สภาพการแปรสัณฐานของพื้นที่คิตากามิตอนใต้ ประเทศญี่ปุ่น นิรนัยจากชิ้นตะกอน โครเมียนสปีเนลของชั้นหินมหายุคพาลีโอโซอิกตอนกลางถึงปลาย

นายธิติกร บรรยงค์กุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาธรณีวิทยา ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2542 ISBN 974-333-389-4 ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

118766638

TECTONIC SETTINGS OF THE SOUTHERN KITAKAMI AREA, JAPAN, DEDUCED FROM DETRITAL CHROMIAN SPINELS OF MIDDLE TO UPPER PALEOZOIC BEDS

Mr. Thitikorn Bunyongkul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology Department of Geology Faculty of Science Chulalongkorn University Academic Year 1999 ISBN 974-333-389-4

Thesis Title	Tectonic Settings of the Southern Kitakami Area, Japan, Deduced
	from Detrital Chromian Spinels of Middle to Upper Paleozoic Beds
Ву	Mr. Thitikorn Bunyongkul
Department	Geology
Thesis Advisor	Assistant Professor Punya Charusiri, Ph.D.
Thesis Co-advisor	Associate Professor Ken-ichiro Hisada, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

Wach Mt. Dean of the Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

S. Nakapadenynt. .. Chairman

(Assistant Professor Somchai Nakapadungrat, Ph.D.)

time Thesis Advisor

(Assistant Professor Punya Charusiri, Ph.D.)

Wisada_____ Thesis Co-advisor

(Associate Professor Ken-ichiro Hisada, Ph.D.)

Ch. Khanap Member

(Associate Professor Chaiyudh Khantaprab, Ph.D.)

 $\gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$, Member

(Professor Michio Hashizume, Ph. D.)

ชิติกร บรรยงค์กุล: สภาพการแปรสัณฐานของพื้นที่คิตากามิตอนใต้ ประเทศญี่ปุ่น นิรนัยจากชิ้น ตะกอนโครเมียนสปีเนลของชั้นหินมหายุคพาลีโอโซอิกตอนกลางถึงปลาย, อ. ที่ปรึกษา: ผศ. คร. ปัญญา จารุศิริ, อ. ที่ปรึกษาร่วม: รศ. คร. เคน-อิชิโร ฮิซาคะ, 180 หน้า, ISBN 974-333-389-4

พื้นที่คิตากามิตอนใต้ ประเทศญี่ปุ่น ประกอบด้วยหินในกลุ่มลักษณะปรากฏตะกอนชายฝั่ง (shelffacies) ตั้งแต่ยุคไซลูเรียนจนถึงครีเทเชียส ซึ่งส่วนใหญ่ประกอบด้วยหินตะกอน และมีหินอัคนีและหินแปรบ้าง บางส่วน ตัวอย่างหินตะกอนเนื้อผสมจำนวน 79 ตัวอย่างจากยุคดีโวเนียนจนถึงครีเทเชียส และหินบะซอลต์และ แอนดีไซต์จำนวน 4 ตัวอย่างจากยุคคาร์บอนิเฟอรัสได้ถูกนำมาทำการศึกษาทางด้านศิลาวรรณาซึ่งพบว่า หินทราย ชนิคลิทารีไนต์ ลิทารีไนต์มีเฟลค์สปาร์ และอาร์โคสชนิคลิทิกค์เป็นหินทรายหลักในยุคคีโวเนียนและคาร์บอนิ เฟอรัส ขณะที่หินอาร์ โคสเป็นหินทรายหลักในยุคเปอร์เมียนจนถึงครีเทเซียส การวิเคราะห์ทางด้านปริมาณแร่ ของตัวอย่างหินทรายจำนวน 35 ตัวอย่างชี้บ่งว่า แหล่งกำเนิดของหินทรายยุคดีโวเนียนและคาร์บอนิเฟอรัสคือ แนวโค้งภูเขาไฟ ส่วนแหล่งกำเนิดของหินทรายยุคเปอร์เมียนถึงครีเทเซียสคือพวกฐานหินที่มีการยกตัว องค์ ประกอบออกไซด์หลักของตัวอย่างหินทรายจำนวน 12 ตัวอย่างจากยุคดีโวเนียน เปอร์เมียน ไทรแอสซิก และจ แรสซิกแสดงให้เห็นว่า หินทรายเหล่านี้ได้รับตะกอนซึ่งถูกพัดพามาจากหินอักนีชนิดเฟลซิกและอินเตอร์มีเดียตที่ แตกหลุดมาจากแหล่งกำเนิดที่เป็นเกาะ โค้ง ชิ้นตะกอนโครเมียนสปีเนลหลายขนาดถูกค้นพบในหินทรายและหิน ทรายแป้งยุคดีโวเนียน คาร์บอนิเฟอรัส และไทรแอสซิก ศิลาวรรณาและธรณีเคมีของชิ้นตะกอนโครเมียนสปีเนล เหล่านี้ ยกเว้นพวกที่มาจากหินทรายยุคไทรแอสซิกซึ่งยังไม่ได้วิเคราะห์องค์ประกอบทางเคมโดยวิธี EPMA บ่งชื ้ว่าพวกมันถูกพัดพามาจากหินบะซอลต์และเพอริโคไทต์ซึ่งเกิดที่บริเวณส่วนหน้าของเกาะโค้ง นอกจากนี้โคร เมียนสปีเนลยังถกพบในหินบะซอลค์ยุคคาร์บอนิเฟอรัสอีกด้วยซึ่งศิลาวรรณาและธรณีเคมีของโครเมียนสปีเนลนี้ ก็ยืนยันสภาพการแปรสัณฐานของพวกมันว่าเป็นเกาะ โค้งหรือส่วนหน้าของเกาะ โค้ง

