CHAPTER IV

TRANSFORMATION SEMIGROUPS

The notation P_X , T_X , I_X , M_X , E_X and G_X where X is a set and the notation C_I and D_I where I is any interval on **R** with |I| > 1 are recalled from Chapter I, page 6. Again, since P_X , T_X , I_X and G_X are regular for any set X, we deduce from Theorem 1.1 that they are members of **BQ** for any set X. We know that $M_X = E_X = G_X$ if and only if X is finite. Then for any finite set X, M_X and E_X belong to **BQ**. We show in this chapter that $M_X \notin BQ$ and $E_X \notin BQ$ if X is infinite. This is the first purpose. Consequently, by Theorem 1.1 and Theorem 1.2, both M_X and E_X are not regular, not left simple and not right simple if X is infinite. In fact, these can be proved directly. The second purpose is to show that $C_I \notin BQ$ and $D_I \notin BQ$ for any nonempty interval I with |I| > 1. Observe that all of these semigroups have an identity.

First, we shall introduce a direct proof that both M_X and E_X are not regular for the case that X is an infinite set. Since X is infinite, X contains a countably infinite subset $\{a_1, a_2, a_3, ...\}$ where $a_i \neq a_j$ if $i \neq j$. Define $\alpha, \beta: X \to X$ by

$$x\alpha = \begin{cases} a_{2n} & \text{if } x = a_n \text{ for some } n \in N, \\ x & \text{otherwise,} \end{cases}$$

 $x\beta = \begin{cases} a_n & \text{if } x = a_n \text{ for some even integer } n \in N, \\ a_1 & \text{if } x = a_n \text{ for some odd integer } n \in N, \\ x & \text{otherwise }. \end{cases}$

Then $\alpha \in M_X$ and $\beta \in E_X$. Suppose there exists $\lambda \in M_X$ such that $\alpha = \alpha \lambda \alpha$. Then for $n \in N$, $a_n \alpha = a_n \alpha \lambda \alpha = (a_{2n}\lambda)\alpha$. Since α is one-to-one, $a_{2n}\lambda = a_n$ for every $n \in$ N. Thus $\{a_2, a_4, a_6, \ldots\}\lambda = \{a_1, a_2, a_3, \ldots\}$. If $x \in X - \{a_1, a_2, a_3, \ldots\}$, then $x\alpha =$

I19A66365

 $x\alpha\lambda\alpha = (x\lambda)\alpha$, so $x\lambda = x$. This proves that $(X - \{a_1, a_3, a_5, ...\})\lambda = X$.

Consequently, λ is not one-to-one, a contradiction. Hence M_X is not regular.

Next, suppose that there exists $\mu \in E_X$ such that $\beta = \beta \mu \beta$. Then for every odd integer $n \in N$, $a_1 = a_n\beta = a_n\beta\mu\beta = (a_1\mu)\beta$ which implies that $a_1\mu \in \{a_2\} \cup$ $\{a_1, a_3, a_5, \ldots\}$. If $n \in N - \{1\}$, $a_n = a_{2n}\beta = a_{2n}\beta\mu\beta = (a_n\mu)\beta$, so by the definition of β , $a_n\mu = a_{2n}$. If $x \in X - \{a_1, a_2, a_3, \ldots\}$, then $x = x\beta = x\beta\mu\beta = (x\mu)\beta$ which implies that $x\mu = x$. This proves that $X\mu = \{a_1\mu\} \cup \{a_4, a_6, a_8, \ldots\} \cup (X - \{a_1, a_2, a_3, \ldots\})$. Since $a_1\mu$ is only one value in $\{a_2\} \cup \{a_1, a_3, a_5, \ldots\}$, it follows that $X\mu \neq X$, a contradiction. Hence E_X is not regular.

