CHAPTER II

INTERVAL SEMIGROUPS OF REAL NUMBERS

From Theorem 1.7 and the cancellation property of $\mathbf{R} - \{0\}$ under usual multiplication, we have that all the regular multiplicative interval semigroups on \mathbf{R} are \mathbf{R} , $\{0\}$, $\{1\}$, $(0, \infty)$ and $[0, \infty)$. Then by Theorem 1.1, all of them belong to BQ. The first purpose of this chapter is to show that these five intervals are the only multiplicative interval semigroups on \mathbf{R} which belong to BQ.

We also have from Theorem 1.8 and the cancellation property of R under usual addition that all the regular additive interval semigroups on R are only Rand $\{0\}$. R and $\{0\}$ are shown to be the only additive interval semigroups on Rwhich belong to BQ. This is the second purpose of this chapter.

Theorem 2.1. For a multiplicative interval semigroup S on \mathbf{R} , $S \in \mathbf{BQ}$ if and only if S is one of the following intervals: \mathbf{R} , $\{0\}$, $\{1\}$, $(0, \infty)$ and $[0, \infty)$.

Proof. As mentioned above, if S is R, $\{0\}$, $\{1\}$, $(0, \infty)$ or $[0, \infty)$, then $S \in BQ$.

Next, we recall from Theorem 1.7 that these are all types of multiplicative interval semigroups on R.

- (1) R, (2) {0}, (3) {1}, (4) (0, ∞), (5) [0, ∞),
- (6) (a, ∞) where $a \ge 1$,

.

- (7) $[a, \infty)$ where $a \ge 1$,
- (8) (0, b) where $0 < b \le 1$,
- (9) (0, b] where $0 < b \le 1$,
- (10) [0, b) where $0 < b \le 1$,
- (11) [0, b] where $0 < b \le 1$,
- (12) (a, b) where $-1 \le a < 0 < a^2 \le b \le 1$,
- (13) (a, b] where $-1 \le a < 0 < a^2 \le b \le 1$,
- (14) [a, b) where $-1 < a < 0 < a^2 < b \le 1$,
- (15) [a, b] where $-1 \le a < 0 < a^2 \le b \le 1$.

To prove the converse, it is equivalent to show that none of the multiplicative interval semigroups of types (6) - (15) belongs to **BQ**. **Case 1:** S is of type (6) or (7). Then there exists $a \in \mathbf{R}$ such that $a \ge 1$ and $S = (a, \infty)$ or $[a, \infty)$. Let

$$B = (a + 1, a + 2) \cup ((a + 1)^2, \infty)$$

Then $B \subseteq S$ and $B^2 \subseteq ((a + 1)^2, \infty)$. Thus $S^1 B^2 \subseteq (a(a + 1)^2, \infty)$. Since $a \ge 1$, $a(a + 1)^2 \ge (a + 1)^2$, so $(a(a + 1)^2, \infty) \subseteq ((a + 1)^2, \infty)$ which implies that $S^1 B^2 \subseteq B$. Hence B is a bi-ideal of S. Since $a + \frac{1}{2} \in S$ and $a + \frac{3}{2} \in B$, $(a + \frac{1}{2})(a + \frac{3}{2}) \in SB$. But

$$(a + \frac{1}{2})(a + \frac{3}{2}) = a^2 + 2a + \frac{3}{4} < a^2 + 2a + 1 = (a + 1)^2$$

and

$$a + 2 \le a(a + 2) = a^2 + 2a < a^2 + 2a + \frac{3}{4} = (a + \frac{1}{2})(a + \frac{3}{2})$$

since $a \ge 1$, so $(a + \frac{1}{2})(a + \frac{3}{2}) \notin B$. Thus $SB \not\subseteq B$. Hence B is a bi-ideal of S which is not a quasi-ideal. Therefore $S \notin BQ$.

Case 2: S is of type (8), (9), (10) or (11). Then there exists $b \in \mathbb{R}$ such that $0 < b \le 1$ and S = (0, b), (0, b], [0, b) or [0, b]. Let

$$B = (0, \frac{b^2}{4}) \cup (\frac{b}{4}, \frac{b}{2}).$$

Then $B \subseteq S$ and $B^2 \subseteq (0, \frac{b^2}{4}) \subseteq B$. Then $SB^2 \subseteq (0, \frac{b^3}{4})$. Since $0 < b \le 1, \frac{b^3}{4} \le 1$

 $\frac{b^2}{4}$, so $SB^2 \subseteq (0, \frac{b^2}{4}) \subseteq B$. Then $S^1B^2 = SB^2 \cup B^2 \subseteq B$. Therefore B is a bi-ideal

of S. Since
$$\frac{b}{4} < \frac{3b}{8} < \frac{b}{2}, \frac{3b}{8} \in B$$
. But $\frac{2b}{3} \in S$, so $\frac{b^2}{4} = (\frac{2b}{3})(\frac{3b}{8}) \in SB$.