ผลของการศึกษาทั้งหมดประกอบกับผลการศึกษาในอดีตนำมาสู่บทสรุปที่ว่า พื้นที่คิตากามิตอนใต้ถูก เชื่อว่าเป็นส่วนหนึ่งของจุลทวีปแขงซี (Yangtze microcontinent) ที่อยู่ทางตะวันออกของผืนแผ่นดินกอนด์วานา และมีสภาพการแปรสัณฐานแบบแตกเป็นร่อง (rifting) และเคลื่อนตัว (drifting) บริเวณส่วนหน้าของเกาะโค้ง โดยมีการมุดตัวหลายครั้งเป็นลักษณะเด่น อย่างน้อยตั้งแต่ยุคไซลูเรียนจนอาจจะถึงยุคไทรแอสซิก

ภาควิชา	ธรณีวิทยา	ลายมือชื่อนิสิต	innr	บรรจรคกล.	
สา ขาวิชา	ธรณีวิทยา	ลายมือชื่ออาจารย์ที่ปรึ	กษา	Mr. Ken	}}.
ปีการศึกษา	2542	ลายมือชื่ออาจารย์ที่ปรึ	กษาร่วม	K Mis	ada

THITIKORN BUNYONGKUL: TECTONIC SETTINGS OF THE SOUTHERN KITAKAMI AREA, JAPAN, DEDUCED FROM DETRITAL CHROMIAN SPINELS OF MIDDLE TO UPPLE PALEOZOIC BEDS. THESIS ADVISOR: ASSIST. PROF. PUNYA CHARUSIRI, Ph.D. THESIS CO-ADVISOR: ASSOC. PROF. KEN-ICHIRO HISADA, Ph.D. 180 pp. ISBN 947-333-389-4

Southern Kitakami area, Japan, is occupied mainly by shelf-facies of Silurian to Cretaceous sedimentary rocks, with some igneous and metamorphic rocks. 79 samples of Devonian to Cretaceous clastic rocks, with 4 samples of Carboniferous basalts and andesites were collected for petrographic investigation. Litharenite, feldspathic litharenite, and lithic arkose are the dominant sandstones of Devonian and Carboniferous while arkose is the major type in Permian to Cretaceous. Modal analysis of 35 sandstone samples indicate undissected and transitional magmatic arcs as the provenances of Devonian and Carboniferous sandstones, and these provenances were later on changed to be basement uplift supplying sediments for Permian to probably Jurassic sandstones. Major oxide contents of 12 sandstone samples from Devonian, Permian, Triassic, and Jurassic show that the provenances of these sandstones are felsic to intermediate igneous rocks of oceanic island arc region. Detrital chromian spinels are discovered from Devonian, Carboniferous, and Triassic sandstones and siltstones. Except for the detrital chromian spinels from Triassic sandstone which have not been analysed by EPMA yet, petrography and geochemistry of these detrital minerals indicate that they were derived from both basalt and peridotite occurring in the fore-arc region. Additionally, chromian spinels are also discovered from Carboniferous basalt which their petrography and geochemistry also confirm the island arc (fore-arc) as their tectonic setting.