If X is an infinite set, it can be easily proved that both M_X and E_X are neither left simple nor right simple because $M_X - G_X$ and $E_X - G_X$ are ideals of M_X and E_X , respectively. To prove these, let $\alpha \in M_X$, $\beta \in E_X$, $\gamma \in M_X - G_X$ and $\lambda \in E_X - G_X$. Then $\alpha\gamma$, $\gamma\alpha \in M_X$ and $\beta\lambda$, $\lambda\beta \in E_X$. Since $\operatorname{Im}\alpha\gamma \subseteq \operatorname{Im}\gamma \neq X$, $\alpha\gamma \in M_X - G_X$. If $\gamma\alpha \in G_X$, then $\operatorname{Im}\alpha \supseteq \operatorname{Im}\gamma\alpha = X$, so $\alpha \in G_X$ which implies that $\gamma = (\gamma\alpha)\alpha^{-1} \in G_X$, a contradiction. Thus $\gamma\alpha \in M_X - G_X$. Since λ is not one-to-one, so $\lambda\beta \in E_X - G_X$. If $\beta\lambda \in G_X$, then β is one-to-one, so $\beta \in G_X$ which implies that $\lambda = \beta^{-1}(\beta\lambda) \in G_X$, a contradiction. Hence $\beta\lambda \in E_X - G_X$

Theorem 4.1. For a set X, $M_X \in BQ$ if and only if X is finite.

Proof. As mentioned above, $M_X \in BQ$ if X is finite.

For the converse, assume that X is an infinite set. Then X contains a countably infinite subset. Let $\{a_i \mid i \in N\} \subseteq X$ where $a_i \neq a_j$ if $i \neq j$. Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} a_{2n} & \text{if } x = a_n \text{ for some } n \in N, \\ x & \text{otherwise } . \end{cases}$$

$$x\beta = \begin{cases} a_{n+2} & \text{if } x = a_n \text{ for some } n \in N, \\ x & \text{otherwise} \end{cases}$$

,

$$x\gamma = \begin{cases} a_{n+1} & \text{if } x = a_n \text{ for some } n \in N, \\ x & \text{otherwise} \end{cases}$$

Then β , $\gamma \in M_X$. For $n \in N$, we have that $a_n \alpha \beta = a_{2n}\beta = a_{2n+2} = a_{2(n+1)} = a_{n+1}\alpha = a_n\gamma\alpha$. If $x \in X - \{a_1, a_2, a_3, \ldots\}$, then $x\alpha\beta = x = x\gamma\alpha$. This proves that $\alpha\beta = \gamma\alpha$. Therefore $\alpha\beta = \gamma\alpha \in \alpha M_X \cap M_X\alpha$. Let $\lambda = \alpha\beta$. Then $\lambda \in \alpha M_X \cap M_X\alpha \subseteq BM_X \cap M_X\beta$ since $\alpha \in B$. To show that $\lambda \notin B$. Suppose that $\lambda \in B$. Then $\lambda \in \alpha M_X\alpha \cup \{\alpha\}$. Since $a_1\lambda = a_1\alpha\beta = a_2\beta = a_4 \neq a_2 = a_1\alpha$, we have $\lambda \neq \alpha$. Then $\lambda \in \alpha M_X\alpha$, so $\lambda = \alpha\eta\alpha$ for some $\eta \in M_X$. It follows that for $n \in N$, $a_{n+1}\alpha = a_n\gamma\alpha = a_n\alpha\beta = a_n\lambda = a_n\alpha\eta\alpha = (a_{2n}\eta)\alpha$ which implies that $a_{2n}\eta = a_{n+1}$ for all $n \in N$ because α is one-to-one. Consequently,

$$\{a_2, a_4, a_6, \ldots\} \eta = \{a_2, a_3, a_4, \ldots\}.$$
 (1)

If $x \in X$ - { $a_1, a_2, a_3, ...$ }, then $x\alpha = x = x\alpha\beta = x\alpha\eta\alpha = (x\eta)\alpha$ which implies that $x = x\eta$ since α is one-to-one. Thus

$$(X - \{a_1, a_2, a_3, \ldots\})\eta = X - \{a_1, a_2, a_3, \ldots\}$$
.(2)

From (1) and (2), we have

$$(X - \{a_1, a_3, a_5, \ldots\})\eta = X - \{a_1\}$$

which is impossible since η is one-to-one. Hence $\lambda \notin B$, so $\lambda \in (BM_X \cap M_X B) - B$. Thus $BM_X \cap M_X B \not\subseteq B$. Now we have that B is a bi-ideal but not a quasi-ideal of M_X . Therefore $M_X \notin BQ$.

