
CHAPTER I I I

MULTIPLICATIVE SEMIGROUPS OF INTEGERS 
MODULO POSITIVE INTEGERS

Recall that for ท G N , ท is square-free if and only if for every k in N -  {1}, 
ท. We have from Theorem 1.9 that for ท G พ, the multiplicative semigroup 

z „  is regular if and only if ท is square-free. We blow from Theorem 1.1 that 
every regular semigroup belongs to B Q .  Then for ท G N, if ท is square-free, then 
(Z„, •) G B Q .  Since the positive integer 4 is not square- free, by Theorem 1.9, z 4 is 
not regular under multiplication. In fact, it is clear because 2x2 = 0*2  in z 4 for 
every X  e  z .  However, it is shown in this chapter that the multiplicative 
semigroup z 4 belongs to B Q .  We prove in this chapter that for ท G N , (z„, •) G B Q  

if and only if either ท =  4 or ท is square-free.

The proof of Theorem 1.9 given in [4] is short by referring (1) if and only 
if (2), (2) if and only if (3) and (3) if and only if (4) where ท G พ -{1} and

(1) (Z„, •) is regular,
(2) for every a G z, there exists X G z such that น ิ2 x = a ,
(3) for every a  G z, (a 2, ท) I a where (a 2, ท) is the g.c.d.of a 2 and ท 

and
(4) ท is square-free.

To us that (3) if and only if (4) is not easily seen. Then we shall give here a proof 
of Theorem 1.9 by ourselves. Our proof uses simple knowledge of integers.

Assume that (Z«, •) is regular. Suppose that ท is not square-free. Then there
exists a prime P  G พ  such that p 2 I ท. Since z„ is regular, p 2x  =  p  for some X g Z . 

This implies that ท I p 2x  - p .  But p 2 I ท, so p 2 I p ip x  -  1). Then p \  p x - \  which 
is a contradiction. Hence ท is square-free.

Conversely, assume that ท is square-free. Let p  G N  be a prime. Then
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p 2 \  ท . Sincep  is prime, ( p 2, ท ) =  1 orp .  Then p 2x  + n y  = 1 o rp 2X  + n y - p  for 
somex , y e Z .  I f  p 2x  +  n y - p ,  then p 2 x  =  p . I f  p 2x  +  n y =  1, thenp 3x  +  p n y  =  p ,

so p 2 ( p x )  =  p  . This proves that p  is regular in (z „ , •) for every prime p  G TV.

For a general case, let a  G TV, i f  a  = 1, then 1 is regular in (Z„, •). Suppose that 
a >  1. Then there exist primesP I , P 2 , . . . , Pm  such that a  =  P \ P 2 . . .  Pm  for some m  

G TV. From the above proof, for each i e {1, 2,..., m ) ,  there exists X i G z  such

that p , 1x i = p j . This implies that 0 2 (x1J2^3 . Hence â  is regular. But

z n -  { x| X  e Z  } = { 3cIX  gTV }, so (Z„, •) is regular.

Lemma 3.1. ( Z 4, ■ ) e  B Q .

Proof. Note that I  and 3 are all the units o f ( Z 4, •). Let B  be a bi-ideal o f ( Z 4, ■ ). 

Then ô G B. I f  T e  B  or 3 e  B  , then B  =  z 4 which is a quasi-ideal o f z 4. 

Suppose that T g B  and 3 g B . Then 5 = { 0 } o r 5 = { 0 , 2  }. Since for these 
both cases B  is an ideal o f (z 4, •), we have that B  is a quasi-ideal o f ( Z 4> •)•

This proves that every bi-ideal o f ( Z 4, •) is a quasi-ideal. Hence (z 4, •) 
e B Q .  □

Theorem 3.2. F o r  ท e  N , ( Z „ ,  ■ ) e  B Q  i f  a n d  o n ly  i f  e i t h e r  ท =  4  o r  ท is  s q u a r e -  

f r e e .

Proof. Let ท e N . I f  ท =  4, by Lemma 3.1, (Z„, ■ ) G B Q .  I f  ท is square-free, by 
Theorem 1.9 (Z„, •) is regular, so (Z„, •) G B Q  by Theorem 1.1.

For the converse, suppose that ท *  4  and ท is not square-free. Then there 
exists a e ^ - j l }  such that a 2 I ท.

