CHAPTER 1l

THEORY

3.1 Kinetics of Phase Separation

3.1.1 Phase Separation Mechanism

Phase separation will occur if the system can reduce its Gibb™ free energy
by proceeding the free energy down towards Its lowest points [Thongyai, 1990],
The schematic diagram of Gibbs free energy and phase separation boundary can
be seen m Fig.3.L.

From Fig.3.1, this system undergoes phase separation when temperature
changes from TO to - .. The Gibbs free energy curve of the phase separated
condition is concave upward m the middle part. This results in instability.
Considering the free energy curve at T equal T, and - ., the composition at free
energy A, ¢ is unstable and will phase separate into two compositions down to the
tangent line at free energy B, D. At B, D, the chemical potential of the two
compositions will be the same. These results m two stable phases at different
composition regardless of the original composition within the tangent line.

Connecting the tangent point at different temperatures, the phase is found.
The phase diagram is the map of compositions at different temperatures and
constant pressure. Within the phase separation ling, the system's composition will
become unstable and phase separate mto two stable compositions at the phase
separation line.
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Fig.3.1 Gibb’s free energy and phase diagram.[Thongyai, 1994]

3.1.2 Nucléation and Growth

Nucleatron IS the process of generating within a metastable mother phase the
initial fragments of a new and more stable phase. This initial fragment is called a
nucleus and Its formation requires an increase m the free energy as illustrated m
Fig.32. In Fig.3.2, any small perturbation m composition about COthat results m the
appearance of two phases also results m higher free energy. The composition
change must be rather large m the right-hand direction before phase separation is
accompanied by a free energy reduction. Thus, phase CO is metastable and the
minimum mcrease m free energy needed to render the system unstable is defined
as Its activation energy. This IS generally the basis of the nucléation theory. The
limit of metastability IS the lowest free energy represented by the tie-line CaCa
and it defined as the binodal. Nucléation IS the system decomposes with a
decrease m free energy, and nuclei grow. This growth process as well as the
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corresponding phase structure can be represented by Fig. 33,
3.1.3 Binodal and Spinodal

Within the phase diagram, there are two separated regions called binodal and
spinodal. The difference between the two regions affects the progress of change in
Gibh's free energy to phase separate the system. A binodal system has to increase
Gibb's free energy before it can lower the free energy to a stable condition. A
spinodal system will automatically lower down the free energy to the stable
condition. These phenomena are shown in Fig. 34.

From Fig.3.4a, binodal characteristics can be seen. The free energy of the
system, at A, has to mcrease through B, ¢ before it can reduce by itself to D.
Fig.3.4b shows spinodal characteristics. The free energy of the system, at A, will
decrease spontaneously through B, ¢ and D. The boundary between bmodal and
spinodal IS the pomt that the slope changes from plus to minus or vice versa. It can
be shown graphically or numerically that the boundary IS the point that the second
order derivative of Gibb's files energy (G") is equal to zero. Connecting the
boundaries at different temperatures, and add another Ime to the phase diagram as
shown m Fig.3.5.

The new line IS called the spinodal limit. Within this limit, the system will
spontaneously phase separate. The region between the phase separation Ime and
the spinodal limit IS called the bmodal region. Within this region, the system needs
some energy to overcome the barrier before phase separating. In small molecule
system this energy may be small, but in the polymer systems this energy becomes
larger, so the systems may need an initiator. The initiator may come from the
composition fluctuation or from an impurity. It IS called a nucleating site.
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Fig.3.2 Schematic illustration of the free energy-composition diagram for a
metastable phase.[Olabisi, 1979]
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Fig.3.3 Schematic illustration of phase separation by the nucléation and growth
mechanism : (I) one-dimensional evolution of concentration profiles;® two-
dimensional picture of the resultant phase structure.[01abisi, 1979]
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3.14 Concentration Fluctuation and Phase Separation

The differences between binodal and spmodal are not only the paths of free
energy but also the characteristics of the concentration fluctuations. Two types of

the concentration fluctuation can be seen in Fig. 3.6.

