REFERENCES

- Arena, B.J. (1992). Deactivation of ruthenium catalysts in continuous glucose hydrogenetion. <u>Applied Catalysis A: General</u>, 87(2), 219–229.
- Barroso, M.N., Gomez, M.F., Gamboa, J.A., Arrua, L.A., and Abello, M.C. (2006). Preparation and characterization of CuZnAl catalysts by citrate gel process. <u>Journal of Physics and Chemistry of Solids</u>, 67, 1583–1589.
- Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. <u>Applied Catalysis A:</u> <u>General</u>, 212(1–2), 3–16.
- Behr, A., Eilting, J., Irawadi, K., Leschinski, J., and Lindner, F. (2008). Improved utilisation of renewable resources: New important derivatives of glycerol. <u>Green</u> <u>Chemistry</u>, 10(1), 13–30.

• :

- Besson, M., and Gallezot, P. (2003). Deactivation of metal catalysts in liquid phase organic reactions. <u>Catalysis Today</u>, 81(4), 547–559.
- Chaminand, J., Djakovitch, L., Gallezot, P., Marion, P., Pinel C., and Rosier, C. (2004). Glycerol hydrogenolysis on heterogeneous catalyst. <u>Green Chemistry</u>, 6, 359– 361.
- Che, T.M. and Westfield, N.J. (1987). Production of propanediols. <u>United State Patent</u>, 4,642,394.
- Chirddilok, I. (2009). <u>Dehydroxylation of glycerol to propylene glycol over</u> <u>copper/zinc oxide-based catalysts: Effect of catalyst preparation</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University.
- Chiu, C. (2006). <u>Catalytic conversion of glycerol to proptlene glycol: Synthesis and technology assessment</u>. Ph.D. Thesis, The Faculty of the Graduate School, University of Missouri Columbia.
- Dasari, M.A. (2006). <u>Catalytic conversion of glycerol and sugar alcohols to value-</u> <u>added products</u>. Ph.D. Thesis, The Faculty of the Graduate School, University of Missouri Columbia.

- Dasari, M.A., Kiatsimkul, P., Sutterlin, W.R., and Suppes, G.J. (2005). Low-pressuse hydrogenolysis of glycerol to propylene glycol. <u>Applied Catalysis A: Genaral</u>, 281(1-2), 225–231.
- Dong-sheng, W., Yi-sheng, T., Yi-zhuo, H., and Noritatsu, T. (2008). Study on deactivation of hybrid catalyst for dimethyl ether synthesis in slurry reactor. Journal of Fuel Chemistry and Technology, 36(2), 171–175.
- Drent, E. and Jager, W.W. (2000). Hydrogenolysis of glycerol. <u>United State Patent</u>, 6,080,898.
- El-Shobaky, H.G., Mokhtar, M., and El-Shobaky, G.A. (1999). Physicochemical surface and catalytic properties of CuO–ZnO/Al₂O₃ system. <u>Applied Catalysis</u> A: Genaral, 180(1-2), 335–344.
- Ertl, G., Knözinger, H., and Weitkamp, J. (1999). <u>Preparation of Solid Catalysis</u>. Weinheim: Wiley-VCH.
- Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J. (2008). <u>Handbook of</u> <u>Heterogeneous Catalysis</u>. Weinheim: Wiley-VCH.
- Feng, J., Fu, H., Wang, J., Li, R., Chen, H., and Li, X. (2008). Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature. <u>Catalysis Communications</u>, 9(6), 1458–1464.
- Gonzalez, R.D., Lopez, T., and Gomez, R. (1997). Sol-Gel preparation of supported metal catalysts. <u>Catalysis Today</u>, 35, 293–317.
- Heck, R.M., and Farrauto, R.J. (2001). Automobile exhaust catalysts. <u>Applied Catalysis</u> <u>A: Genaral</u>, 221(1–2), 443–457.
- Kenar, J.A. (2007). Glycerol as a platform chemical: Sweet opportunities on the horizon?. <u>Lipid Technology</u>, 19(11), 249–253.
- Kim, D.H., Woo, S.I., and Yang, O.B. (2000). Effect of pH in a sol-gel synthesis on the physicochemical properties of Pd-alumina three-way catalyst. <u>Applied</u> <u>Catalysis B: Environmental</u>, 26, 285–289.

