การวิเคราะห์เชิงพื้นผิวของพอลิคาร์บอเนตโดยเอทีอาร์ เอฟทีไออาร์ สเปกโทรสโกปี

นางสาวอัจฉรา เผคิมโชค

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปี โตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปี โตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2542 ISBN 974-334-498-5 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I19155484

SURFACE CHARACTERIZATION OF POLYCARBONATE BY ATR FT-IR SPECTROSCOPY

Miss Adchara Padermshoke

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Petrochemistry and Polymer Science Program of Petrochemistry and Polymer Science Faculty of Science Chulalongkorn University Academic Year 1999 ISBN 974-334-498-5

Thesis Title	Surface	Characterization	of	Polycarbonate	by	ATR	FT-IR
	Spectroso	сору					
By	Miss Adchara Padermshoke						
Department	Petrochemistry and Polymer Science						
Thesis Advisor	Sanong 1	Ekgasit, Ph.D.					

Accepted by Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree.

Ward Physe Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

Chairman Chairman

(Associate Professor Supawan Tantayanon, Ph.D.)

Thesis Advisor

(Sanong Ekgasit, Ph.D.)

Im lett Member

(Associate Professor Amorn Petsom, Ph.D.)

Warmthan Chansin Member

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

Mont Digz______Member

(Nongnuj Jaiboon, Ph.D.)

อัจฉรา เผดิมโชค : การวิเคราะห์เชิงพื้นผิวของพอลิคาร์บอเนต โดยเอทีอาร์ เอฟทีไอ อาร์ สเปกโทรสโกปี (SURFACE CHARACTERIZATION OF POLYCARBONATE BY ATR FT-IR SPECTROSCOPY) อาจารย์ที่ปรึกษา : อาจารย์ ดร. สนอง เอกสิทธิ์, 92 หน้า. ISBN 974-334-498-5

งานวิจัยนี้ศึกษาเกี่ยวกับการพัฒนาเทคนิคการวิเคราะห์เชิงพื้นผิวของพอลิเมอร์โดย เทคนิคเอทีอาร์ เอฟทีไออาร์ สเปกโทรสโกปี พอลิเมอร์ที่ใช้ในการศึกษาครั้งนี้ได้แก่พอลิ การ์บอเนต และพอลิไวนิลคลอไรด์ งานวิจัยประกอบด้วยการคำนวณหาจำนวนครั้งของการ สะท้อนของแสงในปริซึมโดยใช้ข้อมูลจากผลการทดลอง การหาสภาวะที่ทำให้เกิดการสัมผัส อย่างสมบูรณ์ระหว่างสารตัวอย่างที่เป็นของแข็งกับปริชึม ซึ่งเป็นเงื่อนไขสำคัญในการวิเคราะห์ เชิงพื้นผิวด้วยเทคนิคเอทีอาร์ เอฟทีไออาร์ สเปกโทรสโกปี และการหาความลึกของการสุ่มตัว อย่างในเทคนิคเอทีอาร์ จากการศึกษาพบว่าจำนวนครั้งของการสะท้อนของแสงในปริซึมที่ คำนวณได้จากผลการทดลองจะต่ำกว่าค่าที่คำนวณได้จากทฤษฎีเสมอ การสัมผัสระหว่าง สารตัวอย่างที่เป็นของแข็งกับปริชึมสามารถปรับปรุงให้ดีขึ้นได้โดยการแทนที่ช่องอากาศที่บริเวณ ผิวสัมผัสระหว่างสารตัวอย่างกับปริซึมด้วยของเหลว แล้วทำให้ของเหลวระเหยไป แรงคาปิลลารี จะช่วยทำให้สารตัวอย่างสัมผัสกับปริชึมดีขึ้น และค่าความลึกของการสุ่มตัวอย่างสามารถคำนวณ ได้จากลักษณะการลดลงอย่างมีระบบของสนามไฟฟ้า โดยก่าดังกล่าวสามารถเขียนให้อยู่ใน รูปของเรื่อนไขทางการทดลอง สมบัติของการ และความเข้มของการดูดกลืนแสงของสาร

ภาควิชา .
สาขาวิชาปีโตรเคมีและวิทยาศาสตร์พอลิเมอร์
ปีการศึกษา ²⁵⁴²

ลายมือชื่อนิสิต	899 9 57	เตดิฆโ •	ra.
ลายมือชื่ออาจารย์ที่ป	รึกษา	FINON	EUH
ลายมือชื่ออาจารย์ที่ป	รึกษาร่วม		

4172538423 : MAJOR PETROCHEMISTRY AND POLYMER SCIENCE ADCHARA PADERMSHOKE : SURFACE CHARACTERIZATION OF POLYCARBONATE BY ATR FT-IR SPECTROSCOPY. THESIS ADVISOR : SANONG EKGASIT, Ph.D. 92 pp. ISBN 974-334-498-5.