Hence the theorem is completely proved.

Theorem 4.2. For a set X, $E_X \in BQ$ if and only if X is finite.

Proof. As mentioned previously, $E_X \in BQ$ if X is a finite set.

Conversely, assume that X is an infinite set. Let $\{a_i \mid i \in N\} \subseteq X$ where $a_i \neq a_j$ if $i \neq j$. Define $\alpha, \beta, \gamma: X \to X$ by

$$x\alpha = \begin{cases} a_n & \text{if } x = a_n \text{ and } n \text{ is even }, \\ a_1 & \text{if } x = a_n \text{ and } n \text{ is odd }, \\ x & \text{otherwise }, \end{cases}$$

$$x\beta = \begin{cases} a_{n-1} & \text{if } x = a_n \text{ for } n \in N - \{1\}, \\ x & \text{otherwise} \end{cases}$$

and

.

$$x\gamma = \begin{cases} a_{n-2} & \text{if } x = a_n \text{ for } n \in N - \{1, 2\}, \\ a_1 & \text{if } x = a_1 \text{ or } x = a_2, \\ x & \text{otherwise }. \end{cases}$$

Since $\operatorname{Im} \alpha = \operatorname{Im} \beta = \operatorname{Im} \gamma = X$, α , β , $\gamma \in E_X$. Set $B = (\alpha)_b$, then $B = \alpha E_X \alpha \cup \{\alpha\}$. Next, we shall show that $\alpha\beta = \gamma\alpha$. Since $x\alpha = x\beta = x\gamma = x$ for all $x \in X - \{a_1, a_2, a_3, \ldots\}$, it follows that $x\alpha\beta = x = x\gamma\alpha$ for all $x \in X - \{a_1, a_2, a_3, \ldots\}$. Next, to show that $a_n\alpha\beta = a_n\gamma\alpha$ for all $n \in N$, let *n* be given. **Case 1:** n = 1. Then $a_n\alpha\beta = a_1\alpha\beta = a_1\beta = a_1 = a_1\alpha = a_1\gamma\alpha = a_n\gamma\alpha$. **Case 2:** n = 2. Then $a_n\alpha\beta = a_2\alpha\beta = a_1\beta = a_1 = a_1\alpha = a_2\gamma\alpha = a_n\gamma\alpha$. **Case 3:** n = 3. Then $a_n\alpha\beta = a_3\alpha\beta = a_1\beta = a_1 = a_1\alpha = a_3\gamma\alpha = a_n\gamma\alpha$.

Case 4: $n \ge 4$ and *n* is even. Then $\frac{n}{2} \in N - \{1\}, n-2 \in N$ and n-2 is even, so $a_n \alpha \beta = a_n \beta = a_{n-2} = a_{n-2} \alpha = a_n \gamma \alpha$. Case 5: $n \ge 4$ and *n* is odd. Then $n-2 \in N$ and n-2 is odd, so $a_n \alpha \beta = a_1 \beta = a_1 = a_{n-2} \alpha = a_n \gamma \alpha$. Now we have $\alpha \beta = \gamma \alpha$. Let $\lambda = \alpha \beta$. Then $\lambda \in \alpha E_X \cap E_X \alpha \subseteq BE_X \cap E_X \beta$. Since $a_4 \alpha \beta = a_2 \beta = a_1 \neq a_2 = a_4 \alpha$, we have that $\lambda \neq \alpha$. Suppose that $\lambda \in \alpha E_X \alpha$. Then λ

= $\alpha \eta \alpha$ for some $\eta \in E_X$. If $x \in X - \{a_1, a_2, a_3, \ldots\}$, then $x = x \alpha \beta = x \alpha \eta \alpha = \alpha$

 $(x\eta)\alpha$, so by the definition of α , we have $x\eta = x$. Thus

$$(X - \{a_1, a_2, a_3, \ldots\})\eta = X - \{a_1, a_2, a_3, \ldots\}$$
.(1)