From this figure, it is apparent that there are two different types of
concentration fluctuation downhill diffusion and uphill diffusion. Binodal
concentration fluctuation is downhill diffusion. The high concentration component
diffuses to the low concentration boundary and expands the high concentration
domain. Spmodal concentration fluctuation is uphill diffusion. The low
concentration diffuses into the high concentration domain which continuously
grows. This phenomenon is contradictory to the normal diffusion law which says
that the difference m the concentration drives the diffusion. In other words,
spmodal diffusion is driven by the difference m the chemical potential. The

mathematical modelling of spmodal diffusion will be explained m the next section.

Spinodal decomposition is a very interesting phenomenon because it can
produce controlled morphology which might result in new or better properties
material , Spmodal decomposition comprises three stages which differ m
characteristics of the concentration fluctuations. A schematic diagram of the these

three stages is shown in Fig. 3.7.

In the early stage, the amplitude of concentration fluctuations mcrease with
time while the wavelength of concentration fluctuations is kept constant. In the
intermediate stage, both the amplitude and wavelength of concentration fluctuation
mcrease with time. In the late stage, the amplitude of concentration fluctuation
reaches equilibrium but the wavelength of concentration still grows with time.

These three stages describe the simple conceptions of the study of spinodal
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decomposition.

In the early stage, the concentration fluctuations can be explained by
linearized theory of spinodal decomposition which will be dealt with m the next
section. The intermediate and late stage concentration fluctuations can be

explained by late stage theory of Furukawa.
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Fig.3.6 (@) Bmodal and (b) Concentration Fluctuation.[Thongyai, 1994]
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3.2 Linearized Theory of Spinodal

In this section, Unearned theory of spinodal decomposition of Cahn and
Hilliaid will be explained. All equations m this section will be given m one

dimension to avoid complexity.

3.2.1 Structure Function

Considering a two-component blend system with concentration of the fit
component m distance X at time t, (c(x, t)), and average concentration (c0), the
difference m concentration (c(x, t)) can be defined as c,(x, t)-co. The Fourier

transform of ¢(x, t) mto c(q ,t) IS as follows,
clg.t)= [elx,)e" ax (3.2.1)
From this equation, the structure function ( (g, t)) IS defmed as,
SM= (kM ) =(c{g.t).c{-a.t) (3.2.2)
The structure function IS important because It can relate the concentration
fluctuations with the experiment. In the scattering experiment, the structure

function can relate to the scattering cross section per unit solid angle (dX/dQ(q, t))

by equation (3.2.3).
Mo.t)= As{q.t) (3.2.3)

Where A IS an apparatus constant and g is the Fourier transform parameter,
can directly relate to angle of scattering. From this equation, for example, in Small

Angle Light Scattering (SALS) experiment, the intensity at different angles can be
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related to the structure function. So the theory, that describe the concentration
fluctuations, can be tested by scattering experrments and the variation of intensity

with angle light scattering or value of q, because of q can be calc ated from,

fimsinloi?
|m3|£[01 ) 324

Where IS the refraction mdex of the blend, 0 is the angle of the diode ,and

XIS the wave length of the laser.

32.2 Equation of Motion

The driving force for the spinodal decomposition of the system is the

chemical potential, which can he defined as,

ulr) = 2 (329

From the difference m the chemical potentiallthe total flux (J(x, t)) is
obtained. The relation between the chemical potential and the total flux can be

written as,

(326)

The mobility (M) is the diffusion constant that relates the chemical potential
with the total flux. The equation of motion that explains the concentration

fluctuation can be shown below,

do(x,t) _ dj(x,t) _ daju(xt) (327)
dt OX 0X2
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3.2.3 Chemical Potential

When the system phase separates, many Interfaces will be formed and the
free energy of the system is  anced by the free energy of the formed interfaced.
In order to estimate the interfacial free energy term, Cahn-Hilliard assume that the
Helmholtz free energy (f) of a non homogeneous system could be expressed by a

multivariable Taylor’s expansion as m the following equations.

