerat Charuchinda, Ph.D.)

Trank Brigaraj Examiner

(Associate Professor Pranut Potiyaraj, Ph.D.)

External Examiner

(Wannee Chinsirikul, Ph.D.)

ศริลักษณ์ บุญไกร: การปรับปรุงสมบัติหน่วงไฟของเอบีเอสและออร์แกโนมอนต์มอริลโลไนต์นาโน คอมพอสิตด้วยสารประกอบซิลิกอนที่เตรียมจากวัสดุเหลือใช้ทางการเกษตร. (IMPROVEMENT OF FLAME RETARDANT PROPERTIES OF ABS / ORGANO MONTMORILLONITE NANOCOMPOSITES WITH SILICON COMPOUNDS PREPARED FROM AGRICULTURAL WASTES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.ดวงดาว อาจองค์, 151 หน้า

งานวิจัยนี้ศึกษาการเตรียมและปรับปรุงสมบัติหน่วงไฟของอะคริโลไนไตรล์-บิวตะไดอีน-สไตรีน (เอบีเอส) โดยปรับเปลี่ยนปริมาณของซิลิกาที่ผ่านการดัดแปร ชนิดของไซลาเทรน และปริมาณของออร์แกโน มอนต์มอริลโลไนต์ (โอเอ็มที) ซิลิกาถูกสกัดจากวัสดุเหลือใช้ทางการเกษตรคือ แกลบและซังข้าวโพด โดยวิธี ไฮโดรลิซิสด้วยกรด ซิลิกาที่สกัดจากแกลบและซังข้าวโพดนี้ถูกดัดแปรพื้นผิวด้วยสารประสานไวนิลไตรเมท อกซีไซเลนและ 3-อะมิโนโพรพิลไตรเมทอกซีไซเลนก่อนผสมกับเอบีเอสและออร์แกโนมอนต์มอริลโลไนต์ที่ อัตราส่วนต่างๆ ด้วยเทคนิคหลอมเหลวโดยใช้เครื่องอัดรีดเกลียวหนอนคู่ จากนั้นซิลิกาจากแกลบและซัง ข้าวโพดได้ถูกนำไปเป็นสารตั้งต้นในการสังเคราะห์ไซลาเทรน ไซลาเทรนที่สังเคราะห์ได้ถูกนำไปผสมกับเอบี เอสและออร์แกโนมอนต์มอริลโลไนต์ที่ปริมาณต่างๆ ศึกษาผลของสารประสานและชนิดของไซลาเทรนที่มี ต่อสมบัติหน่วงไฟและสมบัติเชิงกลของเอบีเอสนาโนคอมพอสิต

