CHAPTER IV

TRANSFORMATION SEMIGROUPS

The notation $P_{X}, T_{X}, I_{X}, M_{X}, E_{X}$ and G_{X} where X is a set and the notation C_{l} and D_{I} where I is any interval on R with $|I|>1$ are recalled from Chapter I, page 6. Again, since P_{X}, T_{X}, I_{X} and G_{X} are regular for any set X, we deduce from Theorem 1.1 that they are members of $B Q$ for any set X. We know that $M_{X}=E_{X}=$ G_{X} if and only if X is finite. Then for any finite set X, M_{X} and E_{X} belong to $B Q$. We show in this chapter that $M_{X} \notin B Q$ and $E_{X} \notin B Q$ if X is infinite. This is the first purpose. Consequently, by Theorem 1.1 and Theorem 1.2, both M_{X} and E_{X} are not regular, not left simple and not right simple if X is infinite. In fact, these can be proved directly. The second purpose is to show that $C_{l} \notin B Q$ and $D_{l} \notin B Q$ for any nonempty interval I with $|I|>1$. Observe that all of these semigroups have an identity.

First, we shall introduce a direct proof that both M_{X} and E_{X} are not regular for the case that X is an infinite set. Since X is infinite, X contains a countably infinite subset $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ where $a_{i} \neq a_{j}$ if $i \neq j$. Define $\alpha, \beta: X \rightarrow X$ by

$$
\begin{aligned}
& x \alpha= \begin{cases}a_{2 n} & \text { if } x=a_{n} \text { for some } n \in N, \\
x & \text { otherwise, }\end{cases} \\
& x \beta= \begin{cases}a_{\frac{n}{2}} & \text { if } x=a_{n} \text { for some even integer } n \in N, \\
a_{1} & \text { if } x=a_{n} \text { for some odd integer } n \in N, \\
x & \text { otherwise } .\end{cases}
\end{aligned}
$$

Then $\alpha \in M_{X}$ and $\beta \in E_{X}$. Suppose there exists $\lambda \in M_{X}$ such that $\alpha=\alpha \lambda \alpha$. Then for $n \in N, a_{n} \alpha=a_{n} \alpha \lambda \alpha=\left(a_{2 n} \lambda\right) \alpha$. Since α is one-to-one, $a_{2 n} \lambda=a_{n}$ for every $n \in$ N.Thus $\left\{a_{2}, a_{4}, a_{6}, \ldots\right\} \lambda=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. If $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $x \alpha=$
$x \alpha \lambda \alpha=(x \lambda) \alpha$, so $x \lambda=x$. This proves that $\left(X-\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}\right) \lambda=X$.
Consequently, λ is not one-to-one, a contradiction. Hence M_{X} is not regular.
Next, suppose that there exists $\mu \in E_{X}$ such that $\beta=\beta \mu \beta$. Then for every odd integer $n \in N, a_{1}=a_{n} \beta=a_{n} \beta \mu \beta=\left(a_{1} \mu\right) \beta$ which implies that $a_{1} \mu \in\left\{a_{2}\right\} \cup$ $\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$. If $n \in N-\{1\}, a_{n}=a_{2 n} \beta=a_{2 n} \beta \mu \beta=\left(a_{n} \mu\right) \beta$, so by the definition of $\beta, a_{n} \mu=a_{2 n}$. If $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $x=x \beta=x \beta \mu \beta=(x \mu) \beta$ which implies that $x \mu=x$. This proves that $X \mu=\left\{a_{1} \mu\right\} \cup\left\{a_{4}, a_{6}, a_{8}, \ldots\right\} \cup(X-$ $\left.\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right)$. Since $a_{1} \mu$ is only one value in $\left\{a_{2}\right\} \cup\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$, it follows that $X \mu \neq X$, a contradiction. Hence E_{X} is not regular.