/\dC/\
LA \dxj Kz, ¥ K2ydx- ' 3.23)
Where
df
fdcn 8.29)
Vd x|
Ykt o (3.2.10)
Kdx2.
Kp=1 2 (3.2.11)
2 fd~ 1
ydx2J

[t IS assumed that the system is symmetrical, the L will be equal to zero
because the free energy will be invariant with respect to a change in sign of the
axis (x). Neglectmg the higher order term of equation (3.2.8) (third and higher-order

terms), the total free energy of the system of cross-sectional area A (G) can be

written as,

G- A f(c)+K,l(£jX12“ g)c( dx (3.2.12)
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Integrating the second term by parts, It results,

\

b ]‘/"_:"
\ d.\': )

d\.=[1\’l(%ﬂs . \%)t%\ldx (3.2.13)

The system IS assumed to be homogeneous at the surface, the first term on
the right-hand side then vanishes. The equation for total free energy which include

the interfacial free energy can be written as,

_ (deG

G=al f(c)+ Kydxj ox (3.2.14)
> dK,

K=x. _(ﬁ $32.10)

From this point, m order to model the chemical potential, equation (3.2.14) is
modified when the system reaches equilibrium, i.e., the total free energy becomes
minimum and equal to a constant. To find the minimum pomt of the mtegr of
total free energy, the system must satisfy the Euler equation m this way, which

results m the chemical potential as,

M gfc_ ZK{%g(}J (3.2.16)

So, from equation (3.2.7) and (3.2.16), the equation of motion can he written

as.

fdf}

e (3.2.17)
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324 Linearized Theory

In order to solve the equation of motion m equation (3.2.17), Cahn and Hilliard

Imearrzed df/dc around the mean value (co by Taylor expansion as follows,

1
f_J] =fan +de ) ¢ (3.2.18)

Ucd lded {oc~r  tEn-\lac' )

From this equation, Omitting the third and higher-order term, the equation
becomes linearized m c. Since the first term on the right-hand side IS a constant,
inserting It under the derivative lead to he zero. Therefore inserting equation
(3.2.18) mto the equation (3.2.17). There exists only the second term on the right

hand side of equation (3.2.18) as shown below,

)=y ©2 2K @,
d MO@ de? 2KOX2‘("‘) (3.2.19)

This is the linearized equation of Cahn-Hilliard. This equation can be
modified by Fourier transform to relate it with the structure function. The Fourier

transformation of equation (3.2.19) can he written as,

dcgﬁ't);'\/lq [d2f) +IKg2 {09 (3.2.20)

325 Structure Equation

The structure function ( (qLt) ISdifferentiated to relate the dc/dt. By the
definition of the structure function m equation (3.2.2), the differentiation of the

structure function can be shown as below.
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3S(q.1) =P id) 6c(q. t) +da.1) ac(—q.t)

o ot ; ot (3:2.21)

Fortunately, the equation of motion (equation 3.2.20)) does not depend on the
sign of q or the dc(q, t)/dt as same as dc(-q, t)/dt. So the structure equation can be

written as,

This equation can be solved mathematically by integrating both sides of the

equation as follows,

In(S(g.1))- In(S(q.0)) = -2 Mg’ { A ] +2qu]1 (3.2.23)

This equation IS the basic equation for scattering experiments. The intensity
measured at different angle (I(q, t)) is proportional to the structure function ( (g, t)).
Thus this theory can be tested by light scattermg experiments. However, this
equation does not take account of'the thermal fluctuatron which can occur at

shallow quench depths.