All results of this study together with previous investigations lead to the conclusion that the Southern Kitakami area is inferred as part of Yangtze, eastern Gondwanaland, originating with rifting and drifting tectonic settings in the fore-arc region dominated by multiple subduction since at least Silurian to probably Triassic.

ภาควิชา	ธรณีวิทยา	ลายมือชื่อนิสิต	'mar	งกางงกก.	P
สาขาวิชา	ธรณีวิทยา	ลายมือชื่ออาจารย์ที่ปรึเ	กษา	Mari syds	
ปีการศึกษา	2542	ลายมือชื่ออาจารย์ที่ปรึ	กษาร่วง	K Kusa	la

ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to his advisor, Dr. Punya Charusiri, and his co-advisor, Dr. Ken-ichiro Hisada, for their most valuable guidance, critical suggestion, encouragement, and contributions to make completion of this thesis possible.

The following individuals are gratefully acknowledged for their advice and constructive criticism as committee members: Dr. Somchai Nakapadungrat, Dr. Chaiyudh Khanthaprab, and Dr. Michio Hashizume.

The author is indebted to the Analysis Center of the University of Tsukuba for allowing him to use electron microprobe spectometer. He also thanks Miss Shizuka Takashima, Miss Takami Sugiyama, Miss Kiriko Kubo and Miss Humiko Akabane for their assistance and suggestions during his stay in Japan, especially during the mineralogical investigation using electron microprobe.

Special thanks are given to Mr. Jirasak Charoenmit who kept the author active all the time until completion of this thesis. His assistance in preparing numbers of figures made the manuscript more impressive and comprehensive.

Finally, the author wishes to thank his mother who continuously encouraged and supported her son with her best effort in seeking the highest education.

CONTENTS

	Page
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGMENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
CHAPTER I INTRODUCTION	1
1.1 Location	2
1.2 Accessibility	4
1.3 Objectives	4
1.4 Methodology	4
1.4.1 Pre-field	6
1.4.2 Field checking and samples collection	6
1.4.3 Laboratory studies	8
1.4.4 Data processing	9
1.4.5 Interpretation	10
1.4.6 Discussion and conclusion	10
CHAPTER II REVIEW ON TECTONIC SETTINGS OF JAPAN	11
2.1 Geotectonic Subdivision of Japan	13
2.1.1 Southwestern Japan	15
2.1.2 The Ryukyus	21
2.1.3 Northeastern Japan	23
2.1.4 Eastern Hokkaido	26
2.2 Geotectonic History of Japan	28
2.2.1 Birthplace of proto-Japan	28
2.2.2 Inversion from passive to active margin	31

2.2.3 Accretionary growth of the Japanese Islands	32
2.2.4 Remnant of continent-continent collision	33
CHAPTER III GEOLOGY OF THE SOUTHERN KITAKAMI AREA	35
3.1 Pre-Silurian	36
3.2 Silurian and Devonian	39
3.3 Carboniferous	46
3.4 Permian	56
3.5 Triassic	60
3.6 Jurassic	65
3.7 Cretaceous	69
CHAPTER IV PETROGRAPHY OF THE CLASTIC ROCKS	72
4.1 Mesoscopic description	73
4.2 Microscopic description	77
4.2.1 Litharenite	81
4.2.2 Feldspathic litharenite	81
4.2.3 Lithic arkose	85
4.2.4 Arkose	87
4.2.5 Siltstone	87
4.2.6 Basalt	91
4.3 Modal composition of sandstones	91
CHAPTER V DETRITAL CHROMIAN SPINEL	97
5.1 Detrital chromian spinel from Devonian sandstone	101
5.2 Detrital chromian spinels from Carboniferous sandstones	
and ltstones	113
5.3 Chromian spinels from Carboniferous basalt	125
5.4 Detrital chromian spinels from Triassic sandstone	133
5.5 Petrochemical characteristics of detrital chromian spinels	135