If X is an infinite set, it can be easily proved that both M_{X} and E_{X} are neither left simple nor right simple because $M_{X}-G_{X}$ and $E_{X}-G_{X}$ are ideals of M_{X} and E_{X}, respectively. To prove these, let $\alpha \in M_{X}, \beta \in E_{X}, \gamma \in M_{X}-G_{X}$ and $\lambda \in$ $E_{X}-G_{X}$. Then $\alpha \gamma, \gamma \alpha \in M_{X}$ and $\beta \lambda, \lambda \beta \in E_{X}$. Since $\operatorname{Im} \alpha \gamma \subseteq \operatorname{Im} \gamma \neq X, \alpha \gamma \in$ $M_{X}-G_{X}$. If $\gamma \alpha \in G_{X}$, then $\operatorname{Im} \alpha \supseteq \operatorname{Im} \gamma \alpha=X$, so $\alpha \in G_{X}$ which implies that $\gamma=$ $(\gamma \alpha) \alpha^{-1} \in G_{X}$, a contradiction. Thus $\gamma \alpha \in M_{X}-G_{X}$. Since λ is not one-to-one, $\lambda \beta$ is not one-to-one, so $\lambda \beta \in E_{X}-G_{X}$. If $\beta \lambda \in G_{X}$, then β is one-to-one, so β $\in G_{X}$ which implies that $\lambda=\beta^{-1}(\beta \lambda) \in G_{X}$, a contradiction. Hence $\beta \lambda \in E_{X}-G_{X}$

Theorem 4.1. For a set $X, M_{X} \in B Q$ if and only if X is finite.

Proof. As mentioned above, $M_{X} \in B Q$ if X is finite.
For the converse, assume that X is an infinte set. Then X contains a countably infinite subset. Let $\left\{a_{i} \mid i \in N\right\} \subseteq X$ where $a_{i} \neq a_{j}$ if $i \neq j$.

Define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}a_{2 n} & \text { if } x=a_{n} \text { for some } n \in N, \\ x & \text { otherwise }\end{cases}
$$

$$
x \beta= \begin{cases}a_{n+2} & \text { if } x=a_{n} \text { for some } n \in N, \\ x & \text { otherwise }\end{cases}
$$

and

$$
x y= \begin{cases}a_{n+1} & \text { if } x=a_{n} \text { for some } n \in N \\ x & \text { otherwise } .\end{cases}
$$

Then $\beta, \gamma \in M_{X}$. For $n \in N$, we have that $a_{n} \alpha \beta=a_{2 n} \beta=a_{2 n+2}=a_{2(n+1)}=a_{n+1} \alpha=$ $a_{n} \gamma \alpha$. If $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $x \alpha \beta=x=x \gamma \alpha$. This proves that $\alpha \beta=\gamma \alpha$. Therefore $\alpha \beta=\gamma \alpha \in \alpha M_{X} \cap M_{X} \alpha$. Let $\lambda=\alpha \beta$. Then $\lambda \in \alpha M_{X} \cap M_{X} \alpha \subseteq B M_{X} \cap$ $M_{X} B$ since $\alpha \in B$. To show that $\lambda \notin B$. Suppose that $\lambda \in B$. Then $\lambda \in \alpha M_{X} \alpha \cup$ $\{\alpha\}$.Since $a_{1} \lambda=a_{1} \alpha \beta=a_{2} \beta=a_{4} \neq a_{2}=a_{1} \alpha$, we have $\lambda \neq \alpha$. Then $\lambda \in \alpha M_{X} \alpha$, so $\lambda=\alpha \eta \alpha$ for some $\eta \in M_{X}$. It follows that for $n \in N, a_{n+1} \alpha=a_{n} \gamma \alpha=a_{n} \alpha \beta=a_{n} \lambda=$ $a_{n} \alpha \eta \alpha=\left(a_{2 n} \eta\right) \alpha$ which implies that $a_{2 n} \eta=a_{n+1}$ for all $n \in N$ because α is one-toone. Consequently,

$$
\begin{equation*}
\left\{a_{2}, a_{4}, a_{6}, \ldots\right\} \eta=\left\{a_{2}, a_{3}, a_{4}, \ldots\right\} . \tag{1}
\end{equation*}
$$

If $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $x \alpha=x=x \alpha \beta=x \alpha \eta \alpha=(x \eta) \alpha$ which implies that $x=x \eta$ since α is one-to-one. Thus

$$
\begin{equation*}
\left(X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right) \eta=X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} . \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\left(X-\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}\right) \eta=X-\left\{a_{1}\right\}
$$

which is impossible since η is one-to-one. Hence $\lambda \notin B$, so $\lambda \in\left(B M_{X} \cap M_{X} B\right)-$ B. Thus $B M_{X} \cap M_{X} B \nsubseteq B$. Now we have that B is a bi-ideal but not a quasi-ideal of M_{X}. Therefore $M_{X} \notin B Q$.

Hence the theorem is completely proved.