ผลการศึกษาพบว่าสารประสาน 3-อะมิโนโพรพิลไตรเมทอกซีไซเลน เหมาะสำหรับกราฟต์บน พื้นผิวซิลิกา เอบีเอสที่ประกอบด้วยออร์แกโนมอนต์มอริลโลไนต์ร้อยละ 5 โดยน้ำหนัก ซิลิกาที่ดัดแปรพื้นผิว ด้วย 3-อะมิโนโพรพิลไตรเมทอกซีไซเลนร้อยละ 20 โดยน้ำหนัก และไซลาเทรนจากซังข้าวโพดร้อยละ 10 โดยน้ำหนักให้ประสิทธิภาพหน่วงไฟดีที่สุดซึ่งมีค่าอัตราการเผาไหม้ต่ำสุดที่ 18.35 มิลลิเมตรต่อนาที ค่า เปอร์เซนต์ออกซิเจนอินเด็กซ์สูงสุดที่ 19.6 เปอร์เซนต์ นอกจากนี้พบว่าสามารถลดอัตราการเผาไหม้ลงถึง 70.64 เปอร์เซนต์ และเพิ่มค่าเปอร์เซนต์ออกซิเจนอินเด็กซ์ถึง 13.29 เปอร์เซนต์เมื่อเปรียบเทียบกับผลของ เอบีเอสที่ไม่ได้เติมสารเติมแต่งใด ผลของการส่องด้วยกล้องอิเล็กตรอนแบบส่องผ่านและเอ็กซเรย์ดิฟแฟรก ์ โตมิเตอร์พบว่าเอบีเอส / ออร์แกโนมอนต์มอริลโลไนต์ / ซิลิกาที่ผ่านการดัดแปร / ไซลาเทรนนาโนคอมพอสิต ้มีโครงสร้างแบบแทรกสอดและแบบกระจายอิสระ อนุภาคของซิลิกาที่ดัดแปรและออร์แกโนมอนต์มอริลโล ในต์ถูกพบว่ากระจายและอยู่ในสไตรีน-อะคริโลไนไตรล์เมตริกซ์ นอกจากนี้ออร์แกโนมอนต์มอริลโลไนต์และ ซิลิกาที่ผ่านการดัดแปรสามารถเพิ่มสมบัติหน่วงไฟของเอบีเอสเมตริกซ์ เนื่องจากผลของซินนิจิสติกระหว่า งออร์แกโนมอนต์มอริลโลไนต์และซิลิกาที่ผ่านการดัดแปรระหว่างการเผาไหม้ของเอบีเอสโดยเกิดเถ้าปก คลุมพื้นผิว สมบัติความทนต่อแรงดึงและมอดุลัสยืดหยุ่นเพิ่มขึ้นเมื่อปริมาณของซิลิกาที่ผ่านการดัดแปรและ ไขลาเทรนเพิ่มขึ้น ในขณะที่สมบัติความทนต่อแรงกระแทกลดลงทั้งนี้อาจเป็นเพราะความแข็งของซิลิกาและ ซิลิกอนในไซลาเทรน นอกจากนี้พบว่าสมบัติความทนต่อแรงดึงระหว่างเอบีเอสนาโนคอมพอสิตที่ ้ประกอบด้วยซิลิกาที่สกัดจากแกลบและซังข้าวโพดไม่แตกต่างกันเท่าไรนักและมีค่าใกล้เคียงกับเอบีเอสนา โนคคมพคสิตที่ประกอบด้วยซิลิกาทางการค้า

Sulla	
ลายมือชื่อนิสิต	T
ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก	Bhy OG.

ภาควิชา	วัสดุศาสตร์
สาขาวิชา	วัสดุศาสตร์
ปีการศึกษา <u></u>	2552

#4773870423 : MAJOR MATERIALS SCIENCE

KEYWORDS : ABS / GRAFTED SILICA / FLAME RETARDANT / MELT-BLENDING / NANOCOMPOSITES / MONTMORILLONITE

SIRILAK BOONKRAI : IMPROVEMENT OF FLAME RETARDANT PROPERTIES OF ABS / ORGANOMONTMORILLONITE NANOCOMPOSITES WITH SILICON COMPOUNDS PREPARED FROM AGRICULTURAL WASTES. THESIS ADVISOR : ASSOC. PROF. DUANGDAO AHT-ONG, Ph.D., 151 pp.