By the definition of α , we have that for $k \in N - \{1\}$ and $x \in X$, $x\alpha = a_k$ implies that $x = a_{2k}$. But for $n \in N - \{1, 2\}$, $a_{n-1} = a_n\beta = a_{2n}\alpha\beta = a_{2n}\alpha\eta\alpha = (a_n\eta)\alpha$, so $a_n\eta = a_{2(n-1)}$ for all $n \in N - \{1, 2\}$. It follows that

$$(\{a_3, a_4, a_5, \ldots\})\eta = \{a_4, a_6, a_8, \ldots\}$$
.(2)

From (1) and (2), we have

$$(X - \{a_1, a_2\})\eta = X - \{a_1, a_2, a_3, a_5, a_7, \ldots\}$$

which is impossible since $\eta : X \to X$ and $\operatorname{Im} \eta = X$. This proves that $\lambda \notin \alpha E_X \alpha$. Then $\lambda \notin \alpha E_X \alpha \cup \{\alpha\}$ since $\lambda \neq \alpha$. But $B = \alpha E_X \alpha \cup \{\alpha\}$, so $\lambda \notin B$. Because $\lambda \in BE_X \cap E_X B$, we get $\lambda \in (BE_X \cap E_X B) - B$. Thus B is not a quasi-ideal of E_X . Consequently, $E_X \notin BQ$.

Hence we prove that $E_X \in BQ$ if and only if X is finite.

To prove that C_I and $D_I \notin BQ$ for any interval I on R with |I| > 1, we first note that for such an interval I, there exist $a, b \in I$ such that a < b which implies that $[a,b] \subseteq I$ since I is an interval.

For any map α and $A \subseteq \text{Dom}\alpha$, let $\alpha|_A$ denote the restriction of α to A.

Theorem 4.3. For an interval I on **R** with |I| > 1, $C_I \notin BQ$.

Proof. Assume that *I* is an interval on *R* and |I| > 1. To show that $C_I \notin BQ$, let *a*, $b \in I$ be such that a < b. Then $[a, b] \subseteq I$. Since $\frac{a+b}{2}$ is the middle point of $[a, b], \frac{a+b}{2} \in I$. Also $\frac{3a+b}{4} \in I$ since $\frac{3a+b}{4} = \frac{1}{2}(a + \frac{a+b}{2})$ which is the middle point of $[a, \frac{a+b}{2}]$ and $[a, \frac{a+b}{2}] \subseteq [a, b] \subseteq I$. If $x \in R$ is such that $\frac{a+b}{2} < x \le b$, then $\frac{3a+b}{2} = a + \frac{a+b}{2} < a+x \le a+b$ and so $\frac{3a+b}{4} < \frac{a+b}{2} < \frac{a+x}{2} \le \frac{a+b}{2}$. Therefore we have $\frac{a+x}{2} \in I$ for every $x \in R$ such that $\frac{a+b}{2} < x \le b$. Next, we define $\alpha : I \to I$ by

$$x\alpha = \begin{cases} x & \text{if } x \leq \frac{3a+b}{4}, \\ \frac{3a+b}{4} & \text{if } \frac{3a+b}{4} < x \leq \frac{a+b}{2}, \\ \frac{a+x}{2} & \text{if } \frac{a+b}{2} < x \leq b, \\ \frac{a+b}{2} & \text{if } x > b. \end{cases}$$

Then α is continuous on I, so $\alpha \in C_I$. The graph of α on [a, b] can be given as follows:

พอสมุดกลาง สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Since
$$\frac{7a+b}{8} = \frac{1}{2}(a+\frac{3a+b}{4})$$
, $\frac{7a+b}{8}$ is the middle point of $[a, \frac{3a+b}{4}]$.

