CHAPTER III

MULTIPLICATIVE SEMIGROUPS OF INTEGERS MODULO POSITIVE INTEGERS

Recall that for $n \in N, n$ is square-free if and only if for every k in $N-\{1\}$, $k^{2} \nmid n$. We have from Theorem 1.9 that for $n \in N$, the multiplicative semigroup Z_{n} is regular if and only if n is square-free. We know from Theorem 1.1 that every regular semigroup belongs to $B Q$. Then for $n \in N$, if n is square-free, then $\left(Z_{n}, \cdot\right) \in B Q$. Since the positive integer 4 is not square- free, by Theorem $1.9, Z_{4}$ is not regular under multiplication. In fact, it is clear because $\overline{2} \bar{x} \overline{2}=\overline{0} \neq \overline{2}$ in Z_{4} for every $x \in \boldsymbol{Z}$. However, it is shown in this chapter that the multiplicative semigroup $Z_{\mathbb{1}}$ belongs to $B Q$. We prove in this chapter that for $n \in N,\left(Z_{n}, \cdot\right) \in B Q$ if and only if either $n=4$ or n is square-free.

The proof of Theorem 1.9 given in [4] is short by referring (1) if and only if (2), (2) if and only if (3) and (3) if and only if (4) where $n \in N-\{1\}$ and
(1) $\left(Z_{n}, \cdot\right)$ is regular,
(2) for every $a \in Z$, there exists $x \in Z$ such that $\bar{a}^{2} \bar{x}=\bar{a}$,
(3) for every $a \in Z,\left(a^{2}, n\right) \mid a$ where $\left(a^{2}, n\right)$ is the g.c.d.of a^{2} and n and
(4) n is square-free.

To us that (3) if and only if (4) is not easily seen. Then we shall give here a proof of Theorem 1.9 by ourselves. Our proof uses simple knowledge of integers.

Assume that $\left(\boldsymbol{Z}_{n}, \cdot\right)$ is regular. Suppose that n is not square-free. Then there exists a prime $p \in N$ such that $p^{2} \mid n$. Since Z_{n} is regular, $\bar{p}^{2} \bar{x}=\bar{p}$ for some $\mathrm{x} \in \boldsymbol{Z}$. This implies that $n \mid p^{2} x-p$. But $p^{2} \mid n$, so $p^{2} \mid p(p x-1)$. Then $p \mid p x-1$ which is a contradiction. Hence n is square-free.

Conversely, assume that n is square-free. Let $p \in N$ be a prime. Then
$p^{2} \nmid n$. Since p is prime, $\left(p^{2}, n\right)=1$ or p. Then $p^{2} x+n y=1$ or $p^{2} x+n y=p$ for some $x, y \in Z$. If $p^{2} x+n y=p$, then $\bar{p}^{2} \bar{x}=\bar{p}$. If $p^{2} x+n y=1$, then $p^{3} x+p n y=p$, so $\bar{p}^{2}(\overline{p x})=\bar{p}$. This proves that \bar{p} is regular in $\left(Z_{n}, \cdot\right)$ for every prime $p \in N$. For a general case, let $a \in N$, if $a=1$, then $\overline{1}$ is regular in $\left(Z_{n}, \cdot\right)$. Suppose that $a>1$. Then there exist primes $p_{1}, p_{2}, \ldots, p_{m}$ such that $a=p_{1} p_{2} \ldots p_{m}$ for some m $\in N$. From the above proof, for each $\mathrm{i} \in\{1,2, \ldots, m\}$, there exists $x_{i} \in Z$ such that $\bar{p}_{i}{ }^{2} \bar{x}_{i}=\bar{p}_{i}$. This implies that $\bar{a}^{2}\left(\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \ldots \bar{x}_{m)}=\bar{a}\right.$. Hence \bar{a} is regular. But $Z_{n}=\{\bar{x} \mid x \in Z\}=\{\bar{x} \mid x \in N\}$, so $\left(Z_{n}, \cdot\right)$ is regular.

Lemma 3.1. $\left(Z_{4},\right) \in B Q$.