CHAPTER VI DISCUSSION	136
6.1 Petrography of sandstones	136
6.2 Geochemistry of clastic rocks	137
6.3 Geochemistry of (detrital) chromian spinels	143
6.3.1 Plots for basaltic host rocks	143
6.3.2 Plots for ultramafic host rocks	148
6.4 Tectonic scenario of the Southern Kitakami area	151
CHAPTER VII CONCLUTION AND RECOMMENDATION	161
7.1 Conclusion	161
7.2 Recommendation	162
REFERENCES	163
APPENDICES	173
APPENDIX I	174
APPENDIX II	178
APPENDIX III	179
BIOGRAPHY	180

Page

LIST OF TABLES

Page

Table 3.1	Standard succession of the pre-Tertiary sequences in the	
	Southern Kitakami area (Mori et al., 1992)	38
Table 3.2	Successions of Silurian and Devonian sequences in the	4
	Southern Kitakami area (Kimura et al., 1991)	40
Table 3.3	Successions of Carboniferous sequences in the Southern	
	Kitakami area (Kimura et al., 1991)	48
Table 3.4	Successions of Permian sequences in the Southern Kitakami	
	area (Kimura et al., 1991)	57
Table 3.5	Successions of Triassic sequences in the Southern Kitakami	
	area (Kimura et al., 1991)	61
Table 3.6	Successions of Jurassic sequences in the Southern Kitakami	
	area (Kimura et al., 1991)	66
Table 3.7	Successions of Lower Cretaceous sequences in the Southern	
	Kitakami area (Kimura et al., 1991)	70
Table 4.1	Modal composition of sandstones of the Southern Kitakami	
	area	93
Table 5.1	Six end members of the spinel group, predominating in	
	chromian spinel (Klein and Hurlbut, 1993)	97
Table 5.2	Major oxides of detrital chromian spinels from Devonian	
	sandstone analysing by EPMA	111
Table 5.3	Major oxides of detrital chromian spinels from Carboniferous	
	siltstones and sandstones analysing by EPMA	123
Table 5.4	Major oxides of chromian spinels from Carboniferous basalt	
	analysing by EPMA	131

LIST OF FIGURES

		Page
Figure 1.1	Map showing location of the Southern Kitakami area	3
Figure 1.2	Map showing accessibility of the Southern Kitakami area	
	(Nelles Verlag GmbH, D-80935 München)	5
Figure 1.3	Flow chart showing methodology of this research study	7
Figure 2.1	Map showing major plates and their interactions around	
	Japanese Islands (Isozaki, 1996)	12
Figure 2.2	Map showing the new geotectonic subdivision of Japanese	
	Islands (Isozaki, 1996)	14
Figure 2.3	Map showing the geotectonic subdivision of Southwestern	
	Japan(Isozaki, 1996)	16
Figure 2.4	Map showing the geotectonic subdivision of the Ryukyus	
	(Isozaki, 1996)	22
Figure 2.5	Map showing the geotectonic subdivision of Northeastern	
	Japan (Isozaki, 1996)	24
Figure 2.6	Map showing the geotectonic subdivision of Hokkaido	
	(Isozaki, 1996)	27
Figure 2.7	Cartoons showing 700 million years of geotectonic	
	evolution of Japanese Islands (Isozaki, 1996)	29
Figure 2.8	Tectonic framework of 250 Ma East Asia showing a	
	continent-continent collision between the two Precambrian	
	cratons, Sino-Korean and Yangtze blocks (Isozaki, 1996)	34
Figure 3.1	Geologic map of the Southern Kitakami area (Mori et al.,	
	1992)	37
Figure 3.2	Columnar section of Lower to Middle Devonian rocks in	
	Hikoroichi district (Oide, 1989)	43

