FORMULATION OF HETEROGENEOUS CATALYSTS FROM NATURAL AND SYNTETIC MATERIALS FOR BIODIESEL PRODUCTION

Mr. Naravit Leaukosol

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2010

Thesis Title: Formulation of Heterogeneous Catalysts from Nat	
	Synthetic Materials for Biodiesel Production
By:	Naravit Leaukosol
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Thirasak Rirksomboon
	Asst. Prof. Siriporn Jongpatiwut
	Assoc. Prof. Laura Romero-Zerón
	Prof. Frank R. Steward

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

٩.

hullb

(Assoc. Prof. Thirasak Rirksomboon)

Th

(Asst. Prof. Siriporn Jongpatiwut)

Pramoch y

(Assoc Prof. Pramoch Rangsunvigit)

ourre / Comon

(Assoc. Prof. Laura Romero-Zerón)

Inst Retter

(Prof. Frank R. Steward)

(Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

.

5071012063 Petrochemical Technology Program
Naravit Leaukosol: Formulation of Heterogeneous Catalysts from
Natural and Synthetic Materials for Biodiesel Production.
Thesis Advisors: Assoc. Prof. Thirasak Rirksomboon,
Asst. Prof. Siriporn Jongpatiwut, Assoc. Prof. Laura Romero-Zerón,
and Prof. Frank R. Steward. 60 pp.

Keywords: Biodiesel/ Heterogeneous Catalyst/ Metal Oxide/ Crustacean Shell/ Mollusk Shell/Combination

The transesterification of canola oil with methanol at various conditions such as types of catalysts, catalysts concentrations, reaction temperatures, and the ratios of metal oxide to natural material as a catalyst were investigated in this work. A series of alkaline earth and transition metal oxides including complex transition metal oxides were used as synthetic catalysts. The natural materials used were animal shell, crustacean shell and mollusk shell. The reaction temperatures were set to 45°C, 55°C, and 65°C. The reaction times evaluated were 30 and 60 minutes. The methanol to oil molar ratio, mixing rate and reaction pressure were kept constant at 6:1, 800 rpm, and 15 psig under nitrogen atmosphere, respectively. The ¹H-NMR spectroscopy was used to identify the biodiesel product and calculate the yield percentage. The experimental results demonstrated that the combination of metal oxide 1 (M1O) and crustacean shell type 1 (CS1) as well as the combination of metal oxide 1 (M1O) and crustacean shell type 2 (CS2) improved the biodiesel yield at 45°C, 30 minutes. In addition, some of the metal oxides and metal carbonates combinations could achieve a higher biodiesel yield as compared to the yield obtained from the use of M1O alone.

บทคัดย่อ

นรวิศ เหลือโกศล : การสร้างตัวเร่งปฏิกิริยาแบบวิวิธพันธ์ โดยใช้วัสดุจากธรรมชาติ และวัสดุสังเคราะห์ สำหรับการผลิตใบโอดีเซล (Formulation of Heterogeneous Catalysts from Natural and Synthetic Materials for Biodiesel Production) อาจารย์ที่ปรึกษา: รศ. ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์, ผศ. ดร..ศิริพร จงผาติวุฒิ, รศ. ดร. ลอร์ร่า โรมิโร-ซีรอน และ ศ. ดร. แฟรงค์ ริชาร์ต สจ๊วต

