INCREASING RATE OF HYDROGEN PERMEATION THROUGH PIPES AND VESSEL WALLS

Supawadee Ratanaphand

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2010

530050

Thesis Title:	Increasing Rate of Hydrogen Permeation through Pipes and
	Vessel Walls
By:	Supawadee Ratanaphand
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Frank R. Steward
	Andrew Justason
	Kelly Mckeen
	Assoc. Prof. Thirasak Rirksomboon

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

and R.

(Prof. Frank R. Steward)

(Andrew Justason)

hula

(Assoc. Prof. Anuvat Sirivat)

(Assoc. Prof. Thirasak Rirksomboon)

Hellef Mi

(Kelly Mckeen)

Oraver Silpsriten

(Dr. Orawee Silpsrikul)

บทคัดย่อ

สุภาวดี รัตนพันธ์: ชื่อหัวข้อวิทยานิพนธ์ การเร่งอัตราการแพร่ของไฮโดรเจนผ่านท่อ และผนังภาชนะโลหะ (Increasing Rate of Hydrogen Permeation Through Pipes and Vessel Walls) อ. ที่ปรึกษา : รศ.ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์, ศ.ดร. แฟร้งค์ อาร์ สจ๊วต, แอนดรู งัสต์อะซัน และ เกลลี่ แมกคืน, 96 หน้า

ไฮโครเจนสามารถแพร่เข้าสู่เนื้อโลหะในรูปของไฮโครเจนอะตอมซึ่งไฮโครเจนมาจาก กระบวนการกัดกร่อนหรือไฮโครเจนจากกระบวนการผลิตในอุตสาหกรรม อะตอมไฮโครเจน แพร่เข้าสู่โลหะได้เนื่องจากมีขนาดเล็ก เมื่อแพร่แล้วรวมตัวกันเป็นก็าซไฮโครเจนจึงมีแรงคันสูงจึง ลดความแขึ่งแรงของโลหะลงสามารถทำให้เกิดการแตกร้าวจากโฮโครเจน(Hydrogen Embrittlement) ดังนั้นจำเป็นต้องเพิ่มอัตราการแพร่ของไฮโครเจนในเนื้อโลหะเพื่อป้องการ เสื่อมสภาพของโลหะ งานวิจัยนี้ศึกษาการแพร่ของไฮโครเจนในเนื้อโลหะเพื่อป้องการ เสื่อมสภาพของโลหะ งานวิจัยนี้ศึกษาการแพร่ของไฮโครเจนในเนื้อโลหะเพื่อป้องการ เสื่อมสภาพของโลหะ งานวิจัยนี้ศึกษาการแพร่ของไฮโครเจนผ่านเหล็กกล้าและแฮสเทลลอยด์ซึ่ง เป็นโลหะที่ใช้อย่างแพร่หลายในอุตสาหกรรม งานวิจัยทำการศึกษาปัจจัยของอุณหภูมิและ อุณหภูมิต่ำที่สุดที่ไฮโดนเจนสามารถแพร่ผ่านได้โดยศึกษาผลกระทบของฟิล์มออกไซด์ซึ่งเกิดที่ ผิวด้านนอกของโลหะและประพฤติตัวเป็นฟิล์มด้านทานการแพร่ ฟิล์มนี้มีผลมากต่อเหล็กกล้า แต่ เกือบไม่มีผลต่อแฮสเทลลอยค์ นอกจากนั้นได้ศึกษาผลกระทบของการเคลือบตัวเร่งปฏิกิริยาพัลเล เดียม (Pd) ที่ผิวนอกของท่อโลหะเช่นกัน โดยเปรียบเทียบอัตราการแพร่ของท่อที่เคลือบตัวเร่ง ปฏิกิริยาและท่อที่ไม่ได้เกลือบตัวเร่งปฏิกิริยา ผลการวิจัยพบว่าตัวเร่งปฏิกิริยาสามารถเร่งอัตราการ แพร่ของไฮโครเจนอย่างชัดเจนกับเหล็กกล้า แต่ไม่สามารถเร่งอัตราการแพร่ของไฮโครเจนผ่าน แฮสเทลลอยด์

.

2e - 1

ABSTRACT

.

5171025063: Petrochemical Technology Program
Supawadee Ratanaphand: Increasing Rate of Hydrogen Permeation through Pipes and Vessel Walls
Thesis Advisors: Prof. Frank R. Steward, Andrew Justason, Kelly
McKeen, and Assoc. Prof. Thirasak Rirksomboon, 96 pp.