- Kusunoki, Y., Miyazawa, T., Kunimori K., and Tomishige, K. (2005). Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. <u>Catalysis Communications</u>, 6(10), 645–649.
- Mallat, T., Bodnar, Z., Hug, P., and Baiker, A. (1995). Selective oxidation of cinnamyl alcohol to cinnamaldehyde with air over Bi-Pt/Alumina catalysts. Journal of <u>catalysis</u>, 153(1), 131–143.
- Marchi, J.A., Gordo, D.A., Trasarti, A.F., and Apesteguia, C.R. (2003). Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts. <u>Applied Catalysis A:</u> <u>General</u>, 249(1), 53–67.
- Mederos, F.S., Ancheyta, J., and Chen, J. (2009). Review on criteria to ensure ideal behaviors in trickle-bed reactors. <u>Applied Catalysis A: General</u>, 355,1–19.
- Miyazawa, T., Koso, S., Kunimori K., and Tomishige, K. (2007). Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. <u>Applied Catalysis A: General</u>, 329(1), 30–35.
- Miyazawa, T., Kusunoki, Y., Kunimori, K., and Tomishige, K. (2006). Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. Journal of Catalysis, 240(2), 213–221.
- Montassier, C., Dumas, J. M., Granger, P., Barbier, J. (1995). <u>Deactivation of supported</u> <u>copper based catalysts during polyol conversion in aqueous phase</u>. <u>Applied</u> <u>Catalysis A: General</u>, 121(2), 231–244.
- Montassier, C., Giraud, D., and Barbier, J. (1988). Polyol conversion by liquid phase heterogeneous catalysis over metals. <u>Studies in Surface Science and Catalysis</u>, 41, 165–170.
- Montassier, C., Me'ne'zo, J.C., Hoang, L.C., Renaud, J., and Barbier, J. (1991). Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. Journal of Molecular Catalysis, 70(1), 99–110.
- Moulijin J.A., Diepen, A.E., and Kapteijn, F. (2001). Catalyst deactivation: is it predictable? What to do?. <u>Applied Catalysis A: General</u>, 212(1–2), 3–16.

- Pakhomov, N.A., and Buyanov, R.A. (2005). Current trends in the improvement and development of catalyst preparation methods. <u>Kinetics and Catalysis</u>, 46(5), 669–683.
- Schlaf, M., Ghosh, P., Fagan, P. J., Hauptman, E., and Bullock, R.M. (2001). Metal-catalyzed selective deoxygenation of diols to alcohols. <u>Angewandte</u> <u>Chemie International Edition</u>, 40, 3887–3890.
- Schüth, F., and Unger, K. (1997). <u>Preparation and Coprecipitation. Handbook of</u> <u>Heterogeneous Catalysis</u>. New York: Wiley-VCH.
- Sitthisa, S. (2007). <u>Dehydroxylation of glycerol for propanediols production</u>. M.S. Thesis, The Petroleum and Petrochemaical College, Chulalongkorn University.
- Swangkotchakorn, C. (2008). <u>Dehydroxylation of glycerol for propanediols</u> <u>production: Catalytic activity and stability Testing</u>. M.S. Thesis, The Petroleum and Petrochemical College, Chulalongkorn University.
- Takeishi, K. and Yamamoto, K. (2007). Dimethyl ether steam reforming catalyst and method for producing the same. <u>United State Patent</u>, 7,241,718.
- Tan, Y., Xie, H., Cui, H., Han Y., and Zhong, B. (2005). Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase. <u>Catalysis Today</u>, 104, 25–29.
- Tanaka, Y., Utaka, T., Kikuchi, R., Sasaki, K., Egichi, K. (2003). CO removal from reformed fuel over Cu/ZnO/Al₂O₃ catalysts prepared by impregnation and coprecipitation methods. <u>Applied Catalysis A: General</u>, 238(1), 11–18.
- Trimm, D.L. (2001). The regeneration or disposal of deactivated heterogeous catalysts. Applied Catalysis A: General, 212(1–2), 153–160.
- Twigg, M.V. and Spencer, M. S. (2001). Deactivation of supported copper metal catalysts for hydrogenation reactions. <u>Applied Catalysis A: General</u>, 212(1–2), 161–174.
- Wang, Q., Wang, L., Chen, J., Wu, Y., and Mi, Z. (2007). Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene. <u>Journal</u> <u>of Molecular Catalysis A: Chemical</u>, 273(1–2), 73–80.