Proof. Note that $\overline{1}$ and $\overline{3}$ are all the units of $\left(Z_{\mathbb{A}}, \cdot\right)$. Let B be a bi-ideal of $\left(Z_{\boldsymbol{A}}, \cdot\right)$.
Then $\overline{0} \in B$. If $\overline{1} \in B$ or $\overline{3} \in B$, then $B=Z_{4}$ which is a quasi-ideal of \boldsymbol{Z}_{4}.
Suppose that $\overline{1} \notin B$ and $\overline{3} \notin B$. Then $B=\{\overline{0}\}$ or $B=\{\overline{0}, \overline{2}\}$. Since for these both cases B is an ideal of $\left(Z_{A}, \cdot\right)$, we have that B is a quasi-ideal of $\left(Z_{4}, \cdot\right)$.

This proves that every bi-ideal of $\left(Z_{\boldsymbol{A}}, \cdot\right)$ is a quasi-ideal. Hence $\left(Z_{\boldsymbol{A}}, \cdot\right)$ $\in \boldsymbol{B} \boldsymbol{Q}$.

Theorem 3.2. For $n \in N,\left(Z_{n},.\right) \in B Q$ if and only if either $n=4$ or n is squarefree.

Proof. Let $n \in N$. If $n=4$, by Lemma 3.1, $\left(Z_{n}, \cdot\right) \in B Q$. If n is square-free, by Theorem $1.9\left(\boldsymbol{Z}_{\boldsymbol{n}}, \cdot\right)$ is regular, so $\left(\boldsymbol{Z}_{\boldsymbol{n}}, \cdot\right) \in \boldsymbol{B} \boldsymbol{Q}$ by Theorem 1.1.

For the converse, suppose that $n \neq 4$ and n is not square-free. Then there exists $a \in N-\{1\}$ such that $a^{2} \mid n$.

Case 1: $a>2$. Since $a^{2} \mid n, n=a^{2} x$ for some $x \in N$. Let

$$
B=\{\overline{0}, \overline{a x}\} .
$$

Since $(\overline{a x})^{2}=\left(\overline{a^{2} x}\right) \bar{x}=\bar{n} \bar{x}=\overline{0}$, we have $B^{2}=\{\overline{0}\}$, so B is a bi-ideal of $\left(Z_{n}, \cdot\right)$. From the fact that $a>2$, we get $2 a x<a^{2} x=n$. Thus $0<a x<2 a x<n$ which implies that $\overline{2 a x} \neq \overline{0}$ and $\overline{2 a x} \neq \overline{a x}$. Consequently, $\overline{2 a x}=\overline{2} \overline{a x} \in Z_{n} B-B$. Thus B is not quasi-ideal of ($\left.\boldsymbol{Z}_{\boldsymbol{n}}, \cdot\right)$.
Case 2: $a=2$. Thus $n=2^{k} m$ for some $k \in N-\{1\}$ and some odd positive integer m.

Subcase 2.1: $k=2$. Since $n \neq 4$ and m is odd, $m \geq 3$.
Set

$$
B=(\overline{2})_{b} .
$$

By Theorem 1.5, $B=\boldsymbol{Z}_{n} \overline{2}^{2} \cup\{\overline{2}\}=\boldsymbol{Z}_{\boldsymbol{n}} \overline{4} \cup\{\overline{2}\}$. Claim that B is not a quasi-ideal of $\left(Z_{n}, \cdot\right)$. Since $\overline{6}=\overline{3} \overline{2}$ and $\overline{2} \in B, \overline{6} \in Z_{n} B$. Suppose that $\overline{6} \in B$. Since $n \geq 12, \overline{6}$ $\neq \overline{2}$, so $\overline{6}=\bar{x} \overline{4}$ for some $x \in Z$. It follows that $2^{2} m \mid 4 x-6$ which implies that $2 m \mid 2 x-3$. This is a contradiction because $2 m$ is even and $2 x-3$ is odd. Hence $\overline{6} \notin B$. This shows that B is not a quasi-ideal of $\left(Z_{n}, \cdot\right)$.