Keywords: Hydrogen permeation/ Oxide films/ Palladium/ Hydrogen embrittlement / Carbon Steel/Hastelloy

Hydrogen can enter in a metal during corrosion processes or other industrial processes. Atomic hydrogen can diffuse through the metallic lattice because of its small size. Its interaction can result in various types of embrittlement. Therefore, efficient hydrogen removal is desirable. In this work, hydrogen permeation was studied in carbon steel A-179 and Hastelloy C-276, which are commonly used as structural material for equipment in industry. Diffusion of hydrogen was measured using gas phase permeation techniques. The effect of temperature on hydrogen transport has been investigated. The minimum temperature ranges that hydrogen can diffuse through these two metals were determined. It was found that the lowest temperature of hydrogen permeation through carbon steel is in the range of $90 \le T \le$ 150°C and 200 \leq T \leq 250°C for hastelloy. Passive oxide films were allowed to form on the outside surface of tube used in the tests. In the permeation mechanism, the iron oxide films behave as a barrier to hydrogen transport. The effect of a catalyst covering the outside surface was studied. The metal was coated with palladium to compare the diffusion rate with and without the presence of palladium on the outside tube surface. A palladium coating on the external surface of carbon steel gives a higher hydrogen permeation rate whereas there is no noticeable effect on hydrogen permeation rate through hastelloy.

ACKNOWLEDGEMENTS

My master thesis could not be accomplished without the support of several distinguished people. First, I would like to thank my extraordinary advisor, Dr. Frank R. Steward for giving me an opportunity to work under his direct supervision, finding time for the endless hours of discussion, answering all my questions and encouraging me throughout my stay in Canada.

I would like to thank Center for Nuclear Energy Research (CNER) especially the chemical team: Andy Justason, Kelly McKeen, BK Gray, Chester Morris, Steven Nancekivell and Chutima Kongvarhodom for helping me with my experiment, solving all technical problems, discussing a bunch of my results and coaching me in every way. Without them, my thesis would not have been possible. In addition, many thanks go to Dr. Derek H. Lister, who always gave valueable suggestions. I would also like to acknowledge and thank Dr. Suporn Boonsue who analyzed my samples, gave me a helpful advice and thoughtful discussion.

My appriciation goes to my friends in Fredericton, especially the Hickey family, Kittima Khumsa-ang, Piti Srisukvatananan and his wife and all thai students, who always give me the love, support and endless care.

In Thailand, I would like to express my gratitude to Dr. Thirasak Rirksomboon who served as my Thai advisor. I want to thank all the lecturers and my fellow classmates in the Petroleum and Petrochemical College (PPC), especailly Angkana Luttikul, who came with me at Fredericton and became my roommate, for sharing enjoyments of overseas life. Moreover, I want to thank the Petroleum and Petrochemical College and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

Finally, I want to give my personal thank you to my family for their unconditional support and understanding and to all the others who provided advice and encouragement over the two year of my master at PPC.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abst	ract (in English)	iii
	Abst	ract (in Thai)	iv
	Ack	nowledgements	v
	Tabl	e of Contents	vi
	List	of Tables	Х
	List	of Figures	xi
СНАРТІ	ER	**	
Ι	INT	RODUCTION	1
II	TH	EORY AND LITERATURE REVIEW	2
	2.1	Hydrogen Damage	5
		2.1.1 Hydrogen-Induced Blistering	5
		2.1.2 Cracking From Precipitation of Internal Hydrogen	6
		2.1.3 Cracking from Hydride Formation	6
		2.1.4 Hydrogen Attack	7
		2.1.5 Hydrogen Embrittlement	7
	2.2	Hydrogen Removal Methods	8
	2.3	Permeation of Hydrogen and Fundamental Law of Diffusion	9
		2.3.1 Steady State Behavior	12
		2.3.1.1 Planar Membrane	14
		2.3.1.2 Hallow Cylindrical Membrane	16

vi

CHAPTER

PAGE

		2.3.2 Time Dependent Behavior		17
		2.3.2.1 Planar Membrane		17
		2.3.2.2 Hallow Cylindrical Membrane		18
	2.4	Kinetics of Hydrogen Absorption and Desorption		19
	2.5	Hydrogen Permeation in Various metals and alloys		20
		2.5.1 Iron		23
		2.5.2 Carbon Steel		24
		2.5.3 Stainless Steel		26
		2.5.4 Monel	* * *	27
		2.5.5 Palladium	4	27
		2.5.6 Platinum	-	29
		2.5.7 Copper		30
	2.6	Oxide Formation and Hydrogen Evolution		31
		2.6.1 Reduction Iron Oxide by Hydrogen gas		34
III	EXI	PERIMENTAL		37
	3.1	Procedure for Hydrogen Permeation through Metal	Tube	
		Membrane Testing		37
		3.1.1 Material Required		38
		3.1.2 Test Specimen		38
		3.1.3 Steps for oxide film removal inside the tube		39
		3.1.4 Steps for measuring hydrogen permeation		40
	3.2	Procedure for Electroless Palladium Plating on Stee	l Tube	40

.