This research is the study concerning with the development of a technique for surface characterization of polymers by ATR FT-IR spectroscopy. Polymers being employed in this study are polycarbonate (PC) and polyvinyl chloride (PVC). The research consists of the calculation of number of reflections in ATR prism from experimental results, the determination of the condition under which an optical contact between solid sample and ATR prism is obtained, and the determination of sampling depth in ATR experiment. It was found that the number of reflections in ATR prism calculated from experimental results is always smaller than that calculated via theoretical means. The contact between solid sample and ATR prism can be improved by replacing an air gap existing at the interface between the sample and ATR prism with easily evaporated liquid. The capillary force improves contact between the two surfaces. The sampling depth can be calculated from the decay characteristic of the electric field. The calculated value can be expressed in terms of experimental parameters, material characteristics, and the spectral intensity of material.

ภาควิชา
สาขาวิชาปิโครเกมีและวิทยาศาสตร์พอลิเมอร์
ปีการศึกษา

ลายมือชื่อนิสิต	199 51	เตลินโร	ñ
ลายมือชื่ออาจารย์ที่ปรึก	าษา	Eng	ШĤ
ลายมือชื่ออาจารย์ที่ปรึก	าษาร่วม.		

ACKNOWLEDGEMENTS

I would like to affectionately give all gratitude to my parents for their wholehearted understanding, encouragement, and patient support throughout my entire study.

Gratefully thanks to Associate Professor Dr. Supawan Tantayanon, Associate Professor Dr. Amorn Petsom, Assistant Professor Dr. Warinthorn Chavasiri, and Dr. Nongnuj Jaiboon for their substantial advice as thesis committee.

I also would like to acknowledge computer and other academic facility supplies from The Austrian-Thai Center (ATC) for computer assisted chemical education and research and instrumental support from Bruker Analytical and Medical Instrument South East Asia.

Finally, this thesis would never be successfully completed without the excellent advice from my thesis advisor, Dr. Sanong Ekgasit, who always provides me the useful guidance, suggestion, encouragement, and understanding and also patiently practises my technical skill during the whole research.

CONTENTS

Pages

ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGEMENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xv
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvi
CHAPTER 1 INTRODUCTION	1
1.1. The Definition of a Surface	1
1.2. Surface Characterization of Polymer	1
1.2.1. ATR FT-IR Spectroscopy	2
1.2.2. ATR Measurement: Advantages over Transmission	
Measurement	4
1.2.3. The Objective of This Research	5
1.2.4. Scope of This Research	5
CHAPTER 2 THEORETICAL BACKGROUND	7
2.1. Basic Concepts of Spectroscopy	7
2.2. ATR FT-IR Spectroscopy	10
2.2.1. Introduction	10
2.2.2. Principles of Light Reflection and Refraction	10
2.2.3. Internal Reflection Elements (IRE)	12
2.2.4. ATR Spectral Intensity	13
2.2.5. Effective Number of Reflections in an IRE	18
2.2.6. Optical Contact in ATR Experiment	21
2.2.6.1. Problem of Sample Contact in ATR	21

5.1.4.2. Thickness acternination of wea				
transmission cells				
ne Calculation of Effective Number of Re				
act in ATR Experiment				
aterials and Equipments				
-IR spectrometer Conditions				
ectral Acquisitions				
3.2.3.1. ZnSe IRE system				
3.2.3.2. Ge IRE system				

2.2.6.2. Solution of Sample Contact Problem.....

2.2.7.1. Information Depth.....

2.2.7.2. The Verification of the Proposed Equation

2.2.7. Sampling Depth in ATR FT-IR Spectroscopy.....

3.1. Effective Number of Reflections in an IRE..... 3.1.1. Materials and Equipments..... 3.1.2. FT-IR spectrometer Operating Conditions..... 3.1.3. Spectral Acquisitions..... 3.1.4. Transmission Cell Thickness Determination..... 3.1.4.1. Constructions of calibration curves...... 3.1.4.2. Thickness determination of wedge-shaped 3.2.