The basic equation of Cahn-Hilliard can be rewritten in other form as,

R(i]) :AMG”—ZMK(]: (3224)
q
R(q)=-q2M.S:"(q) (3.229)

Sclg)= 77— (3.2.26)
[[éi-:/] +2Kq:]
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Where G” IS frt/dc , So equation (3.2.23) can be written as,

( M)-In(sfa,0))=2*(*> (3227)
3.3 Spinodal Decomposion of Langer, Bar-on, and Miller’s Theory

The basic theory of spinodal decomposition has been developed, primarily
from a metallurgical pomt of view by Cahn, Hilliard and Cook. Cahn developed a
more gener linearized theory of the spinodal instability. The role of thermal
fluctuations was later described by Cook, still within the linear approximation. Cahn
pomted out the essential role played by nonlinear effects in determining the nature
of the instability and thus m limiting Its growth, but Cahn did not attempt to

formulate a statistic theory based on his nonlinear equation.

A new computation technique IS described. Each of these previous methods
had serious limitations that there are largely overcome by a new technique. A
quatitative theory of spinodal decomposition is developed which will be sufficiently

accurate to be used with confidence in the analysis of experiments

[t IS assumed that the systems can be described by a single scalar order
parameter c(r), It can be visualized as the average concentration of one of the
components of a binary solution m some region around the position r. In terms of ¢

(), Helmholtz free energy can be written in the Ginzburg-Landau form as,
Flc)= J.dr[% x(Ve) + ()

The kinetics of this system can bhe described by use the continuity equation

in form
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— (3.3.2)

where 11Sa current density which describes to the interdiffusion of atomic

species and IS given by

j(X):'MV'QF—:'AN (333)

Here, M ISa mobility and assumed to be constant, independent of OX). In
order to construct a statistical theory based on the equations of motion (3.3.2) and
(3.3.3). A master equation can he derived for the distribution-functional p(c) defined
on the space of functions c(x). This master equation the form of a functional

continuity equation shown as below.

(0=~ <

dt Sc{x)
Where the probability current J(x) is given by

J(x)=- ANzlyl\iIE() p +kiiT Jdg(x), (3.3.5)

The equation (3.3.4) and (3.3.5) constitute a mathematically complete

statement of the model upon which all of our subsequent analysis will be based.

The structure factor (Q) can be calculated, which ISthe Fourier transform of
the two-point correlation function (x). (q) is directly proportional to the x-ray
scattering intensity at wave-vector transfer (q). Let Cc denotes the fluctuation

variable c(x, t) to be
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c(.v,r)=c,(x,/)-c0 (3.3.6)
Then
([x-*0]%) = (e(x.f)e(*0,r) (3.37)
and
s{g,t)= "dxS(x,t)egx (338)

Here, the angular brackets denote averages wrth respect to the distribution

functional p, and It IS assumed translational symmetry after averagmyg.

The equation of motion for IS obtained by multiplying the master equation
by c(x)c(xj and integrating over the space of functions c. The resulting equation is

best written in the Fourier representation, where It takes the form

)]
"

19| —

AC [ A2 £ f V3 ~4
(S(Aq'[)=—2.\lcfﬂl\‘(/:+(ﬁzjj Slg.t)+ 1 S;(q) [%(A ij SJ(q.I)+...

\ €7 <

D

The quantities ais denoted by the Fourier transforms of the higher order

two-pomt correlation functions:

Sllx=xo))= (" (el )) (3.3.10)

From the equation (3.3.9) and (3.3.10), It shows that each of the higher-order
correlation functions that it involves only two spatial positions, X and xo. Thus, a

knowledge of the two-pomt distribution function,p[c(x),c(x0), would be sufficient to
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determine the right-hand side of (3.3.9). By p2 the normalized distribution function
obtained from the full functional p{c} by integrating over ¢ space while holding the
values of ¢ fixed at pomts X and x0. Of course, an attempt to write exact equations
of motion for p, would lead to a hierarchy of pnequations even less tractable than
the correlation-function hierarchy.

