CHAPTER III

MULTIPLICATIVE SEMIGROUPS OF INTEGERS MODULO POSITIVE INTEGERS

Recall that for $n \in N$, *n* is square-free if and only if for every *k* in *N*- {1}, $k^2 \not\downarrow n$. We have from Theorem 1.9 that for $n \in N$, the multiplicative semigroup Z_n is regular if and only if *n* is square-free. We know from Theorem 1.1 that every regular semigroup belongs to BQ. Then for $n \in N$, if *n* is square-free, then $(Z_n, \cdot) \in BQ$. Since the positive integer 4 is not square-free, by Theorem 1.9, Z_4 is not regular under multiplication. In fact, it is clear because $2\bar{x}\bar{2}=\bar{0}\neq\bar{2}$ in Z_4 for every $x \in Z$. However, it is shown in this chapter that the multiplicative semigroup Z_4 belongs to BQ. We prove in this chapter that for $n \in N$, $(Z_n, \cdot) \in BQ$ if and only if either n = 4 or *n* is square-free.

The proof of Theorem 1.9 given in [4] is short by referring (1) if and only if (2), (2) if and only if (3) and (3) if and only if (4) where $n \in N$ -{1} and

(1) (Z_n, \cdot) is regular,

(2) for every $a \in \mathbb{Z}$, there exists $x \in \mathbb{Z}$ such that $\overline{a}^2 \overline{x} = \overline{a}$,

(3) for every $a \in \mathbb{Z}$, $(a^2, n) \mid a$ where (a^2, n) is the g.c.d.of a^2 and n and

(4) n is square-free.

To us that (3) if and only if (4) is not easily seen. Then we shall give here a proof of Theorem 1.9 by ourselves. Our proof uses simple knowledge of integers.

Assume that (\mathbb{Z}_n, \cdot) is regular. Suppose that *n* is not square-free. Then there exists a prime $p \in N$ such that $p^2 \mid n$. Since \mathbb{Z}_n is regular, $\overline{p}^2 \overline{x} = \overline{p}$ for some $x \in \mathbb{Z}$. This implies that $n \mid p^2 x - p$. But $p^2 \mid n$, so $p^2 \mid p(px - 1)$. Then $p \mid px - 1$ which is a contradiction. Hence *n* is square-free.

Conversely, assume that n is square-free. Let $p \in N$ be a prime. Then

 $p^2 \nmid n$. Since p is prime, $(p^2, n) = 1$ or p. Then $p^2x + ny = 1$ or $p^2x + ny = p$ for some x, $y \in Z$. If $p^2x + ny = p$, then $\overline{p}^2 \overline{x} = \overline{p}$. If $p^2x + ny = 1$, then $p^3x + pny = p$, so $\overline{p}^2(\overline{px}) = \overline{p}$. This proves that \overline{p} is regular in (Z_n, \cdot) for every prime $p \in N$. For a general case, let $a \in N$, if a = 1, then $\overline{1}$ is regular in (Z_n, \cdot) . Suppose that a > 1. Then there exist primes $p_1, p_2, ..., p_m$ such that $a = p_1p_2 ... p_m$ for some $m \in N$. From the above proof, for each $i \in \{1, 2, ..., m\}$, there exists $x_i \in Z$ such that $\overline{p_i}^2 \overline{x_i} = \overline{p_i}$. This implies that $\overline{a}^2(\overline{x_1}\overline{x_2}\overline{x_3}...\overline{x_m}) = \overline{a}$. Hence \overline{a} is regular. But $Z_n = \{\overline{x} \mid x \in Z\} = \{\overline{x} \mid x \in N\}$, so (Z_n, \cdot) is regular.

Lemma 3.1. $(Z_4, \cdot) \in BQ$.

Proof. Note that $\overline{1}$ and $\overline{3}$ are all the units of (\mathbb{Z}_4, \cdot) . Let B be a bi-ideal of (\mathbb{Z}_4, \cdot) . Then $\overline{0} \in B$. If $\overline{1} \in B$ or $\overline{3} \in B$, then $B = \mathbb{Z}_4$ which is a quasi-ideal of \mathbb{Z}_4 . Suppose that $\overline{1} \notin B$ and $\overline{3} \notin B$. Then $B = \{\overline{0}\}$ or $B = \{\overline{0}, \overline{2}\}$. Since for these both cases B is an ideal of (\mathbb{Z}_4, \cdot) , we have that B is a quasi-ideal of (\mathbb{Z}_4, \cdot) .

This proves that every bi-ideal of (Z_4, \cdot) is a quasi-ideal. Hence $(Z_4, \cdot) \in BQ$.

Theorem 3.2. For $n \in N$, $(\mathbb{Z}_n, \cdot) \in \mathbb{B}Q$ if and only if either n = 4 or n is square-free.

Proof. Let $n \in N$. If n = 4, by Lemma 3.1, $(Z_n, \cdot) \in BQ$. If n is square-free, by Theorem 1.9 (Z_n, \cdot) is regular, so $(Z_n, \cdot) \in BQ$ by Theorem 1.1.