CHAPTER 3 EXPERIMENT.....

		transmission cells	29
	3.1.5.	The Calculation of Effective Number of Reflections	29
3.2.	Optical Co	ontact in ATR Experiment	30
	3.2.1.	Materials and Equipments	30
	3.2.2.	FT-IR spectrometer Conditions	31
	3.2.3.	Spectral Acquisitions	31
		3.2.3.1. ZnSe IRE system	31
		3.2.3.2. Ge IRE system	32
3.3.	Sampling	Depth in ATR FT-IR Spectroscopy	33
	3.3.1.	Materials and Equipments	33
	3.3.2.	FT-IR spectrometer Conditions	34
	3.3.3.	Spectral Acquisitions	34
		3.3.3.1. ZnSe IRE/Nujol/PC system	34
		3.3.3.2. ZnSe IRE/ <i>i</i> -propanol/PC system	35
		3.3.3.3. ZnSe IRE/Nujol/PVC system	35
		3.3.3.4. ZnSe IRE/ <i>i</i> -propanol/PVC system	35

îx

3.3.3.5. Ge IRE/Nujol/PC system	36
3.3.3.6. Ge IRE/ <i>i</i> -propanol/PC system	36
3.3.3.7. Ge IRE/Nujol/PVC system	37
3.3.3.8. Ge IRE/ <i>i</i> -propanol/PVC system	37
CHAPTER 4 RESULT AND DISCUSSION	39
4.1. Effective Number of Reflections in an IRE	39
4.1.1. ATR and Transmission Spectra	39
4.1.1.1. ATR Spectrum	39
4.1.1.2. Transmission Spectrum	40
4.1.2. Calibration Curves	44
4.1.3. Calculated Value of Effective Number of Reflections	45
4.2. Optical Contact in ATR Experiment	49
4.2.1. ATR Spectrum	49
4.2.1.1. ZnSe/ <i>i</i> -propanol/PVC System	49
4.2.1.2. ZnSe/ <i>i</i> -propanol/PC System	50
4.2.1.3. ZnSe/Nujol/PVC System	51
4.2.1.4. ZnSe/Nujol/PC System	52
4.2.1.5. Ge/i-propanol/PVC System	53
4.2.1.6. Ge/ <i>i</i> -propanol/PC System	54
4.2.1.7. Ge/Nujol/PVC System	55
4.2.1.8. Ge/Nujol/PC System	56
4.3. Sampling Depth in ATR FT-IR Spectroscopy	62
4.3.1. ATR Spectra of ZnSe/Nujol/PVC System	62
4.3.1.1. Two-Phase System Spectrum	62
4.3.1.2. Three-Phase System Spectrum	63
4.3.2. ATR Spectra of ZnSe/ <i>i</i> -propanol/PVC System	65
4.3.2.1. Two-Phase System Spectrum	65
4.3.2.2. Three-Phase System Spectrum	66

4.3.3. ATR Spectra of Ge/Nujol/PVC System	68
4.3.3.1. Two-Phase System Spectrum	68
4.3.3.2. Three-Phase System Spectrum	69
4.3.4. ATR Spectra of Ge/ <i>i</i> -propanol/PVC System	71
4.3.4.1. Two-Phase System Spectrum	71
4.3.4.2. Three-Phase System Spectrum	72
4.3.5. ATR Spectra of Simulated System	74
4.3.6. Sampling Depth	81
4.3.6.1. ZnSe/Nujol System	82
4.3.6.2. ZnSe/ <i>i</i> -propanol System	83
4.3.6.3. Ge/Nujol System	84
4.3.6.4. Ge/i-propanol System	85
4.3.6.5. Simulated System	86
CHAPTER 5 CONCLUSION	88
REFERENCES	90
CURRICULUM VITAE	92