Theorem 4.2. For a set $X, E_{X} \in B Q$ if and only if X is finite.

Proof. As mentioned previously, $E_{X} \in \boldsymbol{B Q}$ if X is a finite set.
Conversely, assume that X is an infinite set. Let $\left\{a_{i} \mid \mathrm{i} \in N\right\} \subseteq X$ where a_{t} $\neq a_{j}$ if $i \neq j$. Define $\alpha, \beta, \gamma: X \rightarrow X$ by

$$
\begin{aligned}
& x \alpha= \begin{cases}a_{\frac{n}{2}} & \text { if } x=a_{n} \text { and } n \text { is even , } \\
a_{1} & \text { if } x=a_{n} \text { and } n \text { is odd }, \\
x & \text { otherwise },\end{cases} \\
& x \beta= \begin{cases}a_{n-1} & \text { if } x=a_{n} \text { for } n \in N-\{1\}, \\
x & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
x \gamma= \begin{cases}a_{n-2} & \text { if } x=a_{n} \text { for } n \in N-\{1,2\}, \\ a_{1} & \text { if } x=a_{1} \text { or } x=a_{2}, \\ x & \text { otherwise } .\end{cases}
$$

Since $\operatorname{Im} \alpha=\operatorname{Im} \beta=\operatorname{Im} \gamma=X, \alpha, \beta, \gamma \in E_{X}$. Set $B=(\alpha)_{b}$, then $B=\alpha E_{X} \alpha \cup\{\alpha\}$.
Next, we shall show that $\alpha \beta=\gamma \alpha$. Since $x \alpha=x \beta=x \gamma=x$ for all $x \in X-$
$\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, it follows that $x \alpha \beta=x=x \gamma \alpha$ for all $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Next, to show that $a_{n} \alpha \beta=a_{n} \gamma \alpha$ for all $n \in N$, let n be given.

Case 1: $n=1$. Then $a_{n} \alpha \beta=a_{1} \alpha \beta=a_{1} \beta=a_{1}=a_{1} \alpha=a_{1} \gamma \alpha=a_{n} \gamma \alpha$.
Case 2: $n=2$. Then $a_{n} \alpha \beta=a_{2} \alpha \beta=a_{1} \beta=a_{1}=a_{1} \alpha=a_{2} \gamma \alpha=a_{n} \gamma \alpha$.
Case 3: $n=3$. Then $a_{n} \alpha \beta=a_{3} \alpha \beta=a_{1} \beta=a_{1}=a_{1} \alpha=a_{3} \gamma \alpha=a_{n} \gamma \alpha$.

Case 4: $n \geq 4$ and n is even. Then $\frac{n}{2} \in N-\{1\}, n-2 \in N$ and $n-2$ is even, so $a_{n} \alpha \beta=a_{\frac{n}{2}} \beta=a_{\frac{n}{2}-1}=a_{\frac{n-2}{2}}=a_{n-2} \alpha=a_{n} \gamma \alpha$.

Case 5: $n \geq 4$ and n is odd. Then $n-2 \in N$ and $n-2$ is odd, so $a_{n} \alpha \beta=a_{1} \beta=a_{1}=$ $a_{n-2} \alpha=a_{n} \gamma \alpha$.

Now we have $\alpha \beta=\gamma \alpha$. Let $\lambda=\alpha \beta$. Then $\lambda \in \alpha E_{X} \cap E_{X} \alpha \subseteq B E_{X} \cap E_{X} B$. Since $a_{4} \alpha \beta=a_{2} \beta=a_{1} \neq a_{2}=a_{4} \alpha$, we have that $\lambda \neq \alpha$. Suppose that $\lambda \in \alpha E_{X} \alpha$. Then λ $=\alpha \eta \alpha$ for some $\eta \in E_{X}$. If $x \in X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, then $x=x \alpha \beta=x \alpha \eta \alpha=$ $(x \eta) \alpha$, so by the definition of α, we have $x \eta=x$. Thus

$$
\begin{equation*}
\left(X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right) \eta=X-\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \tag{1}
\end{equation*}
$$