- Wang, S. and Liu, H. (2007). Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. <u>Catalysis Letters</u>, 117(1–2), 62–67.
- Yang, R., Yu, X., Zhang, Y., Li, W., and Tsubaki, N. (2008). A new method of lowtemperature methanol synthesis on Cu/ZnO/Al₂O₃ catalysts from CO/CO₂/H₂. <u>Fuel</u>, 87(4–5), 443–450.
- Yue, Z., Guo, W., Zhou, J., Gui, Z., and Li, L. (2004). Synthesis of nanocrystilline ferrites by sol-gel combustion process: the influence of pH value of solution. <u>Journal of Magnetism and Magnetic Materials</u>, 270, 216–223.
- Zhang, L., Wang, X., Tan, B., and Ozkan, U.S. (2009). Effect of preparation method on structural characteristics and propane steam reforming performance of Ni–Al₂O₃ catalysts. Journal of Molecular Catalysis A: Chemical, 297, 26–34.
- Zhou, C., Beltramini, J.N., Fana, Y., and Lu., G.Q. (2008). Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. <u>Chemical Society Reviews</u>, 37, 527–549.
- Zhu, X.D., and Hofmann, H. (1996). Deactivation of Ni/SiO₂/Al₂O₃-catalyst in hydrogenation of 3-hydroxypropanal solution. <u>Applied Catalysis A: General</u>, 155(2), 179–194.

Appendix A Analysis Report Obtained from X-ray Fluorescence Spectrometer

Sample :	Catalyst
Objective :	To quantitate concentration of Al, Cu, and Zn
Analysis Method :	Wavelength dispersive X-ray fluorescence spectrometry
Instrument :	X-ray fluorescence spectrometer, Philips model PW 2400

Table A1 The concentration of element in the fresh and spent $Cu-ZnO/Al_2O_3$ catalysts prepared by different methods

	C		
Sample	Al ₂ O ₃	CuO	ZnO
Fresh IWI	49.86	11.26	38.33
Fresh COP	50.22	12.29	37.25
Fresh SG	54.05	10.46	35.29
Spent IWI	50.38	11.16	37.15
Spent COP	51.86	11.34	35.95
Spent SG	57.40	6.58	35.44

* 1. Quantitation method used theoretical formulas, "fundamental parameter calculations"

2. The concentration of elements is expressed as oxide equivalent

Appendix B Copper Leaching Calculation from AAS Analysis

Raw Data Obtained from Atomic Absorption Spectrophotometer

Method: Cu (Flame)		STANDARD 1:	1.000 ppm
		STANDARD 2:	2.000 ppm
Element-Matrix:	Cu-	STANDARD 3:	3.000 ppm
Instrument Type:	Flame	Re slope Rate:	50
Conc. Units:	ppm	Re slope Standard No.:	2
Instrument Mode:	Absorbance	Re slope Lower Limit:	75.0 %
Sampling Mode:	Manual	Re slope Upper Limit:	125.0 %
Calibration Mode:	Concentration	Re calibration Rate:	100
Measurement Mode:	Integrate	Calibration Algorithm:	Linear Origin
Replicates Standard:	3	Cal. Lower Limit:	20.0 %
Replicates Sample:	3	Cal. Upper Limit:	150.0 %
2.5		SIPS:	Off
Expansion Factor:	1.0		
Minimum Reading:	Disabled	Measurement Time:	5.0 s
Smoothing:	7 point	Pre-Read Delay:	5 s
Conc. Dec. Places:	3	Flame Type:	Air/Acetylene
		Air Flow:	13.50 L/min
Wavelength:	324.8 nm	Acetylene Flow:	2.00 L/min
Slit Width:	0.5 nm	Burner Height:	13.5 mm
Gain:	31 %		
Lamp Current:	5.0 mA	RSD Limit:	5.0 %
Lamp Position:	6	RSD Test Min. Abs:	0.1000 Abs
Background		Cor. Coeff. Limit:	0.9950
Correction:	BC On		

Sample ID	Conc. (ppm)	%RSD	Mean Abs.
CAL ZERO	0.000	>100	0.0000
	Readings		
	0.0000	-0.0001	0.0000
STANDARD 1	1.000	0.4	0.1297
	Readings		
	0.1302	0.1292	0.1296
STANDARD 2	2.000	0.6	0.2508
	Readings		
	0.2511	0.2491	0.2521
STANDARD 3	3.000	0.3	0.3698
	Readings		
	0.3701	0.3687	0.3705

Linear Origin-Cal. Set 1

QC Test: Correlation coefficient 0.9997 within 0.9950 limit

Curve Fit	= Linear O	rigin		
Characteristic Conc.	= 0.035 pp	m .		
r	= 0.9997			
Calculated Conc.	= 0.000	1.043	2.017	2.974
Residuals	= 0.000	-0.043	-0.017	0.026
Abs. $= 0.12433 \text{ x C}$				