LIST OF FIGURES

Pages

1.1	Arrangement of probe and analyzed beams in surface spectroscopy.	
	Beams may be photons, electron, or ions	3
1.2	The simple optical and geometric arrangements of ATR	
	measurements	4
1.3	A simple geometrical arrangement of transmission measurement	5
2.1	Propagation of a linearly polarized electromagnetic wave in the	
	direction of propagation	8
2.2	Interactions of light with matter	9
2.3	Snell's Law	11
2.4	Conditions under which total internal reflection occurs. Light travels	
	from an optically denser medium and impinge at the surface of the	
	optically rarer medium $(n_1 > n_2)$	12
2.5	Selected IRE configurations commonly used in ATR experimental	
	setups: a.) Single reflection variable-angle hemispherical or	
	hemicylinder crystal, and b.) Multiple reflection single-pass crystal	13
2.6	The MSEF at various experimental condition (A, A') and its decay	
	characteristic (B, B'). The simulation parameters are $n_0 = 4.00$ for Ge,	
	$n_0 = 2.40$ for ZnSe, $v = 1000$ cm ⁻¹ , $n_1(v) = 1.50$, $k_1(v) = 0.0, 0.1, 0.2$,	
	0.3, 0.4, and 0.5, respectively	14
2.7	Relationship between the penetration depth and wavenumber for Ge	
	crystal (n = 4.0) at different angle of incidence	16
2.8	Relationship between penetration depth and wavenumber for ZnSe	
	crystal (n = 2.4) at different angle of incidence	16
2.9	Travel path of the beam in an IRE	19
2.10	Electric field decay pattern: a) system with air gap, and b) system that	
	air gap is replaced with organic liquid at various thickness	23
2.11	Experimental arrangement for the replacement of existing air gap in	
	ATR measurement with an organic medium	23

1.5

3.1	Experimental procedure for acquiring optical contact between a	
	sample and the IRE in order to obtain bulk spectral intensity of the	
	sample. The bulk spectral intensity obtained will later be used in the	
	sampling depth determination experiment	33
3.2	Schematic illustration of experimental setup for the sampling depth	
	determination. ATR spectra of the system were acquired as the	
	pressure applied was increased step by step. The ATR spectra of the	
	system were varied in spectral intensity by the thickness of the organic	
	film. ATR spectra of the system were collected until no significant	
	increment of spectral intensity was observed (i.e., spectral intensity of	
	substrate equals to its bulk intensity obtained from the optical contact	
	experiment)	38
4.1	ATR spectra of toluene acquired by two commercially available	
	MATR accessories using ZnSe IRE, 45° angle of incidence, and non-	
	polarized beam	39
4.2	Transmission spectra of toluene collected via transmission cells with	
	uniform thickness	40
4.3	(A) transmission spectrum of toluene collected via transmission cell	
	with uniform thickness, (B) simulated sinusoidal fringe spectrum, and	
	(C) transmission spectrum of toluene after sinusoidal fringe	
	subtraction	41
4.4	Transmission spectra of toluene shown in Figure 4.2 after interference	
	fringe elimination via a mathematical mean	42
4.5	Transmission spectra of toluene collected via a wedge-shaped	
	transmission cell. The average thickness of the cell is given in the	
	figure	43
4.6	Calibration curves between thickness of transmission cell versus	
	spectral intensity at various frequencies	44

Xii

xiii

4.7	ATR spectra of <i>i</i> -propanol/PVC system acquired via 45° ZnSe IRE;	
	spectrum of PVC on IRE (A), spectrum of PVC with <i>i</i> -propanol layer	
	(B), and spectra of (B) after <i>i</i> -propanol was completely removed	49
4.8	ATR spectra of <i>i</i> -propanol/PC system acquired via 45° ZnSe IRE;	
	spectrum of PC on IRE (A), spectrum of PC with <i>i</i> -propanol layer (B),	
	and spectra of (B) after <i>i</i> -propanol was completely removed.	50
4.9	ATR spectra of Nujol/PVC system acquired via 45° ZnSe IRE;	
	spectrum of PVC on IRE (A), spectrum of PVC with Nujol layer (B),	
	and spectra of (B) after Nujol was completely removed	51
4.10	ATR spectra of Nujol/PC system acquired via 45° ZnSe IRE;	
	spectrum of PC on IRE (A), spectrum of PC with Nujol layer (B), and	
	spectra of (B) after Nujol was removed	52
4.11	ATR spectra of <i>i</i> -propanol/PVC system acquired via 45° Ge IRE;	
	spectrum of PVC on IRE (A), spectrum of PVC with <i>i</i> -propanol layer	
	(B), and spectra of (B) after <i>i</i> -propanol was completely removed	53
4.12	ATR spectra of <i>i</i> -propanol/PC system acquired via 45° Ge IRE;	
	spectrum of PC on IRE (A), spectrum of PC with <i>i</i> -propanol layer (B),	
	and spectra of (B) after <i>i</i> -propanol was completely removed	54
4.13	ATR spectra of Nujol/PVC system acquired via 45° Ge IRE; spectrum	
	of PVC on IRE (A), spectrum of PVC with Nujol layer (B), and	
	spectra of (B) after Nujol was completely removed	55
4.14	ATR spectra of Nujol/PC system acquired via 45° Ge IRE; spectrum	
	of PC on IRE (A), spectrum of PC with Nujol layer (B), and spectra of	
	(B) after Nujol was removed	56
4.15	ATR spectrum of Nujol and PVC acquired via 45° ZnSe IRE	62
4.16	ATR spectrum of ZnSe/Nujol/PVC system with different thickness of	
	Nujol film	63
4.17	Relationship between spectral intensity at 2920 cm ⁻¹ and thickness of	
	Nujol. The complete spectrum is shown in Figure 14.16	64
4.18	ATR spectrum of <i>i</i> -propanol and PVC acquired via 45° ZnSe IRE	65