xii

Figure 3.3	Geologic map of the Higoroichi district (Mori et al., 1992)	44
Figure 3.4	Well-bedded fine-grained greenish gray sandstone of the	
	Devonian Nakazato Formation showing the very deep	
	dipping at Hikoroichi district	45
Figure 3.5	Thick beds of very fine- and fine-grained greenish gray	
	sandstones of the Devonian Nakazato Formation in	
	Hikoroichi district	45
Figure 3.6	Columnar sections of Carboniferous rocks in the Southern	
	Kitakami area (Oide, 1989)	49
Figure 3.7	Large exposure of calcareous fine-grained sandstones and	
	siltstones of the Carboniferous Hikoroichi Formation with	
	deep dipping at the Onimaru quarry in Hikoroichi district	50
Figure 3.8	Fine-grained sandstone in the lower part of the	
	Carboniferous Hikoroichi Formation at Hikoroichi district	50
Figure 3.9	Geologic map of the Sabukura district (Kawamura, 1983)	51
Figure 3.10	Geologic map of the Yokota district (Kawamura, 1983)	53
Figure 3.11	Geologic map of the Omata district (Kawamura, 1983)	55
Figure 3.12	Bedded calcareous sandstone of Permian Toyoma Group	
	expose well along the coast in Utatsu district	59
Figure 3.13	Fine- to medium-grained sandstones of Permian Toyoma	
	Group at the south of Utatsu coast	59
Figure 3.14	Geologic map around the Cape Tatezaki, Ututsu district	
	(Mori et al., 1992)	63
Figure 3.15	Thick-bedded fine-grained yellowish brown sandstone	
	yielding fish fossil in Osawa Formation of Triassic Inai	
	Group at the coast of Utatsu district	64

		Page
Figure 3.16	Close-up of very fine-grained whitish gray sandstone strata	
	of Triassic Osawa Formation in Inai Group near the coast	
	of Utatsu district	64
Figure 3.17	Bedded medium- to coarse-grained yellowish brown	
	sandstones of Jurassic Shizukawa Group in Shizukawa	
	district	67
Figure 3.18	Intercalation of bedded very fine-grained whitish gray with	
	coarse-grained yellowish brown sandstones in the Jurassic	
	Shizukawa Group near the coast of Shizukawa district	67
Figure 4.1	Poor-sorted greenish gray fine- to medium-grained	
	sandstone of Devonian Nakazoto Formation	74
Figure 4.2	Very poorly sorted light gray fine- to very coarse-grained	
	Carboniferous sandstone from Hikoroichi Formation	
	showing graded bedding together with cross lamination	74
Figure 4.3	Moderately sorted fine- to coarse-grained dark greenish gray	
	calcareous carboniferous sandstone from Hikoroichi	
	Formation. It seems to have the lineation in elongated-grains	75
Figure 4.4	Poor-sorted blackish gray very fine- to very coarse-grained,	
	with some gravel-size crinoid stems, of calcareous	
	sandstone in Carboniferous Odaira Formation	75
Figure 4.5	Very poorly sorted greenish sandstone of Carboniferous	
	Hikoroichi Formation. Grain sizes very from silt up to	
	pebble and seem to arrange as lamination	76
Figure 4.6	Moderately sorted very fine- to medium-grained gray	
	siliceous sandstone of Carboniferous Hikoroichi Formation	76
Figure 4.7	Well sorted fine-grained yellowish brown Triassic sandstone	

from Osawa Formation of Inai Group...... 78

Figure 4.8 Light gray siltstone with some blackish gray bands alternating of Carboniferous Hikoroichi Formation..... 78 Figure 4.9 Light gray siltstone with blackish gray bands alternating of Carboniferous Hikoroichi Formation..... 79 Figure 4.10 Dark green porphyritic basalt of Carboniferous Karosawa 79 Formation..... Figure 4.11 Sandstone classification of Folk (1974)..... 80 Figure 4.12 Moderately sorted volcanic arenite of sample no. 97112205 Carboniferous Hikoroichi from Formation containing wholely irregular felsic to mafic volcanic fragments..... 82 Figure 4.13 Moderately sorted volcanic arenite of sample no. 97031605-5 from Carboniferous Hikoroichi Formation containing mostly volcanic clasts with small amount of feldspar grains. 82 Figure 4.14 Moderate-sorted Calclithite of sample no. 97112217 from Carboniferous Odaira Formation containing wholelv carbonate fragments with some crinoid stems..... 83 Figure 4.15 Poor-sorted volcanic arenite of sample no. 97112302 from Carboniferous Hikoroichi Formation containing mostly volcanic fragments from various source rocks with a few feldspar grains..... 83 Figure 4.16 Very poorly sorted feldsparthic litharenite of sample no. 97031603 from Devonian Ono Formation..... 84 Figure 4.17 Poorly sorted feldsparthic litharenite of sample no. 97112204 from Carboniferous Hikoroichi Formation..... 84 Figure 4.18 Very poorly sorted lithic arkose of sample no. 97031606

from Carboniferous Odaira Formation.....