From the graph of α , we have

$$x\alpha^{-1} = \{x\} \text{ for all } x \in (\frac{7a+b}{8}, \frac{3a+b}{4})$$
.(1)

and

$$x\alpha^{-1} = \{2x-a\} \text{ for all } x \in (\frac{3a+b}{4}, \frac{a+b}{2}).$$
 (2)

Set $B = (\alpha)_b$. Then $B = \alpha C_I \alpha \cup \{\alpha\}$. To show that B is not a quasi-ideal of C_I , define $\beta: I \to I$ by

$$x\beta = \begin{cases} \frac{7a+b}{8} & \text{if } x \leq \frac{7a+b}{8}, \\ x & \text{if } x > \frac{7a+b}{8}. \end{cases}$$

Then β is continuous on I, so $\beta \in C_I$. We can give the graph of β on [a, b] as follows :

$$x\alpha = x$$
 for all $x \in I \cap (-\infty, \frac{3a+b}{4}]$(3)

$$(I \cap (-\infty, \frac{7a+b}{8}])\beta = \{\frac{7a+b}{8}\}.$$
 (5)

.

$$x\beta = x \text{ for all } x \in I \cap [\frac{7a+b}{8}, \infty).$$
 (6)

Now we are ready to show that $\alpha\beta = \beta\alpha$. Let $x \in I$.

Case 1:
$$x \in I \cap (-\infty, \frac{7a+b}{8})$$
. From (3) and (5), we have $x\alpha\beta = x\beta = \frac{7a+b}{8}$ and

$$x\beta\alpha = (\frac{7a+b}{8})\alpha = \frac{7a+b}{8}$$
, so $x\alpha\beta = \frac{7a+b}{8} = x\beta\alpha$.

Case 2: $x \in I \cap [\frac{7a+b}{8}, \infty)$. From (4) and (6), $x\alpha\beta = x\alpha$. From (6), $x\beta\alpha = x\alpha$. Then $x\alpha\beta = x\alpha = x\beta\alpha$.

Now we have $\alpha\beta = \beta\alpha$. Let $\lambda = \alpha\beta$. Then $\lambda = \alpha\beta = \beta\alpha \in \alpha C_1 \cap C_1\alpha \subseteq BC_1 \cap C_1\beta$. From (3) and (5), we have $a\lambda = a\alpha\beta = a\beta = \frac{7a+b}{8} \neq a = a\alpha$, so $\lambda \neq \alpha$. To show that $\lambda \notin \alpha C_1\alpha$, suppose that $\lambda \in \alpha C_1\alpha$. Then $\lambda = \alpha\eta\alpha$ for some $\eta \in C_1$, so $\alpha\beta = \alpha\eta\alpha$. From (3) and (6), we have that for every $x \in (\frac{7a+b}{8}, \frac{3a+b}{4}), x\alpha\beta = x\beta = x$ and $x\alpha\eta\alpha = (x\eta)\alpha$. It follows from (1) that

$$x\eta = x \text{ for all } x \in \left(\frac{7a+b}{8}, \frac{3a+b}{4}\right).$$
(*)

Next, let $y \in (\frac{3a+b}{4}, \frac{a+b}{2})$. From (2), $(2y-a)\alpha = y$ which implies that $(2y-a)\alpha\beta = y\beta = y$ by (6). Then $(2y-a)\lambda = y$ and $(2y-a)\alpha\eta\alpha = (y\eta)\alpha$. It follows that $(y\eta)\alpha = y$. From (2), $y\eta = 2y - a$.

This proves that

$$x\eta = 2x - a$$
 for all $x \in (\frac{3a+b}{4}, \frac{a+b}{2})$(**)

From (*) and (**), we have that

$$\lim_{x \to (\frac{3a+b}{4})^{-}} x \eta = \frac{3a+b}{4}$$

and

.

$$\lim_{x \to (\frac{3a+b}{4})^{+}} x \eta = 2(\frac{3a+b}{4}) - a$$
$$= \frac{3a+b}{2} - a$$
$$= \frac{a+b}{2}.$$

Since $a \neq b$, $\frac{3a+b}{4} \neq \frac{a+b}{2}$ which implies that $\lim_{x \to (\frac{3a+b}{4})^*} x \eta \neq \lim_{x \to (\frac{3a+b}{4})^*} x \eta$.