By the definition of α, we have that for $k \in N-\{1\}$ and $x \in X, x \alpha=a_{k}$ implies that $x=a_{2 k}$. But for $n \in N-\{1,2\}, a_{n-1}=a_{n} \beta=a_{2 n} \alpha \beta=a_{2 n} \alpha \eta \alpha=\left(a_{n} \eta\right) \alpha$, so $a_{n} \eta=a_{2(n-1)}$ for all $n \in N-\{1,2\}$. It follows that

$$
\begin{equation*}
\left(\left\{a_{3}, a_{4}, a_{5}, \ldots\right\}\right) \eta=\left\{a_{4}, a_{6}, a_{8}, \ldots\right\} . \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\left(X-\left\{a_{1}, a_{2}\right\}\right) \eta=X--\left\{a_{1}, a_{2}, a_{3}, a_{5}, a_{7}, \ldots\right\}
$$

which is impossible since $\eta: X \rightarrow X$ and $\operatorname{Im} \eta=X$. This proves that $\lambda \notin \alpha E_{X} \alpha$. Then $\lambda \notin \alpha E_{X} \alpha \cup\{\alpha\}$ since $\lambda \neq \alpha$. But $B=\alpha E_{X} \alpha \cup\{\alpha\}$, so $\lambda \notin B$. Because $\lambda \in$ $B E_{X} \cap E_{X} B$, we get $\lambda \in\left(B E_{X} \cap E_{X} B\right)-B$. Thus B is not a quasi-ideal of E_{X}. Consequently, $E_{X} \notin \boldsymbol{B Q}$.

Hence we prove that $E_{X} \in \boldsymbol{B} \boldsymbol{Q}$ if and only if X is finite.

To prove that C_{I} and $D_{I} \notin \boldsymbol{B} \boldsymbol{Q}$ for any interval I on R with $|I|>1$, we first note that for such an interval I, there exist $a, b \in I$ such that $a<b$ which implies that $[a, b] \subseteq I$ since I is an interval.

For any map α and $A \subseteq \operatorname{Dom} \alpha$, let $\left.\alpha\right|_{\text {A }}$ denote the restriction of α to A.

Theorem 4.3. For an interval I on \boldsymbol{R} with $/ I />I, C_{I} \notin \boldsymbol{B} \boldsymbol{Q}$.

Proof. Assume that I is an interval on R and $|I|>1$. To show that $C_{I} \notin B Q$, let a, $b \in I$ be such that $a<b$. Then $[a, b] \subseteq I$. Since $\frac{a+b}{2}$ is the middle point of $[a, b], \frac{a+b}{2} \in I$. Also $\frac{3 a+b}{4} \in I$ since $\frac{3 a+b}{4}=\frac{1}{2}\left(a+\frac{a+b}{2}\right)$ which is the middle point of $\left[a, \frac{a+b}{2}\right]$ and $\left[a, \frac{a+b}{2}\right] \subseteq[a, b] \subseteq I$. If $x \in R$ is such that $\frac{a+b}{2}<x \leq b$, then $\frac{3 a+b}{2}=a+\frac{a+b}{2}<a+x \leq a+b$ and so $\frac{3 a+b}{4}<$ $\frac{a+x}{2} \leq \frac{a+b}{2}$. Therefore we have $\frac{a+x}{2} \in I$ for every $x \in \boldsymbol{R}$ such that $\frac{a+b}{2}<$ $x \leq b$. Next, we define $\alpha: I \rightarrow I$ by

$$
x \alpha= \begin{cases}x & \text { if } x \leq \frac{3 a+b}{4} \\ \frac{3 a+b}{4} & \text { if } \frac{3 a+b}{4}<x \leq \frac{a+b}{2}, \\ \frac{a+x}{2} & \text { if } \frac{a+b}{2}<x \leq b, \\ \frac{a+b}{2} & \text { if } x>b\end{cases}
$$

Then α is continuous on I, so $\alpha \in C_{I}$. The graph of α on $[a, b]$ can be given as follows:
(ab)

Since $\frac{7 a+b}{8}=\frac{1}{2}\left(a+\frac{3 a+b}{4}\right), \frac{7 a+b}{8}$ is the middle point of $\left[a, \frac{3 a+b}{4}\right]$.
From the graph of α, we have

$$
\begin{equation*}
x \alpha^{-1}=\{x\} \text { for all } x \in\left(\frac{7 a+b}{8}, \frac{3 a+b}{4}\right) . \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x \alpha^{-1}=\{2 x-a\} \text { for all } x \in\left(\frac{3 a+b}{4}, \frac{a+b}{2}\right) . \tag{2}
\end{equation*}
$$

