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Appendix A Analysis Report Obtained from X-ray Fluorescence Spectrometer

Sample : Catalyst
Objective : To quantitate concentration of Al, Cu, and Zn
Analysis Method : Wavelength dispersive X-ray fluorescence spectrometry
Instrument : X-ray fluorescence spectrometer, Philips model PW 2400

Table Al The concentration of element in the fresh and spent Cu-ZnO/Al2Û3 
catalysts prepared by different methods

Sample
Concentration (พ1%)*

AI2O3 CuO ZnO
Fresh IWI 49.86 11.26 38.33
Fresh COP 50.22 12.29 37.25 -
Fresh SG 54.05 10.46 35.29
Spent IWI 50.38 11.16 37.15
Spent COP 51.86 11.34 35.95
Spent SG 57.40 6.58 35.44

* 1. Quantitation method used theoretical formulas, “fundamental parameter calculations”
2. The concentration o f elements is expressed as oxide equivalent
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Appendix B Copper Leaching Calculation from AAS Analysis 

Raw Data Obtained from Atomic Absorption Spectrophotometer

Method: Cu (Flame) 

Element-Matrix: Cu-
Instrument Type: Flame
Cone. Units: ppm
Instrument Mode: Absorbance
Sampling Mode: Manual
Calibration Mode: Concentration
Measurement Mode: Integrate
Replicates Standard: 3
Replicates Sample: 3

Expansion Factor: 1.0
Minimum Reading: Disabled
Smoothing: 7 point
Cone. Dec. Places: 3

Wavelength: 324.8 nm
Slit Width: 0.5 nm
Gain: 31 %
Lamp Current: 5.0 mA
Lamp Position: 6
Background
Correction: BC On

STANDARD 1: 1.000 ppm
STANDARD 2: 2.000 ppm
STANDARD 3: 3.000 ppm
Re slope Rate: 50
Re slope Standard No.: 2
Re slope Lower Limit: 75.0%:
Re slope Upper Limit: 125.0%
Re calibration Rate: 100
Calibration Algorithm: Linear Origin
Cal. Lower Limit: 20.0 %
Cal. Upper Limit: 150.0%
SIPS: Off

Measurement Time: 5.0 s ;
Pre-Read Delay: 5 ร
Flame Type: Air/Acetylene
Air Flow: 13.50 L/min
Acetylene Flow: 2.00 L/min
Burner Height: 13.5 mm

RSD Limit: 5.0%
RSD Test Min. Abs: 0.1000 Abs
Cor. Coeff. Limit: 0.9950
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Sample ID Cone, (ppm) %RSD Mean Abs.

CAL ZERO 0.000 >100 0.0000
Readings
0.0000 -0.0001 0.0000

STANDARD 1 1.000 0.4 0.1297
Readings
0.1302 0.1292 0.1296

STANDARD 2 2.000 0.6 0.2508
Readings
0.2511 0.2491 0.2521

STANDARD 3 3:000 0.3 0.3698
Readings
0.3701 0.3687 0.3705

Linear Origin-Cal. Set 1
Abs.

0.000 1.000 2.000 3.000
Cu (ppm)

QC Test: Correlation coefficient 0.9997 within 0.9950 limit 
Curve Fit = Linear Origin
Characteristic Cone. = 0.035 ppm

Calculated Cone. 
Residuals
Abs. = 0.12433 xC

= 0.9997 
= 0.000 
= 0.000

1.043
-0.043

2.017
-0.017

2.974
0.026
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Sample ID Cone, (ppm) %RSD Mean Abs.

Check Std. 2.031 0.3 0.2525
Readings
0.2531 0.2518 0.2528

Sample 2.240 0.4 0.2785
Readings
0.2795 0.2776 0.2785

Blank 0.005 11.1 0.0006
Readings
0.0005 0.0006 0.0006

Flow Chart to Prepare the Sample for AAS Analysis

Back Calculation

Concentration of Copper analyzed by AAS = Cu in sample -  Cu in blank
- = 2.240 -  0.005 ppm

= 2.235 ppm

Thus, concentration of copper in solution (C) is 2.235 ppm.
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From Ccv c = c bv b
Cc, c b concentration of copper in solution (C) and (B) 
v c,vb volume of solution (C) and (B)

cb = (2.235 ppm)(50 ml)/(l .0 ml)
= 111.75 ppm

Thus, concentration of copper in solution (B) is 111.75 ppm.

c bv b = c av a
concentration of copper in solution (B) and (A) 
volume of solution (B) and (A)

Ca = (111.75 ppm)(100 ml)/(l .0 ml)
= 11,175 ppm

Thus, concentration of copper in solution (A) is 11,175 ppm.