Hence η is not continuous at $\frac{3a+b}{4}$ which is a contradiction. Therefore $\lambda \notin \alpha$ $C_{l}\alpha$, so $\lambda \notin \alpha C_{l}\alpha \cup \{\alpha\} = B$. Now we have $\lambda \in (BC_{l} \cap C_{l}B) - B$. Hence B is not a quasi-ideal of C_{l} .

This proves that $C_l \notin BQ$, as required.

Theorem 4.4. For any interval I on **R** with |I| > 1, $D_I \notin BQ$.

Proof. Let *I* be an interval on \mathbf{R} and |I| > 1. Then all the possible types of *I* are as follows :

1. $I = \mathbf{R}$, 2. $I = [c, \infty)$ or (c, ∞) for some $c \in \mathbf{R}$, 3. $I = (-\infty, d]$ or $(-\infty, d)$ for some $d \in \mathbf{R}$

and

4. I = [c, d], [c, d), (c, d] or (c, d) for some $c, d \in \mathbb{R}$ such that c < d. Choose $a, b \in \mathbb{R}$ such that a < b and a, b have the following special properties. If I is of type 1, a, b can be any points in I. If I is of type 2, choose a = c. If I is of type 3, choose b = d. If I is of type 4, choose a = c and b = d. Then for every type of I, $(a, b) \subseteq I$.

Define $\mu: \mathbf{R} \to \mathbf{R}$ by

$$x\mu = \frac{1}{b-a}(x - \frac{a+b}{2})^2 + \frac{a+b}{2}$$

Observe that μ is decreasing on $(-\infty, \frac{a+b}{2}]$ and increasing on $[\frac{a+b}{2}, \infty)$. From the definition of μ , we have

$$b\mu = a\mu = \frac{1}{b-a} (a - \frac{a+b}{2})^2 + \frac{a+b}{2}$$
$$= \frac{b-a}{4} + \frac{a+b}{2}$$
$$= \frac{a+3b}{4}.$$

Since $\frac{a+3b}{4}$ is the middle point of $\left[\frac{a+b}{2}, b\right]$, $a\mu = b\mu \in (a, b)$. It follows from what we choose a and b that $I\mu \subseteq I$ for every type of I. Let $\alpha = \mu |_I$. Then

 $\alpha: I \to I$ and

$$x\alpha = \frac{1}{b-a}(x - \frac{a+b}{2})^2 + \frac{a+b}{2} \qquad(1)$$

for all $x \in I$. Since μ is differentiable on R, we have $\alpha \in D_I$. Set $B = (\alpha)_b$. Then $B = \alpha D_I \alpha \cup \{\alpha\}$. Let $\zeta_1, \zeta_2 : R \to R$ be the straight lines define by

$$x\zeta_1 = \frac{1}{2}(x - \frac{a+b}{2}) + \frac{a+b}{2}$$

and

1

$$x\zeta_2 = \frac{1}{4}(x - \frac{a+b}{2}) + \frac{a+b}{2}$$

for all $x \in \mathbf{R}$. Then ζ_1 and ζ_2 are increasing functions on \mathbf{R} and

$$a\zeta_{1} = \frac{1}{2}(a - \frac{a+b}{2}) + \frac{a+b}{2}$$

$$= \frac{1}{2}(\frac{a-b}{2}) + \frac{a+b}{2}$$

$$= \frac{3a+b}{4} ,$$

$$b\zeta_{1} = \frac{1}{2}(b - \frac{a+b}{2}) + \frac{a+b}{2}$$

$$= \frac{1}{2}(\frac{b-a}{2}) + \frac{a+b}{2}$$

$$= \frac{a+3b}{4} ,$$

$$a\zeta_{2} = \frac{1}{4}(a - \frac{a+b}{2}) + \frac{a+b}{2}$$

$$= \frac{1}{4}(\frac{a-b}{2}) + \frac{a+b}{2}$$

$$=\frac{5a+3b}{8}$$

$$b\zeta_{2} = \frac{1}{4}(b - \frac{a+b}{2}) + \frac{a+b}{2}$$
$$= \frac{1}{4}(\frac{b-a}{2}) + \frac{a+b}{2}$$
$$= \frac{3a+5b}{8}.$$