4.19	ATR spectrum of ZnSe/i-propanol/PVC system with different			
	thickness of <i>i</i> -propanol film	66		
4.20	Relationship between spectral intensity at 3346 cm ⁻¹ and thickness of			
	<i>i</i> -propanol. The complete spectrum is shown in Figure 4.19	67		
4.21	ATR spectrum of Nujol and PVC acquired via 45° Ge IRE			
4.22	ATR spectrum of Ge/Nujol/PVC system with different thickness of			
	Nujol film	69		
4.23	Relationship between spectral intensity at 2924 cm ⁻¹ and thickness of			
	Nujol. The complete spectrum is shown in Figure 4.22	70		
4.24	ATR spectrum of <i>i</i> -propanol and PVC acquired via 45° Ge IRE	71		
4.25	ATR spectrum of Ge/i-propanol/PVC system with different thickness			
	of <i>i</i> -propanol film	72		
4.26	Relationship between spectral intensity at 3360 cm ⁻¹ and thickness of			
	<i>i</i> -propanol. The complete spectrum is shown in Figure 4.25	73		
4.27	Simulated ATR spectrum of film with different thickness (A).			
	Variation of spectral intensity at 3000 cm ⁻¹ according to film			
	thickness are shown in (B) The simulation parameters are n_{film} =			
	$n_{substrate} = 1.5$, $n_{IRE} = 4.0$, and $\theta = 45^{\circ}$	74		
4.28	Simulated ATR spectrum of film with different thickness (A).			
	Variation of spectral intensity at 3000 cm ⁻¹ according to film			
	thickness with non-absorbing substrate are shown in (B) The			
	simulation parameters are $n_{film} = n_{substrate} = 1.5$, $n_{IRE} = 4.0$, and $\theta = 45^{\circ}$.	75		

xiv

LIST OF TABLES

Pages

4.1	Calculated effective number of reflections in 45° ZnSe IRE of MATR	
	accessories using experimental results from transmission and ATR	
	measurements	45
4.2	Sampling depth and penetration depth calculated from ZnSe/Nujol	
	system by using the spectral intensity of Nujol at various	
	wavenumbers and the noise level in the spectrum	82
4.3	Sampling depth and penetration depth calculated from ZnSe/i-	
	propanol system by using the spectral intensity of <i>i</i> -propanol at	
	various wavenumbers and the noise level in the spectrum	83
4.4	Sampling depth and penetration depth calculated from Ge/Nujol	
	system by using the spectral intensity of Nujol at various	
	wavenumbers and the noise level in the spectrum	84
4.5	Sampling depth and penetration depth calculated from Ge/i-propanol	
	system by using the spectral intensity of <i>i</i> -propanol at various	
	wavenumbers and the noise level in the spectrum	85
4.6	Sampling depth and penetration depth calculated from simulated	
	system at wavenumber 3000 cm ⁻¹	86

LIST OF ABBREVIATIONS

ATR	: attenuated total reflection
d_p	: penetration depth
FT-IR	: Fourier transform infrared
Ge	: germanium
IRE	: internal reflection element
MATR	: multiple attenuated total reflection
MSEF	: mean square electric field
MSEvF	: mean square evanescent field
PC	: polycarbonate
PVC	: polyvinyl chloride
UV	: ultra violet
ZnSe	: zinc selenide

LIST OF SYMBOLS

 μ : micro