Set $B=(\alpha)_{b}$. Then $B=\alpha C_{l} \alpha \cup\{\alpha\}$. To show that B is not a quasi-ideal of C_{l}, define $\beta: I \rightarrow I$ by

$$
x \beta= \begin{cases}\frac{7 a+b}{8} & \text { if } x \leq \frac{7 a+b}{8} \\ x & \text { if } x>\frac{7 a+b}{8}\end{cases}
$$

Then β is continuous on I, so $\beta \in C_{I}$. We can give the graph of β on $[a, b]$ as follows :

We claim that $\alpha \beta=\beta \alpha$. To prove the claim, we first note that

$$
\begin{align*}
& x \alpha=x \text { for all } x \in \operatorname{In}\left(-\infty, \frac{3 a+b}{4}\right] . \tag{3}\\
& \left(I \cap\left[\frac{7 a+b}{8}, \infty\right)\right) \alpha \subseteq I \cap\left[\frac{7 a+b}{8} \infty\right) . \tag{4}\\
& \left(I \cap\left(-\infty, \frac{7 a+b}{8}\right]\right) \beta=\left\{\frac{7 a+b}{8}\right\} . \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
x \beta=x \text { for all } x \in I \cap\left[\frac{7 a+b}{8}, \infty\right) \tag{6}
\end{equation*}
$$

Now we are ready to show that $\alpha \beta=\beta \alpha$. Let $x \in I$.
Case 1: $x \in I \cap\left(-\infty, \frac{7 a+b}{8}\right)$. From (3) and (5), we have $x \alpha \beta=x \beta=\frac{7 a+b}{8}$ and $x \beta \alpha=\left(\frac{7 a+b}{8}\right) \alpha=\frac{7 a+b}{8}$, so $x \alpha \beta=\frac{7 a+b}{8}=x \beta \alpha$.

Case 2: $x \in I \cap\left[\frac{7 a+b}{8}, \infty\right)$. From (4) and (6), $x \alpha \beta=x \alpha$. From (6), $x \beta \alpha=x \alpha$. Then $x \alpha \beta=x \alpha=x \beta \alpha$.

Now we have $\alpha \beta=\beta \alpha$. Let $\lambda=\alpha \beta$. Then $\lambda=\alpha \beta=\beta \alpha \in \alpha C_{1} \cap C_{1} \alpha \subseteq B C_{/} \cap$ $C_{l} B$. From (3) and (5), we have $a \lambda=a \alpha \beta=a \beta=\frac{7 a+b}{8} \neq a=a \alpha$, so $\lambda \neq \alpha$. To show that $\lambda \notin \alpha C_{l} \alpha$, suppose that $\lambda \in \alpha C_{l} \alpha$. Then $\lambda=\alpha \eta \alpha$ for some $\eta \in C_{l}$, so $\alpha \beta=\alpha \eta \alpha$. From (3) and (6), we have that for every $x \in\left(\frac{7 a+b}{8}, \frac{3 a+b}{4}\right), x \alpha \beta=$ $x \beta=x$ and $x \alpha \eta \alpha=(x \eta) \alpha$. It follows from (1) that

$$
\begin{equation*}
x \eta=x \text { for all } x \in\left(\frac{7 a+b}{8}, \frac{3 a+b}{4}\right) . \tag{}
\end{equation*}
$$

Next, let $y \in\left(\frac{3 a+b}{4}, \frac{a+b}{2}\right)$. From (2), $(2 y-a) \alpha=y$ which implies that $(2 y-a) \alpha \beta=y \beta=y$ by (6). Then $(2 y-a) \lambda=y$ and $(2 y-a) \alpha \eta \alpha=(y \eta) \alpha$. It follows that $(y \eta) \alpha=y$. From (2) , $y \eta=2 y-a$.

This proves that

$$
\begin{equation*}
x \eta=2 x-a \text { for all } x \in\left(\frac{3 a+b}{4}, \frac{a+b}{2}\right) . \tag{**}
\end{equation*}
$$

\qquad

From $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we have that

$$
\lim _{x \rightarrow\left(\frac{3 a+b}{4}\right)^{-}} x \eta=\frac{3 a+b}{4}
$$

and

$$
\begin{array}{rl}
\lim _{\left.x \rightarrow \frac{3 a+b}{4}\right)^{\cdot}} x & x \\
=2\left(\frac{3 a+b}{4}\right)-a \\
& =\frac{3 a+b}{2}-a \\
& =\frac{a+b}{2} .
\end{array}
$$