It’s mean, 1.0 ml of solution (A) contain copper 11,175 pg (0.011175 g)
10 ml of solution (A) contain copper 0.11175 g

Thus, 40 ml of liquid product contain copper 0.11175 g

At WHSV is 2.78 h'1 and 10.00 g Catalyst:
Glycerol feed rate is 23.077 ml/h
After 4 hours of reaction, total volume of product is about 92.308 ml 
Thus, 92.308 ml of liquid product contain copper 0.258 g

= (0.258 g)(100%)/( 10.00 g)
= 2.58 พt%

From
Cb, Ca
Vb,Va

Percentage of copper leaching
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Appendix c Flow Criteria Calculation

To obtain the same volume of all catalysts, the difference of dilution ratio is 
required and the co-precipitated catalyst was selected to test in this effect. The result 
shows that the catalytic activities for the co-precipitated Cu-ZnO/Al2Û3 catalyst with 
dilution ratio of 2.0 and 2.5 are not different, as shown in Figure Cl. It can imply that 
dilution ratio does not affect the activity of the catalyst. Therefore, the co- 
precipitated, impregnated and sol-gel catalysts could be diluted by different Sic 
ratios to obtain the same volume of all catalysts.

Time on stream (h) Time on stream (h)

Figure C l (a) Glycerol conversion and (b) selectivity to propylene glycol as a 
function of time on stream for the co-precipitated Cu-ZnO/Al203 at different dilution 
ratio: (♦ ) COP:SiC = 1:2.0 and (o) COP:SiC = 1:2.5. Reaction conditions: 250°C,
500 psig, H2:glycerol = 4:1, and WHSV = 2.78 h '1.

Moreover, flow criteria were tested to ensure the ideal behaviors in the reactor
before comparing the catalytic performance of catalysts. The flow criteria determined
in this study are summarized in Table Cl.
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Table C l Summary of flow criteria used in this study

Flow criteria IWI SG COP Criteria *
Peclet number 74 74 74 >50

L/D 1843 1843 1843 > 1243
1843 1843 1843 >695

Wall Effect 96.08 96.08 96.08 > 10.0
Wetting 8.47E-02 8.47E-02 8.47E-02 > 5.00E-06

Dilution effect 0.655 0.333 2 <4
* Handbook of Heterogeneous Catalysis: Laboratory Testing of Solid Catalysts

From the flow criteria, we can presume that axial and radial dispersion, 
wetting, wall effect, and dilution effect have no any influence on the catalytic 
activities of the catalysts.

Data

Reactor Liquid Feed
Outside diameter 1.905 cm Density 1.2 g/ml
Inside diameter 1.605 cm Viscosity 0.697742 cP
Wall thickness 0.150 cm Velocity 23.077 ml/h
Thermowell O.D. 0.3175 cm Velocity 0.00641 ml/s
Space from wall to wall 0.64375 cm

Assumption and Parameters
Reaction order 1 Conversion 0.998
Bodenstein number 0.04 £ 980 cm/s2
WHSV 2.78 h '1 Catalyst used 10.00 g



Criteria
Peclet Number:
From equation (2) (chapter II),

Pe > Qn In ( ~ ^)
Pe peclet number, ท reaction order, X conversion

Pe > 8 (1 ) In (—^ —)v '  vl-0 .9 9 8 '
Pe > 5 0

L/D:
From equation (3) (chapter II),

T- > l r ln(Ti:)d p  P&P 1 —x

Lb bed length, dp particle size (diluents), X conversion
Pep particle peclet number (also referred to as the Bodenstein number)

- ๒ >  m  เท( _ ! _ )
d p  (0.04) vl-0 .9 9 8 '

^  > 1243

From Chen’s equation (Mederos et al., 2009),
ÿ- >dp

V 2 O n  
Per, t o < £ ?

๒ >dp 0.04 H -0 .9 9 8 '

%  > 695

Our Case

Incipient Wetness
Catalyst amount 
Diluent size 
Total bed volume 
Bed length

Impregnation (IWI)
14.5 ml
0.0067 cm
24.0 ml 
12.345 cm

Diluent volume 
Dilution ratio 
Cross section area

9.5 ml 
0.655 
1.944 cm2
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Sol-gel (SG)
Catalyst amount 
Diluent size 
Total bed volume 
Bed length

18.0ml 
0.0067 cm 
24.0 ml 
12.345 cm

Diluent volume 
Dilution ratio 
Cross section area

Co-precipitation (COP)
Catalyst amount 8.0 ml
Diluent size 0.0067 cm
Total bed volume 24.0 ml
Bed length 12.345 cm

Diluent volume 
Dilution ratio 
Cross section area

Peclet Number:
From equation (1) (chapter II),

L/D:

Wall Effect:

Pe =

Pe = (12.345 cm )(0.04)
0.0067 c m

Pe = 74

Lb _  12.345 c m  
d p  0.0067 c m

J- = 1843

From equation (4) (chapter II),
^  > 1 0

d, space from wall to wall
d t  _  0.64375 c m  
d p  0.0067 c m

%  = 96-08

6.0 ml 
0.333 
1.944 cm2

16.0 ml
2.0
1.944 cm2
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Wetting:
From equation (5) (chapter II),

พ t r  = T 1 > 5 x  1(T6dpd
Ui liquid velocity, Vl kinematic viscosity

II (0.697742 cP )(0 .00641^)
(1.2^y)(0.0067 cm) 2 (9 8 0 ^ )

II£ 8.47 X 1(T2
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