86

Page

Figure 4.19	Very poorly sorted lithic arkose of sample no. 97112204	
	from Carboniferous Hikoroichi Formation	86
Figure 4.20	Well-sorted ferrogeneous arkose of sample no. 97031707	
	from Permian Toyoma Formation	88
Figure 4.21	Well-sorted siliceous arkose of sample no. 97031703 from	
	Triassic Osawa Formation	88
Figure 4.22	Well sorted medium-grained siliceous arkose of sample no.	
	97031704 from Jurassic Niranohama Formation	89
Figure 4.23	Moderately sorted very fine- to fine-grains ferrogeneous	
	arkose of sample no. 97031502 from Cretaceous Ofunato	
	Group	89
Figure 4.24	Strong calcareous siltstone from sample no. 93120207 of	
	Carboniferous Hikoroichi Formation	90
Figure 4.25	Calcareous sandy siltstone from sample no. 93120208 of	
	Carboniferous Hikoroichi Formation. Sand grains are mostly	
	feldspar and volcanic fragments	90
Figure 4.26	Porphyritic basalt from sample no. 97112201-2 of	
	Carboniferous Hikoroichi Formation. Altered subhedral	
	olivine (up right) is phenocrysts surrounding by the flow of	
	microcrystalline feldspar	92
Figure 4.27	Porphyritic basalt from sample no. 97112104 of	
	Carboniferous Karosawa Formation. Serpentinized-olivine	
	phenocrysts always found in association with chromian	
	spinels and are surrounding by the flow of microcrystalline	
	feldspar and pigionte	92

XV

		Page
Figure 4.28	QFL diagram showing modal composition of sandstones in	
	the Southern Kitakami area. Note: open circles are	
	sandstones from Permian to Cretaceous, closed circles are	
	Devonian and Carboniferous sandstones	96
Figure 5.1	End member compositions in the spinel group as	
	represented in a spinel prism (Klein and Hurlbut, 1993)	98
Figure 5.2	Modern and ancient occurrences of detrital chromian spinels	
	and detrital serpentinites as well as principal ophiolite belts	
	on the continents (Zimmerle, 1984)	100
Figure 5.3	Sketches for distributions, sizes, and shapes of chromian	
	spinel grains within the thin-section No. 97031604A of	
	sandstone in Devonian Nakazato Formation	103
Figure 5.4	Sketches for distributions, sizes, and shapes of chromian	
	spinel grains within the thin-section No. 97031604B of	
	sandstone in Devonian Nakazato Formation	104
Figure 5.5	Sketches for distributions, sizes, and shapes of chromian	
	spinel grains within the thin-section No. 97031604C of	
	sandstone in Devonian Nakazato Formation	105
Figure 5.6	Sketches for distributions, sizes, and shapes of chromian	
	spinel grains within the thin-section No. 97031604D of	
	sandstone in Devonian Nakazato Formation	107
Figure 5.7	Characteristics of detrital chromian spinels from Devonian	
	sandstone	109
Figure 5.8	Sketches for distributions, sizes, and shapes of detrital	
	chromian spinel grains within the thin-section numbers	
	93120206A and 93120206B of siltstone in Carboniferous	
	Hikoroichi Formation	114

xvii

Figure 5.9	Sketches for distributions, sizes, and shapes of chromian	
	spinel grains within the thin-section numbers 93120206C	
	and 97120207 of siltstones in Carboniferous Hikoroichi	
	Formation	115