Since $a \neq b, \frac{3 a+b}{4} \neq \frac{a+b}{2}$ which implies that $\lim _{x \rightarrow \frac{3 a+b}{4}, .} x \eta \neq \lim _{x=\frac{3 a+b}{4}, \cdot} x \eta$.
Hence η is not continuous at $\frac{3 a+b}{4}$ which is a contradiction. Therefore $\lambda \notin \alpha$ $C_{l} \alpha$, so $\lambda \notin \alpha C_{l} \alpha \cup\{\alpha\}=B$. Now we have $\lambda \in\left(B C_{l} \cap C_{l} B\right)-B$. Hence B is not a quasi-ideal of C_{l}.

This proves that $C_{I} \notin B Q$, as required.

Theorem 4.4. For any interval I on \boldsymbol{R} with $/ I />1, D_{I} \notin B Q$.

Proof. Let I be an interval on R and $|I|>1$. Then all the possible types of I are as follows :

1. $I=\boldsymbol{R}$,
2. $I=[c, \infty)$ or (c, ∞) for some $c \in \boldsymbol{R}$,
3. $I=(-\infty, d]$ or $(-\infty, d)$ for some $d \in \boldsymbol{R}$
and
4. $I=[c, d],[c, d),(c, d]$ or (c, d) for some $c, d \in \boldsymbol{R}$ such that $c<d$.

Choose $a, b \in \boldsymbol{R}$ such that $a<b$ and a, b have the following special properties. If I is of type $1, a, b$ can be any points in I. If I is of type 2 , choose $a=c$. If I is of type 3 , choose $b=d$. If I is of type 4 , choose $a=c$ and $b=d$. Then for every type of $I,(a, b) \subseteq I$.

Define $\mu: \boldsymbol{R} \rightarrow \boldsymbol{R}$ by

$$
x \mu=\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}
$$

for all $\boldsymbol{x} \in \boldsymbol{R}$. Then μ is differentiable on \boldsymbol{R} and the graph of μ on $[a, b]$ is as follows :

Observe that μ is decreasing on $\left(-\infty, \frac{a+b}{2}\right]$ and increasing on $\left[\frac{a+b}{2}, \infty\right)$.
From the definition of μ, we have

$$
\begin{aligned}
b \mu=a \mu & =\frac{1}{b-a}\left(a-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} \\
& =\frac{b-a}{4}+\frac{a+b}{2} \\
& =\frac{a+3 b}{4} .
\end{aligned}
$$

Since $\frac{a+3 b}{4}$ is the middle point of $\left[\frac{a+b}{2}, b\right], a \mu=b \mu \in(a, b)$. It follows from what we choose a and b that $I \mu \subseteq I$ for every type of I. Let $\alpha=\left.\mu\right|_{I}$. Then
$\alpha: I \rightarrow I$ and

$$
\begin{equation*}
x \alpha=\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} . \tag{1}
\end{equation*}
$$

for all $x \in I$. Since μ is differentiable on \boldsymbol{R}, we have $\alpha \in D_{l}$. Set $B=(\alpha)_{b}$. Then $B=\alpha D_{1} \alpha \cup\{\alpha\}$. Let $\zeta_{1}, \zeta_{2}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be the straight lines define by

$$
x \zeta_{1}=\frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}
$$

and

$$
x \zeta_{2}=\frac{1}{4}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}
$$

for all $x \in \boldsymbol{R}$. Then ζ_{1} and ζ_{2} are increasing functions on \boldsymbol{R} and

$$
\begin{aligned}
a \zeta_{1} & =\frac{1}{2}\left(a-\frac{a+b}{2}\right)+\frac{a+b}{2} \\
& =\frac{1}{2}\left(\frac{a-b}{2}\right)+\frac{a+b}{2} \\
& =\frac{3 a+b}{4}, \\
b \zeta_{1} & =\frac{1}{2}\left(b-\frac{a+b}{2}\right)+\frac{a+b}{2} \\
& =\frac{1}{2}\left(\frac{b-a}{2}\right)+\frac{a+b}{2} \\
& =\frac{a+3 b}{4}, \\
a \zeta_{2} & =\frac{1}{4}\left(a-\frac{a+b}{2}\right)+\frac{a+b}{2} \\
& =\frac{1}{4}\left(\frac{a-b}{2}\right)+\frac{a+b}{2}
\end{aligned}
$$

$$
=\frac{5 a+3 b}{8}
$$

and

$$
\begin{aligned}
b \zeta_{2} & =\frac{1}{4}\left(b-\frac{a+b}{2}\right)+\frac{a+b}{2} \\
& =\frac{1}{4}\left(\frac{b-a}{2}\right)+\frac{a+b}{2} \\
& =\frac{3 a+5 b}{8} .
\end{aligned}
$$