CHAPTER	ł		PAGE
		3.2.1 Material and Reagents Required	41
		3.2.2 Solution preparation	42
		3.2.3 Steps for Palladium Plating	42
	3.3	Test Matrix	43
IV	RES	SULTS AND DISCUSSION	45
	4.1	Hydrogen Permeation through Carbon Steel	47
		4.1.1 Minimum Temperature Limit	47
		4.1.2 Hydrogen Diffusion through passive oxide layer	48
		4.1.3 Hydrogen Diffusion through Palladium coated layer	51
		4.1.4 Surface Characterizations	54
	4.2	Hydrogen Permeation through Hastelloy	62
		4.2.1 Minimum Temperature Limit	62
		4.2.2 Hydrogen Diffusion through passive oxide layer	62
		4.2.3 Hydrogen Diffusion through Palladium	
		coated Hastelloy	63
		4.2.4 Surface Characterizations of Palladium on	
		the Hastelloy tube	65
	4.3	Oxide Removal by Hydrogen Purging Method	73
V	CO	NCLUSIONS	75
	5.1	Conclusions	75
	5.2	Recommendations	75

CHAPTER

PAGE

77

96

REFERENCES

.

APPENDICES

Chemical Composition Of Materials	82
Hydrogen Permeation Data	83
Flux Calculation Procedure	85
Solubility Conversion	86
Apparent Diffusivity Calculation	88
Overall Resistance Calculation Procedure	92
Equilibrium Constant Calculation Procedure	93
Structure of Carbon Steel and Hastelloy	95
	Chemical Composition Of Materials Hydrogen Permeation Data Flux Calculation Procedure Solubility Conversion Apparent Diffusivity Calculation Overall Resistance Calculation Procedure Equilibrium Constant Calculation Procedure Structure of Carbon Steel and Hastelloy

CURRICULUM VITAE

· LIST OF TABLES

TABLE		PAGE
2.1	Classifications of processes of hydrogen degradation of metals	8
2.2	Roots of $\int 0(a\alpha n)Y0(b\alpha n) - \int 0(b\alpha n)Y0a\alpha n$	19
2.3	Interstitial sites occupied by hydrogen in different metals	
	(Store, 2006)	23
2.4	Hydrogen diffusivity through carbon steel	25
2.5	Suggested mathematical modeling of reaction kinetics	
	(Pineau, Kanari <i>et al.</i> , 2007)	36
3.1	Activation Solutions	42
3.2	Plating Solutions	42
3.3	Test Matrix	44
4.1	Summary of tests performed	46
4.2	Summary of MTL tests performed	48
4.3	Summary of experimental data and constant value calculation	50
4.4	Summary of experimental data and constant value calculation	54
4.5	Summary of experimental data and constant value calculation	63
4.6	Summary of experimental data for Hastelloy	65
4.7	Comparison of permeation performance reported in literature	72
4.8	Summary of experimental data and constant value calculation	74
A.I	The weight percentage chemical composition of carbon steel	
	and Hastelloy	82
B.1	Hydrogen permeation data of all test performed	83
B.2	Calculation Results	84
D.1	Elemental Composition of Carbon Steel 1095 and A-179	86
G.1	Thermodynamics properties	93

LIST OF FIGURES

FIGURE		PAGE
2.1	The Nelson Curve with steels in high temperature	
	hydrogen service. (API, 2004)	3
2.2	High pressure steam pipe containing blow out	
	window fracture. (Antonio, 1993)	4
2.3	Hydrogen-induced cracking in 9Cr-1Mo steel due to	
	repair welding without PWHT. (Parvathavarthini, 1995)	4
2.4	Pipeline rupture caused by hydrogen embrittlement	
	.(http://www.ntsb.gov)	4
2.5	Seven steps of hydrogen permeation (Stone, 1981).	10
2.6	Potential energy curves for molecular and atom of hydrogen	
	on metal surface. Edis-energy of molecular dissociation, Ep-	
	heat of physisorption, Ec-heat of chemisorptions, Ea-activation	
	energy for bulk uptake, Ed-diffusion activation energy,	
	<i>Hs</i> -heat of solution (Liu and Shi, 2004).	12
2.7	Schematic representation of diffusion in hollow cylinder	
	(Huang and Yen, 2002).	17
2.8	Schematic of possible reaction steps of external molecular	
	hydrogen environment (Nelson, 1983).	21
2.9	Schematic view of destination for hydrogen in a metal	
	microstructure (a) Solid Solution; (b) Solute-hydrogen pair;	
	(c) dislocation atmosphere; (d) grain boundary accumulation;	
	(e) particle-matrix interface accumulation; (f) void containing	
	recombined hydrogen (Thompson and Bernstein, 1980).	22
2.10	Octahedral interstitial sites of face centered cubic (a) and body	
	centered cubic (b) (Store, 2006).	22

xii

FIGURE

.