For the converse, suppose that $n \neq 4$ and n is not square-free. Then there exists $a \in N - \{1\}$ such that $a^2 \mid n$. Case 1: a > 2. Since $a^2 \mid n, n = a^2 x$ for some $x \in N$. Let

$$B=\{\overline{0}, ax\}.$$

Since $(\overline{ax})^2 = (\overline{a^2x}) \overline{x} = \overline{n}\overline{x} = \overline{0}$, we have $B^2 = \{\overline{0}\}$, so *B* is a bi-ideal of (\mathbb{Z}_n, \cdot) . From the fact that a > 2, we get $2ax < a^2x = n$. Thus 0 < ax < 2ax < n which implies that $\overline{2ax} \neq \overline{0}$ and $\overline{2ax} \neq \overline{ax}$. Consequently, $\overline{2ax} = \overline{2ax} \in \mathbb{Z}_n B - B$. Thus *B* is not quasi-ideal of (\mathbb{Z}_n, \cdot) .

Case 2: a = 2. Thus $n = 2^k m$ for some $k \in N - \{1\}$ and some odd positive integer m.

Subcase 2.1: k = 2. Since $n \neq 4$ and m is odd, $m \ge 3$.

Set

$$B=(\bar{2})_b.$$

By Theorem 1.5, $B = \mathbb{Z}_n \overline{2}^2 \cup \{\overline{2}\} = \mathbb{Z}_n \overline{4} \cup \{\overline{2}\}$. Claim that B is not a quasi-ideal of (\mathbb{Z}_n, \cdot) . Since $\overline{6} = \overline{3} \overline{2}$ and $\overline{2} \in B$, $\overline{6} \in \mathbb{Z}_n B$. Suppose that $\overline{6} \in B$. Since $n \ge 12$, $\overline{6} \ne \overline{2}$, so $\overline{6} = \overline{x} \overline{4}$ for some $x \in \mathbb{Z}$. It follows that $2^2m \mid 4x - 6$ which implies that $2m \mid 2x - 3$. This is a contradiction because 2m is even and 2x - 3 is odd. Hence $\overline{6} \notin B$. This shows that B is not a quasi-ideal of (\mathbb{Z}_n, \cdot) .

Subcase 2.2: k > 2 and k is even. Then k = 2t for some $t \in N - \{1\}$, so $n = 2^{2t}m$. Let

$$B=\{\overline{0}, 2'm\}.$$

Since $(\overline{2^{t}m})^{2} = (\overline{2^{2t}m})\overline{m} = \overline{n}\overline{m} = \overline{0}$, $B^{2} = \{\overline{0}\}$. Therefore *B* is a bi-ideal of (\mathbb{Z}_{n}, \cdot) . Since t > 1, we have $0 < 2^{t}m < 2^{t+1}m < 2^{2t}m = n$. Then $\overline{2^{t+1}m} \neq \overline{0}$ and $\overline{2^{t+1}m} \neq \overline{2^{t}m}$, so $\overline{2^{t+1}m} = \overline{2}(\overline{2^{t}m}) \in \mathbb{Z}_{n}B - B$. Hence *B* is not a quasi-ideal of (\mathbb{Z}_{n}, \cdot) .

Subcase 2.3: k > 2 and k is odd. Then k = 2r + 1 for some $r \in N$. Therefore we have $n = 2^{2r+1}m$. Set

$$B = \{\overline{0}, \overline{2^r m}, \overline{2^{2r} m^2}\}.$$

We have $B^2 = \{\overline{0}, \overline{2^{2r}m^2}\}$ because $(\overline{2^rm})^2 = \overline{2^{2r}m^2}, (\overline{2^rm})(\overline{2^{2r}m^2}) = (\overline{2^{2r+1}m})(\overline{2^{r-1}m^2}) = \overline{n}(\overline{2^{r-1}m^2}) = \overline{0}$ and $(\overline{2^{2r}m^2})^2 = (\overline{2^{2r+1}m})(\overline{2^{2r-1}m^3}) = \overline{n}(\overline{2^{2r-1}m^3}) = \overline{n}(\overline{2^{2r+1}m^3}) = \overline{n}(\overline{2^{2$

 $\overline{n}(\overline{2^{2r-1}m^3}) = \overline{0}$. To show that $Z_n B^2 \subseteq B$, let $x \in \mathbb{Z}$. If x is even, then x = 2u for some $u \in \mathbb{Z}$, so $\overline{x}(\overline{2^{2r}m^2}) = (\overline{2^{2r+1}m})(\overline{um}) = \overline{n}(\overline{um}) = \overline{0} \in B$. Next assume that x is odd. Then x = v + 1 for some even integer v. From the above proof, $\overline{v}(\overline{2^{2r}m^2}) = \overline{0}$ which implies that $\overline{x}(\overline{2^{2r}m^2}) = \overline{2^{2r}m^2} \in B$. Hence B is a bi-ideal of (\mathbb{Z}_n, \cdot) . Since $r + 1 \ge 2$, we have $2^{r+1} \ge 4 > 3$. Then $0 < 2^r m < 3(2^r m) < 2^{r+1}2^r m = 2^{2r+1}m = n$. This implies that $\overline{3(2^r m)} \neq \overline{2^r m}$. Suppose that $\overline{3(2^r m)} = \overline{2^{2r}m^2}$. Then $2^{2r+1}m \mid 2^{2r}m^2 - 3(2^r m)$, so $2^{r+1} \mid 2^r m - 3$ which is impossible since 2^{r+1} is even and $2^r m - 3$ is odd. Thus $\overline{3(2^r m)} \neq \overline{2^{2r}m^2}$. Therefore $\overline{3(2^r m)} \notin B$, so $\overline{3(2^r m)} = \overline{3(2^r m)} \in \mathbb{Z}_n B - B$. This shows that B is not a quasi-ideal of (\mathbb{Z}_n, \cdot) .

Hence the theorem is completely proved.