This research involves an improvement of flame retardant properties of acrylonitrilebutadiene-styrene (ABS) by varying type and amount of modified silica, type of silatrane, and organomontmorillonite (OMT) loading. The silica was extracted from agricultural wastes such as rice husk and corn cob by acid hydrolysis. The obtained rice husk silica (RHS) and corb cob silica (CCS) were surface-modified with silane coupling agents, i.e., vinyltrimethoxysilane (VTMO) and 3-aminopropyltrimethoxysilane (AMMO) before blending with ABS and OMT at various ratios by melt-blending technique using twin-screw extruder. After that, RHS and CCS were used as a starting material for silatrane synthesis. The synthesized silatrane at various contents was also blended with ABS and OMT. The effect of silane coupling agents and types of silatrane on flammability and mechanical properties of ABS nanocomposites were studied. The results showed that AMMO was suitable for grafting on silica. It was shown that ABS with 5 wt% of OMT, 20 wt% of AMMO-g-CCS, and 10 wt% of CCSilatrane gave the most efficiency of flame retardant properties (i.e., lowest burning rate at 18.35 mm/min and highest LOI value at 19.6%). In addition, it could decrease the burning rate up to 70.64% and increase LOI value up to 13.29% when compared to neat ABS. TEM and XRD results revealed that ABS/OMT/modified silica/silatrane nanocomposites were consisting of both intercalated and exfoliated structure. The OMT, modified silica particles, and silatrane were found to disperse and reside in the SAN matrix. In addition, OMT and modified silica could enhance flame retardant properties of ABS matrix because of a synergistic effect between OMT and modified silica by forming silicaceous layer on surface during the combustion of ABS nanocomposites. Tensile strength and modulus of elasticity increased with increasing amount of modified silica and silatrane; whereas impact strength decreased obviously. This resulted from the rigidity and agglomeration of silica and silicon containing in silatrane. No significant difference in the tensile properties between ABS nanocomposites containing RHS and CCS; they also had comparable tensile properties to those having commercial silica.

 Department :
 Materials Science
 Student's Signature

 Field of Study :
 Materials Science
 Advisor's Signature
Academic Year : 2009

ACKNOWLEDGEMENTS

The author would like to express her deepest gratitude to Associate Professor Dr. Duangdao Aht-Ong, her advisor, for advice, guidance, concern, sacrifice, and encouragement throughout this research.

She would be also grateful to Assistant Professor Dr. Sirithan Jiemsirilers, the chairman of this thesis committee. Furthermore, she would like to thank deeply Associate Professor Dr. Kawee Srikulkit, Assistant Professor Dr. Sireerat Charuchinda, Associate Professor Dr. Pranat Potiyaraj, and Dr. Wannee Chinsirikul for their useful comments and valuable suggestions.

She would like to thank JJ-degussa Chemicals (T) Co., Ltd. and Connell Bros. Co., Ltd (Thailand) for providing silane coupling agents and also Siam Chemical Co., Ltd. for supplying maleic acid used in this research. She wishes to thank Dr. Sarintorn Limpanart and Mr. Srichalai Khunthon at The Metallurgy and Materials Science Research Institute for chemical and XRD supports. In addition, she would be appreciated to Miss Chatriya and other staffs at Mettler Toledo (Thailand) Co., Ltd. for their help with DSC and TGA analysis.

She would acknowledge deeply the financial support from The 90TH Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endownment Fund) and the National Center of Excellent for Petroleum, Petrochemicals, and Advance Materials, Chulalongkorn University.

She would like to thank her friends (Kang, Ohm, Ben, Pui, Poo, Auang, Birth, Mew, Boh, Ta, Pee, Ao), and other people at the Department of Materials Science, Chulalongkorn University, whose names are not mentioned here, for their relationship, love, guidance, and encouragement throughout this thesis.

Finally, she wishes to express her deep gratitude to her dearest family (mom, sister (Auang), brother in law (Noom), niece (Neon), cousin (Maew), and especially her dad who has not seen and joined in her graduation day but he is always on her mind forever.

CONTENTS

Abstract in Thai	iv
Abstract in English	V
Acknowledgements	vi
Contents	vii
List of Tables	XV
List of Figures	xvii
List of Abbreviations	xvi

CHAPTER

I Introduction		1
1.1 Background		1
1.2 Objectives of F	Research	. 3
II Theory and Literatur	re Review	. 5
2.1 Polymer Clay	Nanocomposites	5
2.2 ABS		7
2.3 Flame Retarda	ants	8
2.3.1 Classif	fication of Fire Retardant Additives	. 9
2.3.1.1	1 Halogen-Containing Flame Retardants	9