Conc. (ppm)	%RSD	Mean Abs.
2.031	0.3	0.2525
Readings		
0.2531	0.2518	0.2528
2.240	0.4	0.2785
Readings		
0.2795	0.2776	0.2785
0.005	11.1	0.0006
Readings		
0.0005	0.0006	0.0006
	Conc. (ppm) 2.031 Readings 0.2531 2.240 Readings 0.2795 0.005 Readings 0.0005	Conc. (ppm) %RSD 2.031 0.3 Readings 0.2531 0.2518 2.240 0.4 Readings 0.2795 0.2776 0.005 11.1 Readings 0.0005 0.0006

Flow Chart to Prepare the Sample for AAS Analysis

Back Calculation

Concentration of Copper analyzed by AAS	=	Cu in sample – Cu	in blank
	. =	2.240 - 0.005	ppm
	=	2.235	ppm

Thus, concentration of copper in solution (C) is 2.235 ppm.

73

From

 $C_{c}V_{c} = C_{b}V_{b}$ $C_{c}, C_{b} \quad \text{concentration of copper in solution (C) and (B)}$ $V_{c}, V_{b} \quad \text{volume of solution (C) and (B)}$ $C_{b} = (2.235 \text{ ppm})(50 \text{ ml})/(1.0 \text{ ml})$ = 111.75 ppm

Thus, concentration of copper in solution (B) is 111.75 ppm.

From

 $C_b V_b = C_a V_a$ $C_b, C_a \quad \text{concentration of copper in solution (B) and (A)}$ $V_b, V_a \quad \text{volume of solution (B) and (A)}$ $C_a = (111.75 \text{ ppm})(100 \text{ ml})/(1.0 \text{ ml})$ = 11,175 ppm

Thus, concentration of copper in solution (A) is 11,175 ppm.

It's mean,	1.0 ml of solution (A) contain copper	11,175 µg (0.011175 g)
	10 ml of solution (A) contain copper	0.11175 g

Thus, 40 ml of liquid product contain copper 0.11175 g

At WHSV is 2.78 h⁻¹ and 10.00 g Catalyst: Glycerol feed rate is 23.077 ml/h After 4 hours of reaction, total volume of product is about 92.308 ml Thus, 92.308 ml of liquid product contain copper 0.258 g

Percentage of copper leaching = (0.258 g)(100%)/(10.00 g)= 2.58 wt%

Appendix C Flow Criteria Calculation

To obtain the same volume of all catalysts, the difference of dilution ratio is required and the co-precipitated catalyst was selected to test in this effect. The result shows that the catalytic activities for the co-precipitated Cu-ZnO/Al₂O₃ catalyst with dilution ratio of 2.0 and 2.5 are not different, as shown in Figure C1. It can imply that dilution ratio does not affect the activity of the catalyst. Therefore, the co-precipitated, impregnated and sol-gel catalysts could be diluted by different SiC ratios to obtain the same volume of all catalysts.

Figure C1 (a) Glycerol conversion and (b) selectivity to propylene glycol as a function of time on stream for the co-precipitated Cu-ZnO/Al₂O₃ at different dilution ratio: (\blacklozenge) COP:SiC = 1:2.0 and (\circ) COP:SiC = 1:2.5. Reaction conditions: 250°C, 500 psig, H₂:glycerol = 4:1, and WHSV = 2.78 h⁻¹.

Moreover, flow criteria were tested to ensure the ideal behaviors in the reactor before comparing the catalytic performance of catalysts. The flow criteria determined in this study are summarized in Table C1.

Flow criteria	IWI	SG	СОР	Criteria *
Peclet number	74	74	74	> 50
L/D	1843	1843	1843	> 1243
	1843	1843	1843	> 695
Wall Effect	96.08	96.08	96.08	> 10.0
Wetting	8.47E-02	8.47E-02	8.47E-02	> 5.00E-06
Dilution effect	0.655	0.333	2	< 4

* Handbook of Heterogeneous Catalysis: Laboratory Testing of Solid Catalysts

From the flow criteria, we can presume that axial and radial dispersion, wetting, wall effect, and dilution effect have no any influence on the catalytic activities of the catalysts.