Let p,(c) be the single-point distribution function, and write as,

ple{x\c{x0)]= 1 L[c(x)]p.[c(xjIx{l +r(i*-*0 (3.3.11)

The quantity m curly hrackets as the first two terms m a power series

expansion in the two variables c(x) and c(x0).

The function p,(c) must be normalized in such a way that

jpl (c)de =1 (3.3.12)

and
le1 (c)ede =0 (3.3.13)

The second of these conditions follows from the definition of the variable ¢ m
equation (3.3.6). From equation (3.3.12) and (3.3.13), It follows that p2 IS

automatically normalized, It can be written as,

J \p2(rc0)dcdeo =1 (3.3.14)

-00 -cCO
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W here

a (€)= \pt{c,c0)cO (3315)
0

The correlation function IS
s(H=(c2)2Hr) (3.3.16)

By using equation (3.3.16) to identify the function y(y)'m (3.3.11), The a(x)

can be written as,

< Slx) (3.3.17)

Therefore, within the approximation suggested here, the higher-order
correlation functions of the form (3.3.10) all have the same X dependence . The

resulting form of equation (3.3.9) as,

as(aj) ome KaV !
i -2Mg Ke- + ) (3.3.18)

In the above equation, the g, t) term is the Fourier transformation of the
higher-order correlation function. Langer et.al. approximated the last term on the

right hand side of equation (3.3.18) by the following equation.

X
N 1 dnfl —<-(_>
F1 oy o 0 (7

\/
I
Mq
—
1
N—
<
[Sa]
(ar]
<<
an
—
(%)
P
i
{e)
«©
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Equation (3.3.19) can be rewritten as,

A(ILS((/.!)=i(n]_])![fiI"{] S,(g.1) (3.3.20)

= ac” Jo.

Substitution of equation (3.3.20) in equation 3.3.18, one can obtain,

=-2Mq2[Kg2 +A(t)};(q.t) (3.3.21)
34 Spinodal Decomposition of Akcasu’s Theory

This theory approach IS essentially the same as the one developed by Langer,
Bar-on, and Miller. There are however differences m the way the fluctuations are
included m the nonlinear theory, and in the details of the calc ations arising from
the chain connectivity (polymer effect) m the case of polymer blends. In addition,
the variation of the scattermg intensity as a function of time at various wave
numbers IS studied not only during the spinodal decomposition but als0 during
dissolution. The formalism IS alsO applicable to transients in I(q, t) following step

temperature changes within the smgle phase region.

Considering a melt of two homopolymer species A and B. The volume

fractions of monomers at a pomt rand time a denoted by (j)A(r, t) and (j)g(r, t). The

mixture IS assumed to be incompressible so that the local volume fractions satisfy
(DA(r,)+(j)B(r, t) equal 1. When the mixture IS m a homogeneous equilibrium state,
the volume fractions are uniform and denoted by Dad oand ¢B= lA- The
incremental volume fraction of the component IS defmed as Qor, t) = <A t)-(j)0.

The monomeric volumes VAand VBofthe species are allowed to be different.
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The intensity 1I(q, t) of the scattering beam m a scattering experiment is

related to the Fourier transform of Cp (r, t).

Where g ISthe momentum transfer vector, and (pg(t) denotes the discrete

Fourier transform of (p (rt),

HH(t)=y \d're'g> (>v) (3.4.2)

In which V ISthe volume of the system. It notes that both o, t) and (pdf)

aie dimensionless. When the mixture ISan equilibrium state, I(q, t) ISindependent

of time, and ISgiven by 1 (q) = (VOV)S(q), where V¢ ISa reference volume to be
specified later, and  (q) ISthe static structure factor, calc ated by de Genes m the

small q limit approximation as

T A Y (3.4.3)

Where % denotes the value of the interaction parameter on spinodal,

Xs = _ (3.4.4)

In- which % is the Flory interaction parameter, and Na is the number of
monomer, and za = Va/VO0denotes the normalized monomeric volumes relative to
the reference volume VO, a cham kind et = A, B. In equation (3), Ga denotes the

statistical segment lengths of an Of cham.