Since $\frac{3a+b}{4}$ is the middle point of $[a, \frac{a+b}{2}]$ and $\frac{a+3b}{4}$ is the middle point of $[\frac{a+b}{2}, b]$, it follows that $a\zeta_1, b\zeta_1 \in (a, b)$. We have that $\frac{5a+3b}{8}$ is the middle point of $[\frac{3a+b}{4}, \frac{a+b}{2}]$ and $\frac{3a+5b}{8}$ is the middle point of $[\frac{a+b}{2}, \frac{a+3b}{4}]$. It follows that $a\zeta_2, b\zeta_2 \in (a, b)$. Consequently, $I\zeta_1 \subseteq I$ and $I\zeta_2$ $\subseteq I$. Let $\beta = \zeta_1 |_I$ and $\gamma = \zeta_2 |_I$. Then $\beta, \gamma \in D_I$ and

$$x\beta = \frac{1}{2}(x - \frac{a+b}{2}) + \frac{a+b}{2}$$

and

$$x\gamma = \frac{1}{4}(x - \frac{a+b}{2}) + \frac{a+b}{2}$$

for all $x \in I$.

Next, to show that $\alpha \gamma = \beta \alpha$, let $x \in I$. Then

$$x\alpha\gamma = \left(\frac{1}{b-a}\left(x - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}\right)\gamma$$
$$= \frac{1}{4}\left(\frac{1}{b-a}\left(x - \frac{a+b}{2}\right)^2 + \frac{a+b}{2} - \frac{a+b}{2}\right) + \frac{a+b}{2}$$
$$= \frac{1}{4(b-a)}\left(x - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}$$

and

$$x\beta\alpha = \left(\frac{1}{2}\left(x - \frac{a+b}{2}\right) + \frac{a+b}{2}\right)\alpha$$
$$= \frac{1}{b-a}\left(\frac{1}{2}\left(x - \frac{a+b}{2}\right) + \frac{a+b}{2} - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}$$
$$= \frac{1}{4(b-a)}\left(x - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}$$

Hence $\alpha \gamma = \beta \alpha$. Let $\lambda = \alpha \gamma$. Then

for all $x \in I$ and $\lambda = \alpha \gamma = \beta \alpha \in \alpha D_I \cap D_I \alpha \subseteq BD_I \cap D_I B$. We have that $\lambda \neq \alpha$ since $a \neq b$,

$$\left(\frac{3a+b}{4}\right)\lambda = \left(\frac{3a+b}{4}\right)\alpha\gamma$$

= $\left(\frac{1}{b-a}\left(\frac{3a+b}{4} - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}\right)\gamma$
= $\left(\frac{1}{b-a}\left(\frac{a-b}{4}\right)^2 + \frac{a+b}{2}\right)\gamma$
= $\left(\frac{7a+9b}{16}\right)\gamma$
= $\left(\frac{7a+9b}{16} - \frac{a+b}{2}\right) + \frac{a+b}{2}$
= $\frac{31a+33b}{64}$

and

÷.

$$\left(\frac{3a+b}{4}\right)\alpha = \frac{1}{b-a}\left(\frac{3a+b}{4} - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}$$
$$= \frac{1}{b-a}\left(\frac{a-b}{4}\right)^2 + \frac{a+b}{2}$$
$$= \frac{b-a}{16} + \frac{a+b}{2}$$

$$=\frac{7a+9b}{16}$$

Next, suppose that $\lambda \in \alpha D_I \alpha$. Then there exists $\eta \in D_I$ such that $\lambda = \alpha \eta \alpha$. Then $x\lambda = ((x\alpha)\eta)\alpha$ for all $x \in I$. By (1) and (2), we have that for every $x \in I$,

$$\frac{1}{4(b-a)}(x - \frac{a+b}{2})^2 + \frac{a+b}{2}$$

= $\left(\left(\frac{1}{b-a}(x - \frac{a+b}{2})^2 + \frac{a+b}{2}\right)\eta\right)\alpha$
= $\frac{1}{b-a}\left(\left(\frac{1}{b-a}(x - \frac{a+b}{2})^2 + \frac{a+b}{2}\right)\eta - \frac{a+b}{2}\right)^2 + \frac{a+b}{2}$

which implies that for every $x \in I$,

$$\frac{1}{4}(x-\frac{a+b}{2})^2 = \left(\left(\frac{1}{b-a}(x-\frac{a+b}{2})^2+\frac{a+b}{2}\right)\eta-\frac{a+b}{2}\right)^2$$