PAGE

2.11	Hydrogen flux- hydrogen pressure dependency at different	
	temperatures for carbon steels (Store, 2006).	25
2.12	Diffusion coefficient of hydrogen in palladium	
	(Alefeld and Volk, 1978).	28
2.13	Schematic comparison of solubility of hydrogen in Group 8	
	metals at a pressure of 1 atm. Hydrogen as a function of	
	temperature (Lewis, Kandasamy <i>et al.</i> , 1967).	30
2.14	Sketch of the hydrogen concentration profile in the	
	metal phase (Bruzzoni and Riecke, 1994).	33
3.1	The summarized procedure for the experiments.	38
3.2	Experimental apparatus schematic.	39
3.3	A test apparatus	39
3.4	The schematic of purging system	40
4.1	Pressure observed as a function of time to determine the	
	lowest temperature of hydrogen permeation of a carbon steel tube.	47
4.2	The change in hydrogen pressure inside the tube membrane	
	with time at the testing temperature of 150°C and 250°C with	
	the oxide layer on the outside and oxide layer removed	
	from the inside.	49
4.3	Permeation flux as a function of time for the two temperatures.	50
4.4	FESEM images of the oxide film deposited on the carbon steel	
	outside surface during experiment performed (Magnification, 1300X	
	for (a) and 4000X for (b)).	51
4.5	The comparison in hydrogen pressure with time at the test	
	temperature of 150°C with and without palladium coated	
	on the outside.	52

.

xiii

FIGURE

4.6	The comparison in hydrogen pressure with time at the	
	test temperature of 250°C with and without palladium coated	
	on the outside.	53
4.7:	Visual picture of samples (a) Bare carbon steel, (b) After acid	
	cleaning,(c) After activation, and (d) Palladium coated surface.	54
4.8	FESEM pictures of an unplated carbon steel ASTM A179	
	(Magnification, 600X for (a) and 900X for (b)).	55
4.9	FESEM images of the activated substrate ((a) Magnification	
	15000X and (b) Magnification 1300X).	56
4.10	FESEM micrograph of electroless plated sample with 800X	
	Magnification.	56
4.11	FESEM micrograph of electroless plated sample with 4000X	
	Magnification.	57
4.12	FESEM micrograph of electroless plated sample with 15000X	
	Magnification.	58
4.13	FESEM micrograph of an electroless plated carbon steel sample	
	(1500X Magnification).	60
4.14	FESEM micrograph of an electroless plated carbon steel sample	
	(1300X Magnification).	60
4.15	FESEM micrograph of an electroless plated carbon steel sample	
	(7000X Magnification) with EDX result showing the presence of	
	oxide scale.	61
4.16	The change in hydrogen pressure inside the tube with time at the	
	temperatures of 250°C and 335°C with the oxide layer on the	
	outside and oxide layer removed from the inside.	63

. . .

FIGURE

PAGE

4.17	The comparison of hydrogen pressure with time at a temperature	
	of 335°C with and without palladium coated on the	
	outside surface.	64
4.18	FESEM pictures of an unplated hastelloy C-276	
	(300X Magnification).	65
4.19	FESEM micrograph of electroless plated hastelloy sample	
	(300X Magnification).	66
4.20	FESEM micrograph of electroless plated hastelloy sample	
	(3500X Magnification) with EDX result showing the	
	presence of oxide scale.	66
4.21	FESEM micrograph of electroless plated hastelloy sample after	
	scratching (350X Magnification).	67
4.22	FESEM micrograph of electroless plated hastelloy sample after	
	scratching (3000X Magnification).	68
4.23	Permeability constants for hydrogen in various metals as a	
	function of temperature.(Gunter W.D., 1987).	69
4.24	The hydrogen permeation rate with time at 250° C with two	
	surface conditions; a mature oxide inside and a minimum	
	oxide inside.	73
H.1	Grain structure of carbon steel ASTM A-179	
	(Kongvarhodom, 2009).	95
H.2	Grain structure of Hastelloy C-276 (Zhang Q., 2009).	95

•