Data

Reactor		Liquid Feed	
Outside diameter	1.905 cm	Density	1.2 g/ml
Inside diameter	1.605 cm	Viscosity	0.697742 cP
Wall thickness	0.150 cm	Velocity	23.077 ml/h
Thermowell O.D.	0.3175 cm	Velocity	0.00641 ml/s
Space from wall to wall	0.64375 cm		

Assumption and Parameters

Reaction order	1	Conversion	0.998
Bodenstein number	0.04	g	980 cm/s^2
WHSV	2.78 h ⁻¹	Catalyst used	10.00 g

Criteria

Peclet Number:

From equation (2) (chapter II),

$$Pe > 8n \ln\left(\frac{1}{1-x}\right)$$

Pe peclet number, n reaction order, x conversion

$$Pe > 8(1) \ln \left(\frac{1}{1-0.998}\right)$$

 $Pe > 50$

L/D:

From equation (3) (chapter II),

$$\frac{L_b}{d_p} > \frac{8n}{Pe_p} \ln(\frac{1}{1-x})$$

 L_b bed length, d_p particle size (diluents), x conversion Pe_p particle peclet number (also referred to as the Bodenstein number)

$$\frac{L_b}{d_p} > \frac{8(1)}{(0.04)} \ln(\frac{1}{1-0.998})$$
$$\frac{L_b}{d_p} > 1243$$

From Chen's equation (Mederos et al., 2009),

$$\frac{L_b}{d_p} > \frac{\sqrt{20}n}{Pe_p} \ln(\frac{1}{1-x})$$
$$\frac{L_b}{d_p} > \frac{\sqrt{20}(1)}{0.04} \ln(\frac{1}{1-0.998})$$
$$\frac{L_b}{d_p} > 695$$

Our Case

Incipient Wetness Impregnation (IWI)

14.5 ml	Diluent volume	9.5 ml
0.0067 cm	Dilution ratio	0.655
24.0 ml	Cross section area	1.944 cm^2
12.345 cm		
	14.5 ml 0.0067 cm 24.0 ml 12.345 cm	14.5 mlDiluent volume0.0067 cmDilution ratio24.0 mlCross section area12.345 cm

Sol-gel (SG)

Catalyst amount	18.0ml	Diluent volume	6.0 ml
Diluent size	0.0067 cm	Dilution ratio	0.333
Total bed volume	24.0 ml	Cross section area	1.944 cm^2
Bed length	12.345 cm		

Co-precipitation (COP)

Catalyst amount	8.0 ml	Diluent volume	16.0 ml
Diluent size	0.0067 cm	Dilution ratio	2.0
Total bed volume	24.0 ml	Cross section area	1.944 cm^2
Bed length	12.345 cm		

Peclet Number:

From equation (1) (chapter II),

$$Pe = \frac{L_b}{d_p} Pe_p$$

$$Pe = \frac{(12.345 \text{ cm})(0.04)}{0.0067 \text{ cm}}$$

$$Pe = 74$$

L/D:

$$\frac{L_b}{d_p} = \frac{12.345 \text{ cm}}{0.0067 \text{ cm}}$$
$$\frac{L_b}{d_p} = 1843$$

Wall Effect:

From equation (4) (chapter II),

$$\frac{d_t}{d_p} > 10$$

 d_t space from wall to wall

$$\frac{d_t}{d_p} = \frac{0.64375 \ cm}{0.0067 \ cm}$$
$$\frac{d_t}{d_p} = 96.08$$

Wetting:

From equation (5) (chapter II),

 u_l liquid velocity,

$$W_{tr} = \frac{v_l u_l}{d_p^2 g} > 5 \times 10^{-6}$$

 v_l kinematic viscosity
 $W_{tr} = \frac{(0.697742 \ cP)(0.00641 \frac{ml}{s})}{(1.2 \frac{g}{ml})(0.0067 \ cm)^2(980 \frac{cm}{s^2})}$
 $W_{tr} = 8.47 \times 10^{-2}$

CURRICULUM VITAE

Name: Mr. Suchart Panyad

Date of Birth: March 15, 1985

Nationality: Thai

University Education:

2004-2008 Bachelor Degree of Engineering in Petrochemicals and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon pathom, Thailand

Presentations:

 Panyad, S., Jongpatiwut, S., Rirksomboon, T., Sreethawong, T., and Osuwan, S. (2010, April 22) Dehydroxylation of Glycerol to Propylene Glycol over Copper/Zinc Oxide-based Catalysts: Effects of Catalyst Preparation and Regeneration. Poster presented at The 1st National Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 16th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.