Figure 5.17	Characteristics of chromian spinel crystals from basalt in	
	Carboniferous Karosawa Formation	130
Figure 5.18	Sketches for distributions, sizes, and shapes of detrital	
	chromian spinel grains within the thin-section No. 97031703	
	of sandstone in Triassic Inai Group	134
Figure 6.1	QFL diagram for Devonian (closed square), Carboniferous	
	(closed circles), and Permian to Cretaceous (open circles)	
	sandstones in the Southern Kitakami area. Provenance fields	
	are after Dickinson and others (1983)	138
Figure 6.2	QFL diagram for Devonian and Carboniferous sandstones	
	in the Southern Kitakami area. Provenance fields are after	
	Dickinson and others (1983). Data are from Kawamura	
	(1984)	139
Figure 6.3	Diagram showing the relationships between Fe_2O_3+MgO	
	and TiO_2 of sandstones in the Southern Kitakami area.	
	Provenance fields are after Bhatia (1983)	141
Figure 6.4	Discriminant function diagram of the provenance signature	
	of sandstones in the Southern Kitakami area. Provenance	
	fields are after Roser and Korsch, (1988)	142
Figure 6.5	Diagram showing the compositional ratios between (a) $Fe^{3+}/$	
	$(Cr+Al+Fe^{3+})$ and TiO_2 , and (b) $Cr/(Cr+Al)$ and TiO_2 of	
	detrital chromian spinels from Devonian (open circles) and	
	Carboniferous (closed circles) sandstones and siltstones in	
	the Southern Kitakami area. Provenance fields are after	
	Arai (1992)	144

		Page
Figure 6.6	Diagram showing the compositional ratios between (a) $Fe^{3+}/$	
	$(Cr+Al+Fe^{3+})$ and TiO_2 , and (b) $Cr/(Cr+Al)$ and TiO_2 of	
	chromian spinels from Carboniferous basalt in the Southern	
	Kitakami area. Provenance fields are after Arai (1992)	146
Figure 6.7	Graph showing the Cr/(Cr+Al) ratio of chromian spinels in	
	various provenances (modified from Arai, 1994)	147
Figure 6.8	Fe ³⁺ -Cr-Al triangular diagram showing compositional ratios	
	of detrital chromian spinels from Devonian (open circles)	
	and Carboniferous (closed circles) sandstones and siltstones	
	in the Southern Kitakami area. Host-rock fields are after	
	Cookenboo et al. (1997)	149
Figure 6.9	Fe ³⁺ -Cr-Al triangular diagram showing compositional ratios	
	of chromian spinels from Miyamori (Ozawa, 1988) and	
	Hayachine (Fujimaki and Yomogida, 1986) Ultramafic	
	complexes	150
Figure 6.10	Diagram showing the compositional ratios between Mg/	
	$(Mg+Fe^{2+})$ and Cr/(Cr+Al) of detrital chromian spinels from	
	Devonian (open circles) and Carboniferous (closed circles)	
	sandstones and siltstones in the Southern Kitakami area.	
	Host-rock fields are after Dick and Bullen (1984)	152
Figure 6.11	Compositional ratios between $Mg'[Mg/(Mg+Fe^{2+})]$ and Cr'	
	[Cr/(Cr+Al)] of upper mantle oxide minerals in regional	
	tectonic setting from mid-ocean ridge (MOR) and fracture	
	zones (FZ), to arc, ocan islands(OI), ophiolite (OPH)	
	complexes, continental rifts and stable cratons (Haggerty,	
	1991)	153

xix

Typical spinel compositions, Cr[#][Cr/(Cr+Al)] and Mg[#][Mg/ Figure 6.12 $(Mg+Fe^{2+})$], from various sea-floor (potential Alpine-type ophiolite) and continental-crust origins (Cookenboo et al., 1997) No scale implied..... 154 Figure 6.13 Distribution of the continental blocks in Early Devonian, ca 400 M (Maruyama et al., 1997). Yangtze (Yg) together with Southern Kitakami moved northward from Australia (Au) and became an isolated plate in the Pacific Ocean. Sino-Korea (SK) was also isolated from other continental blocks and belong to an independent faunal province..... 156 Figure 6.14 Distribution of the continental blocks in Late Carboniferous, ca 300 Ma (Maruyama et al., 1997). Yangtze together with Southern Kitakami and Sino-Korea moved pass the Tethys Sea into the Northern Hemisphere..... 157 Figure 6.15 Paleogeographic map of Earliest Triassic Japan at ca 250 Ma (Maruyama et al., 1997). Yangtze together with Southern Kitakami started to collide against Sino-Korea close to the Paleo-Tethys seaway..... 158

хх

Page