35

Following Binder, the free energy excess for a binary mixture of A and B

homopolymers can be written as,

JAE Jd""%{f[¢(r)]+ g

+ Y’ 4.5 al
5 1.A1) 28 )|V¢() (3.4.5 a

Where gX{) = (])A(r), KBT IS the temperature m energy units, and

fi<g)= A ot 14 (- G |- D (3.4.5 b)

The functlon derivation of A with respect to (JAT) yields the the local

chemical potential difference (LI(r), and when VA=VB=V0 and Vo is set equal to

unity, this equation can be written as

[+ ]-—A-[l+\ 4B]+x{\ - 20A)-

Ar)\:@T ZANéTA g + 5 | | (3.4.6)
2ASA Vi T AR BB

When VA=VB=VCand Vris set equal to unity, equation (3.4.6) can he written

as

\()4+1 : ( ’)+1'+X(|'2#\)"‘
Ji(r)=kBT - J 6.4

18 VVA+36 N ’|

The qXt) satisfies the following nonlinear stochastic diffusion equation:

X1 2705 %c
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A =o AA (A0 (3.48)

Where A 11S the g-dependent Onsager coefficient, with the discrete Fourier

transform of the 0 00 Onsager coefficient chemical potential A[r], JLlg(t) is the

discrete Fourier transform of the local chemical potential difference given in

equation(3.4.7) and T|q(t) IS the random force accounting for thermal fluctuations,
the statistical properties IS assumed to be a delta correlated random process with

autocovariance C(q) as

Cafype )+ (i) - )=C(0) ey

The factor V denoting the volume of the system comes from the discrete
Fourier transform of the convolution. In order to obtain an equation for cpq(t), on

substitutes (j)(r, t) = (j)C+ cp(r, t) in equation (3.4.7). It can he written as

1(&+ 1 )
N a
1

18 do+<p(r,t)

1
36 _y0+¢(r]

q(r) = kBT VD + (p{rt) * +(3.4.10)

From equation (3.4.8), (3.4.9) and (3.4.10), expands jLi(r, t) into a power series

m power of (p(rt), and then perform discrete Fourier transform. After lengthy but

straightforward calculations one obtains,
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0,(0)+5(q)2 T.(9.9,.9:)5(g.9, + 0, )0, (o, () +

a(p"{t) . ql.q2
dt e _R(q +77q(t)
S(q) 2.1:(9.9,.9:.9,)(9.9, + 4 + 4. )0, ()0, (5 ()
ql.q2.q,
(3.4.11)
W here the relaxation frequency R(q) IS found as
(3.4.12)

In which (q) IS given m equation (3.4.3). In the srnall-q limit, The R(q) value

can be expressed as,

) ; [. / q: O'_: O-lzi
R(g)=2g A(qﬁ[\ *T36| 2., z,0-4,)

It shows this equation mcludes only the couplmg among the concentration
modes arising from the nonlinearity of equation (3.4.8), but does not include the
coupling between the modes representing the concentration and the momentum

fluctuations. Terms arising from fourth and higher order nonlinear are neglected. In
equation (3.4.12) and (3.4.13), the A q(V/VO0) term is replaced by A(q) by redefining

the Onsager coefficient. The vertex function rz(q qv g2 in equation (3.4.11) is

obtained as follows,

(AW o2 - +FH0) (3.4.14 a)

with

e (3.4.14 b)
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5 = % A . (3414 C)

In obtaining equation (3.4.14 a), the second term in equation (3.4.11) is

symmetrized by interchanging g, and q2, adding the resulting equations and

dividing by 2. 1t ISto be noted that T 2(q, gL q2) vanishs m the case of a symmetric

mixture m which the molecules of the two species are identical to each other so
that Na=Nb, za= B <JA=Gb and their volume fractions are equal. In the

present application the mixture ISnot symmetric, an hence r*q.g~g3a " 0.