Then for $x \in I$,

$$\left(\frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2}+\frac{a+b}{2}\right)\eta=\pm\frac{1}{2}\left(x-\frac{a+b}{2}\right)+\frac{a+b}{2}.$$
 (3)

Fix
$$c \in (\frac{a+b}{2}, b)$$
. Then $[\frac{a+b}{2}, c) \subseteq I$ and for $t \in [\frac{a+b}{2}, c\alpha)$, there exists $x \in [\frac{a+b}{2}, c)$ such that $\frac{1}{b-a}(x-\frac{a+b}{2})^2 + \frac{a+b}{2} = t$ which implies $x = \sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$. Therefore by (3), for $t \in [\frac{a+b}{2}, c)$,
 $t\eta = \pm \frac{1}{2}\sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$.

Then $\left(\frac{a+b}{2}\right)\eta = \frac{a+b}{2}$ and for $t \in \left(\frac{a+b}{2}, c\alpha\right), t\eta \neq \frac{a+b}{2}$. Since η is

differentiable on *I*, η is continuous on $(\frac{a+b}{2}, c\alpha)$, so $(\frac{a+b}{2}, c\alpha)\eta$ is an interval on *R*. Then if there exist $t_1, t_2 \in (\frac{a+b}{2}, c\alpha)$ such that

$$t_1 \eta = \frac{1}{2} \sqrt{(b-a)(t_1 - \frac{a+b}{2})} + \frac{a+b}{2}$$

$$t_2\eta = -\frac{1}{2}\sqrt{(b-a)(t_2-\frac{a+b}{2})} + \frac{a+b}{2},$$

then $\frac{a+b}{2} \in (t_2\eta, t_1\eta) \subseteq (\frac{a+b}{2}, c\alpha)\eta$ which is a contradiction since $t\eta \neq \frac{a+b}{2}$ for every $t \in (\frac{a+b}{2}, c\alpha)$. Hence we have

$$t\eta = \frac{1}{2}\sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$$
 for all $t \in (\frac{a+b}{2}, c\alpha)$

or

1

$$t\eta = -\frac{1}{2}\sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$$
 for all $t \in (\frac{a+b}{2}, c\alpha)$.

Assume that $t\eta = \frac{1}{2}\sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$ for all $t \in (\frac{a+b}{2}, c\alpha)$. Then

for
$$h > 0$$
 with $\frac{a+b}{2} + h \in (\frac{a+b}{2}, c\alpha)$,
 $\frac{1}{h}((\frac{a+b}{2}+h)\eta - (\frac{a+b}{2})\eta) = \frac{1}{h}(\frac{1}{2}\sqrt{(b-a)h} + \frac{a+b}{2} - \frac{a+b}{2})$

$$= \frac{1}{2}(\frac{\sqrt{b-a}}{\sqrt{h}})$$

which implies that $\lim_{h \to 0^+} \frac{1}{h} \left(\left(\frac{a+b}{2} + h \right) \eta - \left(\frac{a+b}{2} \right) \eta \right)$ does not exist. Then η is not differentiable at $\frac{a+b}{2}$. Similarly, if $t\eta = -\frac{1}{2}\sqrt{(b-a)(t-\frac{a+b}{2})} + \frac{a+b}{2}$ for all $t \in \left(\frac{a+b}{2}, c\alpha \right)$, we also have that η is not differentiable at $\frac{a+b}{2}$.

This proves that $\lambda \notin \alpha D_1 \alpha \cup \{\alpha\}$, so $\lambda \notin B$. Hence $\lambda \in BD_1 B - B$, so B is not a quasi-ideal of D_1 . Consequently, $D_1 \notin BQ$.

Therefore the theorem is completely proved.