งานวิจัยชิ้นนี้ ได้ทำการศึกษาเกี่ยวกับปฏิกิริยาทรานเอสเทอริฟิเคชัน ระหว่างน้ำมันพืช (กาโนลา) กับเมทานอล ด้วยตัวเร่งปฏิกิริยาแบบวิวิธพันธ์ชนิดต่าง ๆ โดยทำการศึกษาผลจากการ ใช้ตัวเร่งปฏิกิริยาชนิคต่าง ๆ, ปริมาณของตัวเร่งปฏิกิริยา, อุณหภูมิของปฏิกิริยา, และอัตราส่วน ระหว่างออกไซค์ของโลหะ กับวัสคุจากธรรมชาติ ซึ่งออกไซค์ของโลหะหมู่สอง และออกไซค์ของ สารประกอบเชิงซ้อนบางชนิดถูกนำมาใช้เป็นสารเร่งปฏิกิริยา ทั้งนี้วัสดุธรรมชาติที่นำมาใช้นั้น เตรียมมาจาก เปลือกหอย เปลือกป และเปลือกไข่ อุณหภูมิที่ใช้ในการทดลองแบ่งออกเป็นสาม ช่วงคือ 45, 55, และ 65 องศาเซลเซียส โดยระยะเวลาขอปฏิกิริยาได้ถูกแบ่งเป็นสองช่วงคือ 30 และ 60 นาที ทั้งนี้อัตราส่วนระหว่างเมทานอล และน้ำมันคาโนลา ได้ถูกกำหนดคงตัว ไว้ที่ 6 ต่อ 1 เช่นเดียวกับอัตราการกวนที่ 800 รอบต่อนาที ภายใต้บรรยากาศในโตรเจนที่ 15 ปอนค์ต่อตารางนิ้ว การคำนวณร้อยละผลได้ของปฏิกิริยา จากนิวเคลียร์แมกเนติกเร โซแนนซ์สเปค โทรมิเตอร์ ซึ่งจาก ้ผลการทคลองที่ได้ พบว่า สารเร่งปฏิกิริยาผสมที่ทำจาก ออกไซด์โลหะชนิดที่ 1 (M1O) กับเปลือก กุ้งชนิคที่ 1 (C1S) และออกไซค์โลหะชนิคที่ 1 (M1O) กับเปลือกกุ้งชนิคที่ 2 (C2S) สามารถเพิ่ม ้ร้อยละผลได้ของปฏิกริยาได้ เมื่อเทียบกับการใช้ M10 เป็นตัวเร่งปฏิกิริยาเพียงอย่างเดียว ที่ อุณหภูมิ 45 องศาเซลเซียส และ ระยะเวลาในการทำปฏิกิริยานานเท่ากับ 30 นาที นอกจากนี้เรายัง พบว่า สารเร่งปฏิกิริยาที่ผสมจาก ออกไซด์โลหะ กับสารประกอบการ์บอเนต ก็สามารถเพิ่มร้อยละ ผลได้ของไบโอดีเซลได้เช่นเดียวกัน

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals and organizations.

First of all, I would like to express my sincere thankfulness to my advisors, Assoc. Prof. Laura Romero-Zerón, Assoc. Prof. Thirasak Rirksomboon, Asst. Prof. Siriporn Jongpatiwut and Prof. Frank R. Steward, for their useful recommendation, invaluable guidance, creative comments, problems solving and encouragement throughout this thesis work.

I am grateful for the partially funded by the Chemical Engineering Department, University of New Brunswick and the New Brunswick Innovation Foundation through the Research Assistantship program as well as the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University.

I wish to thank Assoc. Prof. Pramoch Rangsunvigit, Assoc. Prof. Vissanu Meeyoo for being my thesis committee.

I am also thankful to Dr. Larry Calhoun from the Chemistry Department at the University of New Brunswick for his continuous advice and support on the use of ¹H-NMR spectroscopy for biodiesel yield determination as well as the other staffs at the Chemical Engineering Department, the University of New Brunswick for their advices and helpful.

Special gratitude is expressed to all of my friends and staffs at the Petroleum and Petrochemical College, for their assistance, support, and friendship.

Finally, my extreme appreciation is for my family who give me the ultimate support, endless encouragement, understanding, and unlimited love.

TABLE OF CONTENTS

÷

		PAGE
Title	Page	i
Abs	tract (in English)	iii
Abst	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	e of Contents	vi
List	of Tables	ix
List	of Figures	x
List	of Symbols	xv
СНАРТЕ	R	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
III	EXPERIMENTAL	22
	3.1 Materials	22
	3.2 Equipment	23
	3.3 Methodology	25
	3.3.1 Natural Materials Preparation Process	26
	3.3.2 Transesterification Reaction	27
	3.3.3 Biodiesel Separation	29
	3.3.4 Analysis of Biodiesel	29