2.3.1.2 Nitrogen/Phosphorus-Containing Flame	10
2.3.1.3 Metal hydroxide-Containing Flame Retardants	10
2.3.1.4 Zinc/Boron-Containing Flame Retardants	11
2.3.1.5 Melamines	11
2.3.1.6 Silicon-Containing Flame Retardant	11
2.3.2 The Burning Process of Plastics	12
2.3.2.1 Heating	12
2.3.2.2 Decomposition	12
2.3.2.3 Ignition	13
2.3.3 Combustion of Polymers and the Combustion Cycle	13
2.3.4 Flammability of Polymers	15
2.3.5 Mechanisms of Fire Retardant Action	15
2.3.5.1 Physical Action	16
2.3.5.2 Chemical Action	16
2.3.5.2.1 Reaction in The Condensed Phase	17
2.3.5.2.2 Reaction in The Gas Phase	17
2.3.6 Testing of Flame Retardant Plastics	17
2.3.6.1 Limiting Oxygen Index	17

viii

2.3.6.2 UL 94 HB Horizontal Burning Test Procedure	18
2.4 Silica and Silatrane	21
2.4.1 Silica	21
2.4.1.1 Rice	22
2.4.1.2 Corn	23
2.4.2 Silatrane Complex	25
2.5 Literature Review	26
III Experimental Procedure	27
3.1 Materials	27
3.1.1 Polymer matrix	27
3.1.2 Organomontmorillonite (OMT)	27
3.1.3 Silane coupling agents	27
3.1.4 Catalysts	27
3.1.5 Solvent	28
3.1.6 Commercial silica	28
3.2 Instruments	30
3.3 Experimental Procedure	31
3.3.1 Preparation of silica from rice husk and corn cob ash	32
3.3.2 Preparation of VTMO/AMMO grafted on silica	32

ix

3.3.3 Preparation of silatrane complex	33
3.3.4 Preparation of ABS nanocomposites	34
3.3.4.1 Preparation of ABS/OMT nanocomposites	34
3.3.4.2 Preparation of ABS/OMT/silane-g-silica nanocomposites	
3.3.4.3Preparation of ABS/OMT/silane-g-silica/silatra	ne 35
3.4 Characterization and Testing	36
3.4.1 Characterization of rice husk silica, corn cob silica, an commercial silica	nd 36
3.4.1.1 Particle size	36
3.4.1.2 Surface morphology	36
3.4.1.3 Functional group	36
3.4.1.4 Chemical composition for elemental analysis	36
3.4.1.5 Surface area	37
3.4.1.6 Elemental analysis	37
3.4.2 Characterization of silatrane and modified silica with silane coupling agent	37
3.4.2.1 Chemical structure	37
3.4.2.2 Functional group	37
3.4.2.3 Crystal structure	. 38

3.4.2.4 Particle size	38
3.4.2.5 Specific surface	38
3.4.3 Characterization and testing of ABS nanocomposites	38
3.4.3.1 Crystal structure	38
3.4.3.2 Dispersibility	39
3.4.3.3 Morphology	39
3.4.4 Thermal Properties	39
3.4.5 Flammability Properties	40
3.4.5.1 The limiting oxygen index (LOI)	40
3.4.5.2 UL-94 test	41
3.4.6 Mechanical Properties	42
3.4.6.1 Tensile Strength	42
3.4.6.2 Impact Strength	42
IV Results and Discussion	44
4.1 Characterization of Rice Husk Silica and Corn Cob Silica	44
4.1.1 CHN Analysis	45
4.1.2 Elemental Analysis	47
4.1.3 Chemical Structure by FTIR Technique	48

4.1.4 Crystallinity of RHS and CCS	48
4.1.5 Particle size and Surface Area Analysis	50
4.1.6 Morphological Studies	50
4.2 Characterization of Surface Modified Silica	53
4.2.1 Chemical Structure by FTIR technique	54
4.2.2 Chemical Structure by ²⁹ Si NMR Technique	56
4.2.3 Crystallinity by XRD Technique	62
4.2.4 Morphological Studies	63
4.2.5 Thermal Properties	64
4.2.5.1 Thermogravimetric Analysis (TGA)	64
4.3 Characterization of SSilatrane, RHSilatrane, and CCSilatrane	67
4.3.1 Chemical Structure by FTIR Technique	67
4.3.2 Chemical Structure by ²⁹ Si NMR Technique	68
4.3.3 Chemical Structure by ¹ H NMR Technique	70
4.3.4 Chemical Structure by ¹³ C Technique	70
4.3.5 Particle Size and Surface Area Analysis	72
4.3.6 Morphological Studies	72
4.3.7 Crystallinity by XRD Technique	73
4.3.8 Thermal Properties	74