The vertex function r3(qq,q2,q3) is calc ated as

r3{q.9,,92,43)=z, 4f 40\ +Vi) (3.4.15 a)

with
= 3.4.15 b
Z, =1 ( )
2= A B (3.4.15 ¢)

In equation (3.4.11), inserting the expansion of |d(r, t) in power cp(r, t) after

the cubic term.

The equation for intensity is obtained from I(q, t) = <icpq(t) |2> using the
above stochastic nonlinear description of the mixture. For this purpose, the
equation (3.4.11) ISmultiplied by cp.q(t), and Its complex conjugated by (pq(t), and

add them up, and make use of equation (3.4.9), obtaining



39

1{qi)+ (0)I]r2a,q1,902>509,q1 +q2\(pef(v 24tP- t +
=2n +C(q)
s{0) FO A (MM oM B(S(0)

X020

dlig.)

(3.4.16)

In the loneai theory, equation (3.4.16) IS approximated by
" =-2R{g)Ha.t)+ C(q) (3.4.17)
In the nonlinear theory, one has to mtroduce approximations to express the

third and fourth order correlation functions m equation (3.4.16), in terms of I(q, t). It

IS assumed that (pq(t) for different values of g are Gaussian random variables with

zero mean, then It can be written as,

K: (M- (0)=° (3418)
{ < P q = -0)°{q2+ <) (3.4.19)

Substitution of equation (3.4.18) and (3.4.19) mto equation (3.4.16) yields

= -2R(q)Ha. W\ + 2gq. 1)1+ c(a) (3.4.20)

W here

2{q,t)=Y,Aq™qy{q"¥ (3.4.21)

In equation (3.4.21), the y(q, q') term can be expressed as,
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y(9,9')=3r}(q-0.9"-q")s{q) (3.4.22)

Where I lq}q, q’,-0") is to be obtained from equation (3.4.15 a), and (q) is

given equation(3.4.3), in small limit, The y(q, q’) value can be written as

(3.4.23)

Where Z]and Z2are defined in equation (3.4.15 b) and (3.4.15 c).
35 Spinodal Decomposition of Nauman’s Theory

Starting from Gibhs ‘free energy of many given by Landau-Ginzbuig, the

equation can be written as,

6 total = || |GV = -g+£(\“’n)2 dV (3.5.1)
[ffote=[{] =+

Where, a =a(x,y,z) is the mole fraction of component A, and G=g+(l/2ic)x
(Va)2is the free energy of mixing per unit volume. The concentration gradient
term, 1/2/c(Vn)2, IS similar to the density gradient term used by Van der Waals but
its appearance in the modern literature was established by Cahn and Hilliard. For
the sake of simplicity, temperature and pressure are assumed to bhe constant, and

number of moles of each component are fixed in this work.

35.1 A Generalized Chemical Potential

Considering a multicomponent generalization of equation (3.5.1). It is
supposed there are just three components, A, B and C. The Gibbs’ free energy then

can he written as,
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" total ~ | | |* .b,c,Va,Vb,vVc)dv (35.2)

Where a,b,c are the mole fractions of components A, B, C respectively so
that a+b+c=1 It IS defined by a new thermodynamic property, the variational

free energy, r, using the following differential relationships,

f MCr
(3.5.3)

ydalbe V Sa Jbe

With Similar expressions holding for <3r/<3 and dr/dc. It can be seen that O
GilA6a is the variational parLiai derivative defined as,

'V(
[ da )b Vda )b Wa)Jb,c

(3.5.4)
It sho d be noted that the definition can be extended to situations where G
depends on higher derivatives such as V2&, yet the above formulation suffices for

present applications.