ANALUATION	 31 31 32 33 35 35 35 37 39 40
Natural Materials as Heterogeneous Catalysts hetic Heterogeneous Catalysts Metal Oxide Catalysts Metal Carbonate as a Catalyst bination of Natural Materials and Metal Oxide Catalysts M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	 31 32 33 35 35 35 37 39 40
hetic Heterogeneous Catalysts Metal Oxide Catalysts Metal Carbonate as a Catalyst bination of Natural Materials and Metal Oxide Catalysts M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	 32 33 35 35 37 39 40
Metal Oxide Catalysts Metal Carbonate as a Catalyst bination of Natural Materials and Metal Oxide Catalysts M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	 33 35 35 37 39 40
Metal Carbonate as a Catalyst bination of Natural Materials and Metal Oxide Catalysts M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	 35 35 35 37 39 40
bination of Natural Materials and Metal Oxide Catalysts M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	 35 35 37 39 40
M1O and Crustacean Shell with Different Reaction Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	35373940
Times M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	35373940
M1O and Crustacean Shell with Different Reaction Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	37 39 40
Times The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	37 39 40
The Other Clustacean Shell used to Formulate Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	39 40
Catalyst Mixtures The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	39 40
The Animal Shell used to Formulate Catalyst Mixtures The Mollusk Shell used to Formulate Catalyst	40
Mixtures The Mollusk Shell used to Formulate Catalyst	40
The Mollusk Shell used to Formulate Catalyst	
-	
Mixtures	42
binations of Metal Oxides and Synthetic Heterogeneous	
ysts	43
M1O and Other Metal Oxides	43
M1O and Metal Carbonates	44
	M1O and Other Metal Oxides M1O and Metal Carbonates USIONS AND RECOMMENDATIONS

.

REFERENCES

50

PAGE

PAGE

CHAPTER

APPENDICES		53
Appendix A	Temperature Controller Calibration	53
Appendix B	Calibration of 1H-NMR for biodiesel yield	
	determination	57
Appendix C	Analytical Data for B100 Used for ¹ H-NMR	
	Analysis Calibration Obtained from the Third	
	Party Company	59

CURRICULUM VITAE

LIST OF TABLES

	*	
TABLE		PAGE
2.1	Chemical structure of common fatty acids	4
2.2	Composition of vegetable oil biodiesel obtained from	
	different sources	5
2.3	Properties of the vegetable oil	6
2.4	Methyl esters derived from fatty acid	8
4.1	Animal shells as catalysts for the transesterification of	
	canola oil	32
4.2	Metal oxides as catalysts for oil transesterification	33
4.3	Summary of biodiesel production yield obtained from	
	various mixtures at 45°C, and 30 minutes reaction time	46
B1	Actual compositions of biodiesel standard for yield	
	determination by ¹ H-NMR analysis calibration	57
B2	Percentage of biodiesel yield obtained from ¹ H-NMR	
	analysis	58

LIST OF FIGURES

•

FIGURE		PAGE
2.1	The chemical structure of triglyceride and the hydrolysis products.	3
2.2	The transesterification reaction. R_i is a mixture of various	
	fatty acid chains. The alcohol used for producing biodiesel is	
	usually methanol, thus R' is CH ₃ .	9
2.3	Homogeneous base-catalyzed reaction mechanism for the	
	transesterification of triglycerides.	10
2.4	(a) Reaction of the base catalyst with FFAs to produce soap	
	and water, both undesirable by-products. (b) Ester hydrolysis	
	due to reaction with water forming FFAs.	11
2.5	Transesterification mechanism of triglycerides and methanol	
	by using SrO as a catalyst.	14
2.6	The structure of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD).	16
2.7	Assignment of chemical shifts of protons in the	
	transesterification reaction.	19
2.8	¹ H-NMR spectrum of a progressing transesterification	
	reaction for (a) canola oil and (b) biodiesel.	20
3.1	Lab-Crest® Pressure Reaction Vessel.	23
3.2	Digi-Sense® Temperature Controller.	23
3.3	Heater Type I.	24
3.4	Heater Type II.	24
3.5	Magnetic Stirrer (Corning PC-410D).	24
3.6	Pressure Relief Valve, Swagelok.	24
3.7	Centrifuge, Centrific Model 228, Fisher Scientific.	25
3.8	NMR 300 Machine with Computer, Varian	25

xi

3.9	Flow diagram of the experimental steps.	26
3.10	¹ H-NMR spectrum for biodiesel.	30
4.1	Performance of M1O and combination of M1O and CS1 as catalysts at 45°C at a heating rate of 5°C.min ⁻¹ and 60 minutes reaction time. The triangle and cross symbols	
4.2	represent the biodiesel yield for M1O and mixtures of M1O with CS1 as catalysts respectively. Performance of M1O and combination of M1O and CS1 as catalysts at 45°C at a heating rate of 5°C.min ⁻¹ and 60 minutes reaction time. The triangle and cross symbols represent the biodiesel yield for M1O and mixtures of M1O	36
	with CS1 as catalysts respectively.	36
4.3	Performance of M1O and combination of M1O and CS1 as	

