CHAPTER I

PRELIMINARIES

Let N, Z and R denote the set of all positive integers, the set of all integers and the set of all real numbers. For $n \in N$, let the notation (Z_n, \cdot) denote the multiplicative semigroup of integers modulo n and for $x \in Z$, let $\overline{x} \in Z_n$ be the equivalence class modulo n containing x.

Let S be a semigroup. If S has a zero 0 and xy = 0 for all x, $y \in S$, we call S a zero semigroup. S is said to be regular if for every $a \in S$, a = axa for some $x \in$ S. A nonempty subset A of S is called a *left* [right] *ideal* of S if $SA \subseteq A$ [$AS \subseteq A$]. We call S a *left* [right] *simple semigroup* if S is the only left [right] ideal of S. If S has a zero 0, $S^2 \neq \{0\}$ and S and $\{0\}$ are the only left [right] ideals of S, then S is said to be *left* [right] *0-simple*. A nonempty subset Q of S is called a *quasi-ideal* of S if $SQ \cap QS \subseteq Q$. We call a nonempty subset B of S a *bi-ideal* of S if $BS^{1}B \subseteq B$ where $S^{1} = S$ if S has an identity and S^{1} is the semigroup S with an identity adjoined if S does not have an identity.

The following statements hold clearly.

(1) If S is commutative, then a nonempty subset Q of S is a quasi-ideal of S if and only if $SQ \subseteq Q$.

(2) If S is commutative, then a nonempty subset B of S is a bi-ideal of S if and only if $S^1B^2 \subseteq B$.

(3) If S has a zero 0, then every quasi-ideal and every bi-ideal of S contains0.

(4) If S is commutative, S has a zero 0, B is a nonempty subset of S containing 0 and $B^2 = \{0\}$, then B is a bi-ideal of S.

(5) If S has an identity and Q is a quasi-ideal of S containing a unit of S, then Q = S.

(6) If S has an identity and B is a bi-ideal of S containing a unit of S, then B = S.

Quasi-ideals are a generalization of left ideals and right ideals and it is given in [11] that every quasi-ideal of a semigroup is a bi-ideal. However, a bi-ideal of a semigroup need not be a quasi-ideal. Let BQ denote the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. The following three theorems show some kinds of semigroups belonging to BQ.

Theorem 1.1 ([6], S. Lajos). Every regular semigroup belongs to the class BQ.

Theorem 1.2 ([5], K.M. Kapp). Every left simple semigroup and every right simple semigroup belongs to BQ.

Theorem 1.3 ([5], K.M. Kapp). Every left 0-simple semigroup and every right 0simple semigroup belongs to **BQ**.

The class BQ does not contain only these kinds of semigroups. A zero semigroup containing more than one element is an obvious example.

Let S be a semigroup. The intersection of any set of quasi-ideals of S is either empty or a quasi-ideal of S. This is also true for bi-ideals. For $\phi \neq A \subseteq S$, the quasi-ideal of S generated by A is the intersection of all quasi-ideals of S containing A which is denoted by $(A)_q$. The bi-ideal of S generated by $A \subseteq S$ with $A \neq \phi$ is defined similarly and it is denoted $(A)_b$. For $x_1, x_2, \dots, x_n \in S$, let $(x_1, x_2, \dots, x_n)_q$ and $(x_1, x_2, \dots, x_n)_b$ denote $(\{x_1, x_2, \dots, x_n\})_q$ and $(\{x_1, x_2, \dots, x_n\})_b$, respectively. The following results are known.

Theorem 1.4 ([2], page 85). For a nonempty subset A of S, $(A)_q = S^l A \cap AS^l$.

Theorem 1.5 ([2], page 84). For a nonempty subset A of S, $(A)_b = AS^{\dagger}A \cup A$.

Then for $x \in S$, $(x)_q = S^1 x \cap x S^1$ and $(x)_b = x S^1 x \cup \{x\}$.

A characterization of semigroups in BQ was give by J. Calais in [1] as follows:

Theorem 1.6 ([1], J.Calais). Let S be a semigroup. Then $S \in BQ$ if and only if $(x, y)_q = (x, y)_b$ for all $x, y \in S$.

The characterization given in Theorem 1.6 is not practical to use to determine whether a given semigroup belongs to BQ.

The following theorem was introduced in [8] and the detail of a proof was given by S. Ritkeao in [9]. This theorem shows that there are exactly 15 types of multiplicative interval semigroups on R.

Theorem 1.7 ([8], K.R. Pearson). A subset S of R is a multiplicative interval semigroup on R if and only if S is one of the following types :

- (1) **R**, (2) $\{0\}$, (3) $\{1\}$, (4) $(0, \infty)$, (5) $[0, \infty)$,
- (6) (a, ∞) where $a \ge 1$,
- (7) [a, ∞) where $a \ge 1$,
- (8) (0, b) where $0 < b \le 1$,
- (9) (0, b] where $0 < b \le 1$,
- (10) [0, b) where $0 < b \le 1$,
- (11) [0, b] where $0 < b \le 1$,
- (12) (a, b) where $-1 \le a < 0 < a^2 \le b \le 1$,
- (13) (a, b] where $-1 \le a < 0 < a^2 \le b \le 1$,
- (14) [a, b) where $-1 < a < 0 < a^2 < b \le 1$,
- (15) [a, b] where $-1 \le a < 0 < a^2 \le b \le 1$.

There are exactly 6 types of additive interval semigroups. This was proved by K. Palasri in [7].

Theorem 1.8 ([7], K. Palasri). A subset S of R is an additive interval semigroup on R if and only if S is one of the following types:

(1) $\{0\},$ (2) **R**,

(3)	(a, ∞) where a	≥0,	(4)	[a,∞) where	a ≥0,
(5)	$(-\infty, b)$ where b .	<i>≤0</i> ,	(6)	(-∞, b] where	$b \leq 0$.

For $n \in N$, n is said to be square-free if n is not divisible by the square of any integer greater than 1. G. Ehrlich has proved the following result in [4].

Theorem 1.9 ([4], G. Ehrlich). For any positive integer n, the semigroup (\mathbb{Z}_n, \cdot) is regular if and only if n is square-free.

Let X be a set. Let

 P_X = the partial transformation semigroup on X,

 T_X = the full transformation semigroup on X,

 I_X = the one-to-one partial transformation semigroup on X (the symmetric inverse semigroup on X),

 M_X = the semigroup of one-to-one transformations of X,

 E_X = the semigroup of onto transformations of X and

 G_X = the symmetric group on X.

 P_X , T_X , I_X and G_X are standard transformation semigroups and all of them are regular for any cardinality of X. By Theorem 1.1, P_X , T_X , I_X , $G_X \in BQ$ for every cardinality of X. M_X and E_X are also standard transformation semigroups and each of them is the symmetric group on X if X is finite. Then M_X , $E_X \in BQ$ if X is finite.

Let *I* be an interval on **R** with |I| > 1. Let C_I and D_I denote the semigroup of continuous functions and the semigroup of differentiable functions of *I* into itself under usual topology on *I*. Then C_I and D_I are subsemigroups of T_I .