xii

4.4 Characterization of ABS Nanocomposites	77
4.4.1 Chemical Structure by FTIR Technique	77
4.4.2 Crystallinity by XRD Technique	79
4.4.3 Morphological Studies	83
4.4.3.1 Scanning electron microscopy (SEM)	83
4.4.3.2 Transmission electron microscopy (TEM)	87
4.4.4 Thermal Stability	93
4.4.4.1 Differential Scanning Calorimetry (DSC)	95
4.4.5 Flammability Properties of ABS composites	98
4.4.5.1 Effect of OMT Loading	98
4.4.5.2 Effect of Silane Coupling Types and Contents	100
4.4.5.3 Effect of Silatrane Type and Contents	106
4.4.6 Mechanical Properties	110
4.4.6.1 Impact Strength	110
4.4.6.1.1 Effect of Silane Coupling Types and Contents	110
4.4.6.1.2 Effect of Silatrane Types and Contents	112
4.4.6.2 Tensile Properties	113
4.4.6.2.1 Effect of Silane Coupling Types and Contents	113

4.4.6.2.2 Effect of Silatrane Type and Contents	117
V Conclusions	118
5.1 Expected Benefits	119
5.2 Suggestion for Future Work	121
References	122
Appendix	123
Biography	149

•

xiv

LIST OF TABLES

Table 2.1 Materials classifications for UL-94V20	
Table 2.2 The burning rate of UL-94 test21	
Table 2.3 Silica contents in various plants	
Table 2.4 Cultivation area, total and average rice production in each period	
Table 2.5 Area, total and average rice production in each country	
Table 2.6 Total corn production in each country24	
Table 2.7 Cultivation area, total and average corn production in Thailand	
Table 3.1 Chemicals used in this research	
Table 3.2 Experimental instruments	
Table 3.3 Formulations used in this study35	
Table 3.4 The burning rate of UL-94 test42	
Table 4.1 CHN analysis of rice husk and corn cob before hydrolysis and after incineration48	
Table 4.2 XRF results from rice husk analysis	
Table 4.3 XRF results from corn cob analysis49	
Table 4.4 Particle size and surface area of silica and OMT	
Table 4.5 TGA data of AMMO grafted on commercial silica, RHS, and CCS68	
Table 4.6 TGA data of VTMO grafted on commercial silica and RHS70	

Table 4.7 Particle size and surface area of various silatrane	75
Table 4.8 TGA data of SSilatrane, RHSilatrane, and CCSilatrane	79
Table 4.9 TGA and DSC data of ABS nanocomposites	99
Table 4.10 UL-94 and LOI test of ABS/OMT nanocomposites	100
Table 4.11 UL-94 and LOI test of ABS/OMT/AMMO-g-silica nanocomposites	102
Table 4.12 UL-94 and LOI test of ABS/OMT/VTMO-g-silica nanocomposites	105
Table 4.13 UL-94 and LOI test of ABS/OMT/AMMO-silica/silatrane nanocomposites	108
Table 4.14 Mechanical properties of ABS nanocomposites	121

.....