- 4.3 renomance of MTO and combination of MTO and CST as catalysts at 45°C at a heating rate of 5°C.min⁻¹. The square symbols and triangle symbols represent the biodiesel yield for M1O and mixtures of M1O with CS1 as catalysts respectively.
- 4.4 Performance of M1O and combination of M1O and CS1 as catalysts at 55°C at a heating rate of 5°C.min⁻¹. The square symbols and triangle symbols represent the biodiesel yield using M1O and mixtures of M1O and CS1 as catalysts respectively.
- 4.5 Performance of M1O and mixtures of M1O and CS1 as catalysts at 65°C at a heating rate of 5°C.min⁻¹. The square symbols and triangle represent the biodiesel yield of M1O and mixtures of M1O and CS1 as catalysts respectively.

37

.

38

- 4.6 Performance of M1O, mixtures of M1O and CS1, and mixtures of M1O and CS2 as catalysts at 45°C at a heating rate of 5°C.min⁻¹. The square symbols, triangle, and diamond symbols represent the biodiesel yield of M1O, mixtures of M1O and CS1, and mixtures of M1O and CS2 as catalysts respectively.
- 4.7 Performance of M1O and mixtures of M1O and AS1 as catalysts at 45°C at a heating rate of 5°C.min⁻¹. The square and cross symbols represent the biodiesel yield of M1O and mixtures of M1O and AS1 as catalysts respectively.
- 4.8 Performance of M1O, mixtures of M1O and MS1, and mixtures of M1O and MS2 as catalysts at 45°C at a heating rate of 5°C.min⁻¹. The square symbols, cross symbols, and triangle symbols represent the biodiesel yield of M1O, mixtures of M1O and MS1, and mixtures of M1O and MS2 as catalysts respectively.
- 4.9 Performance of M1O and combination of M1O and various metal oxides as catalysts at 45°C, 30 minutes reaction time and set up heating rate of 5°C.min⁻¹. The square, triangle and diamond symbols represent the biodiesel yield obtained using M1O, combinations of M1O and M3O, and combinations of M1O and M4O respectively.

PAGE

40

41

42

FIGURE

4.10	Performance of M1O and combinations of M1O and various	
	metal oxides as catalysts at 45°C, 30 minutes reaction time at	
	a heating rate of 5°C.min ⁻¹ . The square, triangle, diamond	
	and cross symbols represent the biodiesel yield obtained	
	using M1O, combinations of M1O and M1CA, combinations	
	of M1O and M3CA, and combinations of M1O and M6CA	
	respectively.	45
A1	Temperature profile obtained for heating tape I for a setting	
	temperature of 45°C. The square symbols represent the	
	actual temperature and cross symbols represent the set	
	temperature in the temperature controller.	53
A2	Temperature profile obtained for heating tape I for a setting	
	temperature of 55°C. The square symbols represent the	
	actual temperature and cross symbols represent the set	
	temperature in the temperature controller.	54
A3	Temperature profile obtained for heating tape I for a setting	
	temperature of 65°C. The square symbols represent the	
	actual temperature and cross symbol represent the set	
	temperature in the temperature controller.	54

.

PAGE

FIGURE

A4

A5

and Type II respectively.

and Type II respectively.

Comparison between type I and type II actual temperature profile for heating tape type I and type II at 45°C at the heating rate of 5°C.min⁻¹. The square symbols and diamond symbols represent the temperature profile of Heater Type I 55 Comparison between type I and type II actual temperature profile for heating tape type I and type II at 55°C and at a heating rate of 5°C.min⁻¹. The squares symbols and cross symbols represent the temperature profile of Heater Type I

Comparison between type I and type II actual temperature A6 profile for heating tape type I and type II at 65°C at a heating rate of 5°C.min⁻¹. The squares symbols and cross symbols represent the temperature profile of Heater Type I and Type II respectively. Biodiesel standard calibration curve obtained from ¹H-NMR B1

	analysis.	58
C1	Report of analysis for B100 from Interlek	59

56

LIST OF SYMBOLS

Proton-Nuclear Magnetic Resonance
Animal Shell
Free Fatty Acid
Crustacean Shell Type 1
Crustacean Shell Type 2
Mollusk Shell Type 1
Mollusk Shell Type 1
Carbonate of Metal 1
Carbonate of Metal 3
Carbonate of Metal 6
Oxide of Metal 1
Oxide of Metal 2
Oxide of Metal 3
Oxide of Metal 4
Oxide of Metal 5