This implies that $SB \not\subseteq B$ since $\frac{b^2}{4} \notin B$. Hence $S \notin BQ$.

Case 3: S is of type (12), (13), (14) or (15). Then there exist $a, b \in \mathbb{R}$ such that (i) S = (a, b), (a, b] or [a, b] and $-1 \le a < 0 < a^2 \le b \le 1$,

(ii)
$$S = [a, b]$$
 and $-1 < a < 0 < a^2 < b \le 1$.

Set

$$B = (\frac{a}{2}, \frac{a^2}{4}) \cup (\frac{a^2}{3}, \frac{a^2}{2}).$$

Then $B \subseteq S$ and $B^2 \subseteq \left(\frac{a^3}{4}, \frac{a^2}{4}\right)$. Since $b \le 1$ and a < 0, we have $\frac{a^3}{4} \le \frac{a^3b}{4}$ < 0. Also, $0 < \frac{a^4}{4} \le \frac{a^2b}{4}$ since $a^2 \le b \le 1$. These implies that $[a, b](\frac{a^3}{4}, \frac{a^2}{4}) \subseteq \left(\frac{a^3}{4}, \frac{a^2}{4}\right) = \left(\frac{a^3}{4}, \frac{a^2}{4}\right) = \left(\frac{a^3}{4}, \frac{a^2}{4}\right) = \left(\frac{a^3}{4}, \frac{a^2}{4}\right) = \left(\frac{a^3}{4}, \frac{a^2}{4}\right)$. Now we have $B^2 \subseteq \left(\frac{a^3}{4}, \frac{a^2}{4}\right)$ and $[a, b](\frac{a^3}{4}, \frac{a^2}{4}) \subseteq \left(\frac{a^3}{4}, \frac{a^2}{4}\right) = \left(\frac{a^3}{4}, \frac{a^2}{4}\right)$. It follows that $S^1B^2 = SB^2 \cup B^2 \subseteq \left(\frac{a^3}{4}, \frac{a^2}{4}\right)$. But $\frac{a}{2} < \frac{a^3}{4} < 0$, so $\left(\frac{a^3}{4}, \frac{a^2}{4}\right) \subseteq B$. Hence $S^1B^2 \subseteq B$. Therefore B is a bi-ideal of S. Since $\frac{a}{2} < \frac{a}{3}$ < 0 and $a < \frac{3a}{4} < 0$, we have that $\frac{a}{3} \in B$ and $\frac{3a}{4} \in S$, so $\frac{a^2}{4} = \left(\frac{3a}{4}\right)(\frac{a}{3})$ $\in SB - B$. Therefore B is not a quasi-ideal of S. Hence S \notin BQ.

Theorem 2.2 For an additive interval semigroup S on R, $S \in BQ$ if and only if S = R or $S = \{0\}$.

Proof. We recall from Theorem 1.8 that these are all types of additive interval semigroups on R.

(1) $\{0\},$ (2) R,

(3) (a, ∞) where $a \ge 0$, (4) $[a, \infty)$ where $a \ge 0$,

(5) $(-\infty, b)$ where $b \le 0$, (6) $(-\infty, b]$ where $b \le 0$.

As mentioned above, to prove the theorem, it suffices to show that none of the additive interval semigroups on R of types (3) - (6) belongs to BQ.

Case 1: S is of type (3) or (4). Then $S = (a, \infty)$ or $[a, \infty)$ for some $a \in \mathbb{R}$ such that $a \ge 0$. Set

$$B = (a + 2, a + 3] \cup (2a + 4, \infty).$$

Then $B + B \subseteq (2a + 4, \infty) \subseteq B$ and $S + B + B \subseteq (3a + 4, \infty) \subseteq B$. Thus $(S + B + B) \cup (B + B) \subseteq B$, so B is a bi-ideal of S. Since $a + 1 \in S$ and $a + 3 \in B$, $2a + 4 = (a + 1) + (a + 3) \in S + B$. But $2a + 4 \notin B$, so B is not a quasi-ideal of S. Therefore $S \notin BQ$.

Case 2: S is of type (5) or (6). Then $S = (-\infty, b)$ or $(-\infty, b]$ for some $b \in \mathbb{R}$ such that $b \leq 0$. Let

$$B = (-\infty, 2b - 4) \cup [b - 3, b - 2).$$

Then $B + B \subseteq (-\infty, 2b - 4) \subseteq B$ and $S + B + B \subseteq (-\infty, 3b - 4) \subseteq B$ since $b \le 0$, so B is a bi-ideal of S. Since $2b - 4 = (b - 1) + (b - 3) \in S + B$ and $2b - 4 \notin B$, this shows that B is not a quasi-ideal of S. Hence $S \notin BQ$.