The generalized chemical potentials is the partial molar property of the
variational free energy r, just as the chemical potential is the partial molar property
of the free energy g. The chemical potential is defined as,

[ ';I—

(@

ar
Ve r+(b+C1\aJh [db’a,c dCJa,b

(3.5.5)

PB and ¢ have similar equations. This definition of chemical potential
reduces to the ordinary form when Gt depends only on a,b,c and not the
composition gradients. It satisfies Euler’s theorem in the form,
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[ =anA+bju3 + CIC (3.5.6)

The Gibbs-Duhem equation can be shown as,
aVjuA+bVjuB+cVjUc =0 (3.5.7)

The above definitions allow chemical potential to be calc ated for each of

the components in a multicomponent system.

Considering of the minimization of equation (3.5.2), which is subject to the

material balance constraints,

J f[[adv =a\
V_JHa V a}\7 gy =h v JIJ =] (3.5.8)

The two composition variables are independent and will apply the calculus of
variations as though all three were independent. This gives a partial differential

form of the Euler-Lagrange equation as,

(4G ol Ty = ConStant (3.5.9)
V 00 b

From equation (3.5.3), it therefore appears that sr/dflis constant. Similarly,

dridb and ¢ridcaie constant. Thus,

r=yAa+yBb+ycc (3.5.10)
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It IS assumed in this work that the constant of integration is zero. Inserting I

into equation (3.5.5) gives
= Ya =Y =Y (3.5.11)

This is Gibbs’ condition of equilibrium applred to the case of generalized
chemical potentials.

The case of two component with G = ¢g+1/2 K(vaf as given by the Landau-
Ginzburg function. Equation (3.5.3) gives sr/dtfand dr/db which are integrated to
give

r =g +7K(Vaf (3512)

So that I + G = 2g. By using equation (3.5.5) to find A and Pg, and the

equilibrium condition equation (3.5.11), It is can be written as,
Ma =g ~ \K(Va)2+ (I- )(g'-lcV2 )=yA (3.5.13)
Mb=g-"K"a? -a[g'-KV2a)=yB (3.5.14)

3.5.2 Approach To Equilibrium By Diffusion

As mentioned earlier, there are many mechanisms by which red systems can
approach equilibrium. Diffusion is to be considered here. Novick-Cohen and Segal
followed Cahn and Hilliard in developing the following equation for the net molar

diffusion flux of component A,
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JA—-AN(lua-sB)=-MS/{g ~/cV2al (35.15)

This Oux assumes molar counteidiffusion relative to any possible bulk
motion of the mixture. The condition that JA=0 at equilibrium seemed consistent
with the Euler-Lagrange condition that g~KV2a - constant. However, for K= 0,
equation (3.5.13) predicts the unphysical result that diffusion will be zero for the
three-phase mixture contemplated by Novrck-Cohen and Segel. Also, equation
(3.5.13) does not reduce to Fick’ law in the case of an ideal mixture. The reason
for these problems is that the driving force for diffusion assumed by equation
(3.5.13) is subtly wrong. The modern literature (Bird et.al,1960; Ghai et. .,1973;
Cussler, 1984) bases the driving force directly on VpAand not on VA-Vfig). A
pregradient mole fraction is o included in conformity with the Gibbs-Duhem

relationship. Thus
J=JA=-"ABa”dA=-D ABaVa(d/JA/da)=-J8 = +DABbV/.iB (3.5.16)

Equation (3.5.14) reduces to Fick’ law with constant for an ided

solution, It is assumed that VfiA=Vpg = 0 for J = 0. This gives PA= YAand Py = yB

at equilibrium.
It rs assumed that equation (3.5.14) remains vdid for the present situation

where chemicd potential depends on gradients energy. Thus the net diffusion flux

of component A is

J =JA = DABaST (3517 a)

J = ~DABa (l - a)\/(gl'/C\/ﬁ) (3.5.17 b)

J=-D4Ba(\ - a)(g"-/cV3a) (35.17 ¢)



The corresponding continuity equation is
§ =DABVa{l- a)v(g'-*-V2u)= DABVa{\- a{g'"-KV\) (3.5.18)

This result differs from that of Cahn and Hilliard by a factor of (|.¢)
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