LIST OF FIGURES

Figure 2.1 Intercalated structure and Exfoliated structure	5
Figure 2.2 Structure of montmorillonite	6
Figure 2.3 Ion Exchange Reaction	7
Figure 2.4 Acrylonitrile-butadiene-styrene copolymer	8
Figure 2.5 Worldwide consumption of flame retardants between 2000 and 2010	9
Figure 2.6 Combustion of plastics	10
Figure 2.7 Combustion cycle of polymer	11
Figure 2.8 Mechanism of nitrogen/phosphorous-containing flame retardant	14
Figure 2.9 Mechanism of aluminum trioxide flame retardant	15
Figure 2.10 Limiting oxygen index testing	19
Figure 3.1 Flow chart of manufacturing process	40
Figure 3.2 Schematic of VTMO/AMMO grafted on silica surface	42
Figure 3.3 Experimental apparatus of silatrane synthesis	43
Figure 3.4 LOI test apparatus	52
Figure 3.5 Vertical (a) and horizontal (b) burning test for UL-94 grade	53
Figure 4.1 XRF spectra of rice husk silica and corn cob silica	59

Figure 4.2 FTIR spectra of commercial silica, RHS, and CCS60
Figure 4.3 XRD patterns of MMT, OMT, commercial SiO ₂ , RHS and CCS62
Figure 4.4 SEM micrographs of rice husk before hydrolysis (a) and after incineration (b), corn cob before hydrolysis (c) and after incineration (d), and commercial silica (e, f), respectively
Figure 4.5 Schematic of (a) reaction of AMMO/VTMO grafted on silica and (b) hydrolysis on silanol group
Figure 4.6 FTIR spectra of AMMO-g-SiO ₂ and VTMO-g-RHS17
Figure 4.7 FTIR spectra of AMMO grafting on various silica18
Figure 4.8 Silanol group on silica surface19
Figure 4.9 ²⁹ Si NMR of hydroxylated SiO ₂ , hydroxylated RHS, and hydroxylated CCS20
Figure 4.10 ²⁹ Si NMR of hydroxylated SiO ₂ , VTMO-g-SiO ₂ , and AMMO-g-SiO ₂ 22
Figure 4.11 ²⁹ Si NMR of hydroxylated RHS, VTMO-g-RHS and AMMO-g-RHS23
Figure 4.12 ²⁹ Si NMR of hydroxylated CCS and AMMO-g-CCS24
Figure 4.13 ²⁹ Si NMR of AMMO-g-SiO ₂ , AMMO-g-RHS, and AMMO-g-CCS25
Figure 4.14 XRD patterns of AMMO-g-SiO ₂ , AMMO-g-RHS, and AMMO-g-CCS26
Figure 4.15 SEM micrographs of AMMO-g-SiO ₂ (a), AMMO-g-RHS (b), and AMMO-g-CCS (c).27
Figure 4.16 TGA thermograms of VTMO-g-SiO ₂ and VTMO-g-RHS28
Figure 4.17 TGA curves of AMMO-g-SiO ₂ , AMMO-g-RHS, and AMMO-g-CCS29
Figure 4.18 Schematic of silatrane synthesis

Figure 4.19 FTIR of SSilatrane, RHSilatrane, and CCSilatrane	31
Figure 4.20 ²⁹ Si NMR of SSilatrane, RHSilatrane, and CCSilatrane	32
Figure 4.21 ¹ H NMR of SSitatrane, RHSilatrane, and CCSilatrane	33
Figure 4.22 ¹³ C NMR of SSilatrane, RHSilatrane, and CCSilatrane	34
Figure 4.23 SEM images of (a,b) SSilatrane, (c,d) RHSilatrane, and (e,f) CCSilatrane	35
Figure 4.24 XRD patterns of SSilatrane (a), RHSilatrane (b), and CCSilatrane (c)	36
Figure 4.25 Schematic of dimerization in silatrane complex synthesis	37
Figure 4.26 TGA curves of SSilatrane, RHSilatrane, and CCSilatrane	38
Figure 4.27 FTIR of ABS nanocomposites	39
Figure 4.28 XRD patterns of ABS/OMT/VTMO-g - silica and ABS/OMT/AMMO-g-silica	
nanocomposites	40
Figure 4.29 XRD patterns of ABS/OMT/AMMO-g-SiO2/SSilatrane, ABS/OMT/AMMO-g-	
RHS/RHSilatrane, ABS/OMT/AMMO-g-CCS/CCSilatrane nanocomposites	41
Figure 4.30 SEM images of (a) ABS pure, (b) ABS/OMT, (c) ABS/OMT/VTMO-g-SiO ₂ , (d)	
ABS/OMT/VTMO-g-RHS, (e) ABS/OMT/AMMO-g-SiO ₂ , (f) ABS/OMT/AMMO-g-RHS, and (g)	
ABS/OMT/AMMO-g-CCS, respectively	42