Since $\frac{3 a+b}{4}$ is the middle point of $\left[a, \frac{a+b}{2}\right]$ and $\frac{a+3 b}{4}$ is the middle point of $\left[\frac{a+b}{2}, b\right]$, it follows that $a \zeta_{1}, b \zeta_{1} \in(a, b)$. We have that $\frac{5 a+3 b}{8}$ is the middle point of $\left[\frac{3 a+b}{4}, \frac{a+b}{2}\right]$ and $\frac{3 a+5 b}{8}$ is the middle point of $\left[\frac{a+b}{2}, \frac{a+3 b}{4}\right]$. It follows that $a \zeta_{2}, b \zeta_{2} \in(a, b)$. Consequently, $I \zeta_{1} \subseteq I$ and $I \zeta_{2}$ $\subseteq I$. Let $\beta=\zeta_{1} \mid$, and $\gamma=\zeta_{2} \mid$, . Then $\beta, \gamma \in D_{I}$ and

$$
x \beta=\frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}
$$

and

$$
x y=\frac{1}{4}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}
$$

for all $x \in I$.
Next, to show that $\alpha \gamma=\beta \alpha$, let $x \in I$. Then

$$
\begin{aligned}
x \alpha \gamma & =\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \gamma \\
& =\frac{1}{4}\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}-\frac{a+b}{2}\right)+\frac{a+b}{2} \\
& =\frac{1}{4(b-a)}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
x \beta \alpha & =\left(\frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}\right) \alpha \\
& =\frac{1}{b-a}\left(\frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} \\
& =\frac{1}{4(b-a)}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} .
\end{aligned}
$$

Hence $\alpha \gamma=\beta \alpha$. Let $\lambda=\alpha \gamma$. Then

$$
\begin{equation*}
x \lambda=\frac{1}{4(b-a)}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} \tag{2}
\end{equation*}
$$

for all $x \in I$ and $\lambda=\alpha \gamma=\beta \alpha \in \alpha D_{l} \cap D_{l} \alpha \subseteq B D_{l} \cap D_{l} B$. We have that $\lambda \neq \alpha$ since $a \neq b$,

$$
\begin{aligned}
\left(\frac{3 a+b}{4}\right) \lambda & =\left(\frac{3 a+b}{4}\right) \alpha \gamma \\
& =\left(\frac{1}{b-a}\left(\frac{3 a+b}{4}-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \gamma \\
& =\left(\frac{1}{b-a}\left(\frac{a-b}{4}\right)^{2}+\frac{a+b}{2}\right) \gamma \\
& =\left(\frac{7 a+9 b}{16}\right) \gamma \\
& =\frac{1}{4}\left(\frac{7 a+9 b}{16}-\frac{a+b}{2}\right)+\frac{a+3}{2} \\
& =\frac{31 a+33 b}{64}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{3 a+b}{4}\right) \alpha & =\frac{1}{b-a}\left(\frac{3 a+b}{4}-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} \\
& =\frac{1}{b-a}\left(\frac{a-b}{4}\right)^{2}+\frac{a+b}{2} \\
& =\frac{b-a}{16}+\frac{a+b}{2}
\end{aligned}
$$

$$
=\frac{7 a+9 b}{16} .
$$

Next, suppose that $\lambda \in \alpha D_{l} \alpha$. Then there exists $\eta \in D_{I}$ such that $\lambda=\alpha \eta \alpha$. Then $x \lambda=((x \alpha) \eta) \alpha$ for all $x \in I$. By (1) and (2), we have that for every $x \in I$,

$$
\begin{aligned}
& \frac{1}{4(b-a)}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2} \\
& =\left(\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \eta\right) \alpha \\
& =\frac{1}{b-a}\left(\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \eta-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}
\end{aligned}
$$

which implies that for every $x \in I$,

$$
\frac{1}{4}\left(x-\frac{a+b}{2}\right)^{2}=\left(\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \eta-\frac{a+b}{2}\right)^{2} .
$$