Subcase 2.2: $k>2$ and k is even. Then $k=2 t$ for some $t \in N-\{1\}$, so $n=2^{2 t} m$. Let

$$
B=\left\{\overline{0}, \overline{2^{\prime} m}\right\} .
$$

Since $\left(\overline{2^{\prime} m}\right)^{2}=\left(\overline{2^{2 t} m}\right) \bar{m}=\bar{n} \bar{m}=\overline{0}, B^{2}=\{\overline{0}\}$. Therefore B is a bi-ideal of $\left(Z_{n}, \cdot\right)$. Since $t>1$, we have $0<2^{\prime} m<2^{t+1} m<2^{2 t} m=n$. Then $\overline{2^{t+1} m} \neq \overline{0}$ and $\overline{2^{t+1} m} \neq \overline{2^{t} m}$, so $\overline{2^{t+1} m}=\overline{2}\left(\overline{2^{t} m}\right) \in Z_{n} B-B$. Hence B is not a quasi-ideal of $\left(Z_{n}, \cdot\right)$.

Subcase 2.3: $k>2$ and k is odd. Then $k=2 r+1$ for some $r \in N$. Therefore we have $n=2^{2 r+1} m$. Set

$$
B=\left\{\overline{0}, \overline{2^{r} m}, \overline{2^{2 r} m^{2}}\right\} .
$$

We have $B^{2}=\left\{\overline{0}, \overline{2^{2 r} m^{2}}\right\}$ because $\left(\overline{2^{r} m}\right)^{2}=\overline{2^{2 r} m^{2}},\left(\overline{2^{r} m}\right)\left(\overline{2^{2 r} m^{2}}\right)=$ $\left(\overline{2^{2 r+1} m}\right)\left(\overline{2^{r-1} m^{2}}\right)=\bar{n}\left(\overline{2^{r-1} m^{2}}\right)=\overline{0}$ and $\left(\overline{2^{2 r} m^{2}}\right)^{2}=\left(\overline{2^{2 r+1} m}\right)\left(\overline{2^{2 r-1} m^{3}}\right)=$
$\left.\bar{n} \overline{\left(2^{2 r-1} m^{3}\right.}\right)=\overline{0}$. To show that $Z_{n} B^{2} \subseteq B$, let $x \in Z$. If x is even, then $x=2 u$ for some $u \in Z$, so $\bar{x}\left(\overline{2^{2 r} m^{2}}\right)=\left(\overline{2^{2 r+1} m}\right)(\overline{u m})=\bar{n}(\overline{u m})=\overline{0} \in B$. Next assume that x is odd. Then $x=v+1$ for some even integer v. From the above proof, $\left.\bar{v} \overline{2^{2 r} m^{2}}\right)=\overline{0}$ which implies that $\bar{x}\left(\overline{2^{2 r} m^{2}}\right)=\overline{2^{2 r} m^{2}} \in B$. Hence B is a bi-ideal of $\left(Z_{n}, \cdot\right)$. Since $r+1 \geq 2$, we have $2^{r+1} \geq 4>3$. Then $0<2^{r} m<3\left(2^{r} m\right)<2^{r+1} 2^{r} m=2^{2 r+1} m=n$. This implies that $\overline{3\left(2^{r} m\right)} \neq \overline{2^{r} m}$. Suppose that $\overline{3\left(2^{r} m\right)}=\overline{2^{2 r} m^{2}}$. Then $2^{2 r+1} m \mid 2^{2 r} m^{2}-3\left(2^{r} m\right)$, so $2^{r+1} \mid 2^{r} m-3$ which is impossible since 2^{r+1} is even and $2^{r} m-3$ is odd. Thus $\overline{3\left(2^{r} m\right)} \neq \overline{2^{2 r} m^{2}}$. Therefore $\overline{3\left(2^{r} m\right)} \notin B$, so $\overline{3\left(2^{r} m\right)}=$ $\overline{3}\left(\overline{2^{r} m}\right) \in Z_{n} B-B$. This shows that B is not a quasi-ideal of $\left(Z_{n}, \cdot\right)$.

Hence the theorem is completely proved.