Figure 4.31 SEM images of (a,b) ABS/OMT/AMMO-g-SiO ₂ /SSilatrane, (c,d) ABS/OMT/AMMO-g-
RHS/RHSilatrane, and (e,f) ABS/OMT/AMMO-g-CCS/CCSilatrane at lower magnification (x500)
and higher magnification (x5,000)43
Figure 4.32 SEM-EDX micrographs of ABS/OMT/AMMO-g-RHS/RHSilatrane (a, b) and
ABS/OMT/AMMO-g-CCS/CCSilatrane (c, d)44
Figure 4.33 TEM images stained with OsO ₄ of (a,b) ABS/OMT/VTMO-g-SiO ₂ , (c,d)
ABS/OMT/VTMO-g-RHS, and (e,f) ABS/OMT nanocomposites at lower magnification (x50,000)
and higher magnification (x200,000), respectively44
Figure 4.34 TEM images (without staining with OsO4) of (a,b) ABS/OMT/AMMO-g-RHS and (c,d)
ABS/OMT/AMMO-g-CCS nanocomposites at lower magnification (x50,000) and higher
magnification (x200,000), respectively45
Figure 4.35 TEM images (without staining with OsO4) of (a,b)ABS/OMT/AMMO-g-SiO ₂ /SSilatrane
(c,d), ABS/OMT/AMMO-g-RHS/RHSilatrane, and (e,f), ABS/OMT/AMMO-g-CCS/CCSilatrane
nanocomposites at lower magnitication46
Figure 4.36 TGA graphs of ABS/OMT/AMMO-g-SiO2/SSilatrane (top), ABS/OMT/AMMO-g-
RHS/RHSilatrane (middle), and ABS/OMT/AMMO-g-CCS/SSilatrane (bottom)47
Figure 4.37 DSC thermograms of ABS/OMT/AMMO-g-RHS (top) and ABS/OMT/AMMO-g-CCS
(bottom)

.....

Figure 4.38 DSC thermograms of ABS/OMT/AMMO-g-RHS/RHSilatrane (top) ar	d
ABS/OMT/AMMO-g-CCS/CCSilatrane (bottom)4	19
Figure 4.39 Effect of OMT loading on flammability of ABS nanocomposites 4.4.5.2 Effect of	
Silane Coupling Types and Contents	50
Figure 4.40 Effect of AMMO-g-silica loading on flammability of ABS/OMT nanocomposites5	51
Figure 4.41 Effect of VTMO-g-silica loading on flammability of ABS/OMT nanocomposites	52
Figure 4.42 Flammability test of ABS/OMT/AMMO-g-RHS and ABS/OMT/VTMO-g-RHS	53
Figure 4.43 Effect of each silatrane type on flammability of ABS	54
Figure 4.44 Photographs of UL-94 HB burning test of ABS/OMT/AMMO-g-CCS/CCSilatrane (A)
and ABS/OMT/AMMO-g-RHS/RHSilatrane (B)	55
Figure 4.45 Effect of type and content of modified silica on impact strength	56
Figure 4.46 Effect of silane coupling type on impact strength	57
Figure 4.47 Effect of silatrane loading on impact strength	58
Figure 4.49 Effect of type and content of silica on tensile strength	59
Figure 4.50 Effect of silane coupling type on tensile strength	60
Figure 4.51 Effect of type and content of silane coupling on Young's modulus	.61
Figure 4.52 Effect of silane coupling type on Young's modulus	.62

- 1

Figure 4.53 Effect of silatrane on tensile properties of ABS	63
Figure 4.54 Effect of filler loading on tensile strength	64
Figure 4.55 Effect of filler loading on Young's modulus	65

.