Then for $x \in I$,

$$
\begin{equation*}
\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right) \eta= \pm \frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2} . \tag{3}
\end{equation*}
$$

Fix $c \in\left(\frac{a+b}{2}, b\right)$. Then $\left[\frac{a+b}{2}, c\right) \subseteq I$ and for $t \in\left[\frac{a+b}{2}, c \alpha\right)$, there exists x $\in\left[\frac{a+b}{2}, c\right)$ such that $\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}=t$ which implies $x=$ $\sqrt{(b-a)\left(t-\frac{a+b}{2}\right)}+\frac{a+b}{2}$. Therefore by (3), for $t \in\left[\frac{a+b}{2}, c\right)$,

$$
t \eta= \pm \frac{1}{2} \sqrt{(b-a)\left(t-\frac{a+b}{2}\right)}+\frac{a+b}{2}
$$

Then $\left(\frac{a+b}{2}\right) \eta=\frac{a+b}{2}$ and for $t \in\left(\frac{a+b}{2}, c \alpha\right), t \eta \neq \frac{a+b}{2}$. Since η is differentiable on I, η is continuous on $\left(\frac{a+b}{2}, c \alpha\right)$, so $\left(\frac{a+b}{2}, c \alpha\right) \eta$ is an interval on \boldsymbol{R}. Then if there exist $t_{1}, t_{2} \in\left(\frac{a+b}{2}, c \alpha\right)$ such that

$$
t_{1} \eta=\frac{1}{2} \sqrt{(b-a)\left(t_{1}-\frac{a+b}{2}\right)}+\frac{a+b}{2}
$$

and

$$
t_{2} \eta=-\frac{1}{2} \sqrt{(b-a)\left(t_{2}-\frac{a+b}{2}\right)}+\frac{a+b}{2},
$$

then $\frac{a+b}{2} \in\left(t_{2} \eta, t, \eta\right) \subseteq\left(\frac{a+b}{2}, c \alpha\right) \eta$ which is a contradiction since $t \eta \neq$ $\frac{a+b}{2}$ for every $t \in\left(\frac{a+b}{2}, c \alpha\right)$. Hence we have

$$
t \eta=\frac{1}{2} \sqrt{(b-a)\left(t-\frac{a+b}{2}\right)}+\frac{a+b}{2} \text { for all } t \in\left(\frac{a+b}{2}, c \alpha\right)
$$

or

$$
t \eta=-\frac{1}{2} \sqrt{(b-a)\left(t /-\frac{a+b}{2}\right)}+\frac{a+b}{2} \text { for all } t \in\left(\frac{a+b}{2}, c \alpha\right)
$$

Assume that $t \eta=\frac{1}{2} \sqrt{(b-a)\left(t-\frac{a+b}{2}\right)}+\frac{a+b}{2}$ for all $t \in\left(\frac{a+b}{2}, c \alpha\right)$. Then for $h>0$ with $\frac{a+b}{2}+h \in\left(\frac{a+b}{2}, c a\right)$,

$$
\begin{aligned}
\frac{1}{h}\left(\left(\frac{a+b}{2}+h\right) \eta-\left(\frac{a+b}{2}\right) \eta\right) & =\frac{1}{h}\left(\frac{1}{2} \sqrt{(b-a) h}+\frac{a+b}{2}-\frac{a+b}{2}\right) \\
& =\frac{1}{2}\left(\frac{\sqrt{b-a}}{\sqrt{h}}\right)
\end{aligned}
$$

which implies that $\lim _{h \rightarrow 0^{+}} \frac{1}{h}\left(\left(\frac{a+b}{2}+h\right) \eta-\left(\frac{a+b}{2}\right) \eta\right)$ does not exist. Then η is not differentiable at $\frac{a+b}{2}$. Similarly, if $t \eta=-\frac{1}{2} \sqrt{(b-a)\left(t-\frac{a+b}{2}\right)}+\frac{a+b}{2}$ for all $t \in\left(\frac{a+b}{2}, c \alpha\right)$, we also have that η is not differentiable at $\frac{a+b}{2}$.

This proves that $\lambda \notin \alpha D_{l} \alpha \cup\{\alpha\}$, so $\lambda \notin B$. Hence $\lambda \in B D_{l} B-B$, so B is not a quasi-ideal of D_{l}. Consequently, $D_{l} \notin \boldsymbol{B} \boldsymbol{Q}$.

Therefore the theorem is completely proved.