Case 1 ะ a  > 2. Since a 2 \ ท , ท =  a 2x  for some X G TV. Let

B  =  { 0  , ax  } .
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Since (ax )2 = (a 2X  ) x  =  n x  =  0 , we have# 2 = {0 }, so B  is a bi-ideal o f (Z„, •). 
From the fact that a  >  2, we get l a x  <  a 2x  =  ท. Thus 0 <  a x  <  2 a x  <  ท which 
implies that 2ax* 0 and 2 a x * a x  . Consequently, 2 a x  =  2 a x  e Z nB  -  B . Thus B  is 
not quasi-ideal o f (Z„, •).
Case 2: a  =  2 . Thus ท = 2km  for some k  € N -  {1} and some odd positive integer
ท ไ .

Subcase 2.1: k  -  2 . Since ท *  4 and m  is odd, m  > 3.
Set

B  =  (  2 ) „ .

By Theorem 1.5, B  =  z „  2  2 น {2} =z„ 4 น {2}. Claim that B  is not a quasi-ideal o f 
(Z„, •). Since 6 = 3 2 and 2 e B ,  6  e  Z „ B  . Suppose that 6 € B . Since ท >  12, 6

*  2  5 so 6 = x 4 for some X  6  z. It follows that 22เท I 4x -  6 which implies that 
2 m  I 2x -  3. This is a contradiction because 2 m  is even and 2x -  3 is odd. Hence 
6  <£ B . This shows that B  is not a quasi-ideal o f (Z„, •).

Subcase 2.2: k  >  2  and k  is even. Then k  =  2 t for some t e N -  {1}, so 
ท =  2 21 m . Let

B = {  0 , 2 'm  }.

Since (2 ' m  Ÿ  -  ( 22' m ) m = n m  =  0 5 B 2 = {0 }. Therefore B  is a bi-ideal o f

(Z„, •). Since t  >  1, we have 0 < 2 ‘m  <  2 1+1 m  <  2 2,m  = ท. Then 2 ,+ ]m * 0  and

2 ' +1 m  * 2 '  m  , so 2/+1 m  =  2 ( 2 l  m )  e Z „ B  -  B . Hence B  is not a quasi-ideal o f
(Z„, •).

Subcase 2.3: k  >  2  and k  is odd. Then k  =  2 r +  1 for some r  €  N . Therefore 
we have ท = 22r+1»î. Set

B =  { 0 ,  T m  , 2 l r m  2 }.

We have B 2 =  { 0 , 2 2r m  2 } because (2r m ) 2 = 2 l r  m 2 , ( 2 r  m ) { 2 l r  m 1 )  =

(2 2r+1 พ)(2 r_1 /n2) = « (2 r_'พ 2)ะ=0 and ( 2 2 rm  2) 2 = ( 2 2r+xm  ) { 2 2 r- 'm  3) =
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«(22r -1m3) = 0 . To show that Z „ B 2 ç  B , let X  G z. I f  X is even, then* = 2M for

some น G z, so 3c(22r m2 )= (2 2r+1 พ)(m/w) =  ท (น เท )  =  Q G 5. Next assume that JC is

odd. Then X = V + 1 for some even integer V. From the above proof, v(22r  ทใ2 ) =  0

which implies that x ( 2 2 r  เท 2 ) = 2 2 r เท 2 G B . Hence B  is a bi-ideal o f (Z„, ■ ). Since 
r  +  1 > 2 , we have 2rf| > 4 > 3. Then 0 < 2 'm  <  3 ( 2 rm )  <  2r+12rw = 22r+1m = ท.

This implies that 2>(2r เท ) * 2 r ท ไ . Suppose that 3(2 r m  ) = 2 2r m  2 . Then 
22r+lm I 22rm2 -  3 ( 2 r เท ) , so 2r+/ I 2 rเท -  3 which is impossible since 2r+1 is even

and 2 rm  -  3 is odd. Thus 3(2r เ ท ) *  2 2r Iท 2 . Therefore 3 ( 2 r  เ ท )<£B, s o  3 { 2 r  ทใ) =

3(2r เท ) G Z „ B  -  B . This shows that B  is not a quasi-ideal o f (Z„, •).
Hence the theorem is completely proved. □
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