
CHAPTER 3

THEORETICAL CONSIDERATIONS

The section discusses how the Layered Stabilized Flow Model is developed. All 
relevant equations are presented and the derivation of the solution is fully described. 
The information required to build the model is enumerated and the calculation method 
is clearly established.

3.1 The Layered Stabilized Flow Model

[ 1,2]El-Banbi and Wattenbarger ’ proposed the Layered Stabilized Flow Model
(LSFM) as an alternative procedure to estimate the original gas in place (OGIP) in a 
commingled gas reservoir. The authors wrote two papers on the analysis of 
commingled gas reservoirs and were published in 1996 and 1997. The first paper 
basically presents the approach using simulated and actual data for tight gas reservoirs 
(reservoirs with permeability ranging from 0.1 to 10 md) producing against a constant 
flowing bottomhole pressure. Also, the model ignored the effect of non-Darcy flow. 
The second paper is an extension of the first study whereby the effects of variation in 
the flowing bottomhole pressure and non-Darcy flow were considered. The results 
from the model showed good OGIP estimate of each component layer of the 
commingled reservoir.

The technique combines the material balance equation and the productivity 
index equation (stabilized flow equation) to come up with a model rate equation for 
each layer in the commingled reservoir system. When stabilized flow is reached in a 
commingled system, each layer can be characterized by its OGIP and its flow 
coefficient, Jg. The LSFM basically calculates the “model production rate” for each 
layer and sums up these layer rates to calculate the “total model production rate” for 
the commingled reservoir at a given time step. This total model production rate over
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time (model forecast) is then matched to the actual production rate history using 
multi-variable non-linear regression analysis.

The method is simple and requires only the flow rate and flowing bottom hole 
pressure (p wf) history as well as the initial reservoir pressure and gas properties of a 
given well. The method shows excellent results for moderate to high permeability 
reservoirs even with long shut-ins and considerable variations in the p wf  (the model 
accounts for cross-flow between layers during shut-in periods).

3.1.1 The Layered Stabilized Flow Model for Single-Layered Reservoir
In order to formulate the model equations for multi-layered reservoirs, a single 

layer reservoir is examined first. In this section, the equations to model a single-layer 
reservoir are developed.

The two equations describing stabilized flow for single-layer gas reservoirs are 
the material balance (MB) equation and the productivity index equation. These two 
equations were used by El-Banbi and Wattenbarger to arrive at the layered stabilized 
flow equation.

The material balance equation for a single-layer gas reservoir is given by:

(3.1)

The gas productivity index equation or the gas flow solution is given by:

(3.2)

The real gas pseudo-pressure is defined by:

m ( p )  =  2 [  -£>dp
JPo p z (3.3)
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Due to the large magnitude and the awkward unit of pseudo-pressures, the use of 
normalized pseudo-pressures is preferred to simplify the flow equation. Normalized
pseudo-pressure^10̂  is defined as:

Ppn (3.4)

The advantage of using the normalized pseudo-pressure is that it has the unit of 
pressure and that liquid well test equations can be used for gas flow equations.

Hence, the simplified gas flow equation (Eq 3.2) becomes:

9  g  = J g {p  pn -  p  p n » f ) (3.5)

In addition, the relation between the gas flow rate and cumulative gas production is 
given by:

G ท = J[9g (t)d t (3-6a)

Or in finite terms:

Gp = X A ’/A// (3.6b)

where the subscripts / and j  are time indices.

The simplified form of the gas flow equation (Eq. 3.5) requires the pressure terms to 
be expressed as normalized pseudo-pressures. Therefore, we need to convert the 
pressure terms from the material balance equation (Eq. 3.1) to normalized pseudo
pressure terms so we can directly use them in Eq. 3.5.

Solving forp  from Eq. 3.1
z p  1 zp ,G  17 

= z, Z ,G
(3.7)
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From observations, the plot of the normalized pseudo-pressure versus pressure shows 
a linear relationship at high pressure values.

P p n = k p  (3.8)
where k  is a proportionality constant.

SubstitutingPpn forp  in Eq. 3.7:

Ppn _  ZPpm ZPpn,G p 
k  z tk  z  1kG (3.9a)

All the k terms cancel out and Eq. 3.9a can be simplified into

_ ZPpm ZPpnjGp
P p n = z i Z , G  (3.9b)

By combining Eqs. 3.5, 3.6b and 3.9b, the change of production rate through time can 
be related to the change of the average reservoir pressure through time. If the initial 
reservoir pressure, the initial gas properties, and the production and pressure history 
are known, the three equations can be solved simultaneously to determine the original 
gas in place G  and the productivity index Jg.

Substituting the value of P p n  from Eq. 3.9b and Gp from Eq. 3.6b to Eq. 3.5, Eq. 3.5 
becomes:

9 a  =  J  t
pm jpm J

Z.G p  pnwjj (3.10)

Simplifying Eq. 3.10, we obtain:
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\  1 J g P Pn,Z JA t j '  
Z.G

JgPpniZj J g P p n . Z J(lr̂ /A//
Z.G J g P p n w / j (3.10a)

J gPpniZ,Zj G - J gP pmZ,ZJ
<1*=■

P ^ , - J gP^G
z , G  +  J gPpniZiZA t j (3.11)

Eq. 3.11 represents the “model production rate” for the stabilized flow in a 
single-layer reservoir. All pressure terms are expressed as normalized pseudo
pressures. Note that the derived equation does not have the average reservoir pressure 
term P j .  Elimination of this variable is the advantage of using the LSFM model 
equation. In most cases, measurement of the average reservoir pressure can be 
estimated from production logging but these type of surveys are not practically done 
in a frequent interval to get a close estimate of the average layer pressure. Also, the 
average reservoir pressure that can be measured in pressure surveys may not represent 
the true value because of crossflow between layers as discussed previously.

By initially assuming G  and Jg, the model production rate can now be calculated 
from Eq. 3.11 and subsequently history matched or “calibrated” with the actual 
production of the well. Matching is done through curve fitting using non-linear least 
square regression analysis.

3.1.2 The Layered stabilized Flow Model for Multi-Layered Reservoirs
The individual layer performance from the single layer model can now be used 

to compute for the total reservoir performance of a multi-layered system. After 
solving each layer’s model production rate at time tj, the total model production rate 
for the whole commingled reservoir is simply the sum of the individual layer rate at 
time tj.
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° เจ  =  2 , ร, gjk (3.12)

In equation form:

Q rjk
z ik G k + J gk p pfukz 111z j k A t j (3.13)

where the subscript k  refers to the layer index.

For commingled reservoirs of two or more layers, Eq. 3.13 introduces an 
additional unknown parameter to solve the model production rate. This is Gpk ’, or the 
cumulative production of each layer before time tj (i.e. the second term in the 
equation) defined as:

Gpk’ is the cumulative production for each layer from the start of production 
until the start of the calibration period. For a single-layered reservoir, G p ’ is known,
i.e., the cumulative production from the layer. This is not the case for multi-layered 
reservoirs. Although the total G p ’ for the commingled reservoir is known, the 
contribution from each sand layer is unknown. Hence, Gpk ' is an additional unknown 
parameter in the calculation of the model production rate.

Thus, Gpk’, like G  and Jg, is also initially assumed for each layer. Once an 
estimate of Gpk ’ is made for each layer, the cumulative production through each time 
step in the calibration period can now be calculated. To illustrate how to calculate 
Gpk ’, consider Layer 1 in a multi-layered reservoir:

G  pk = ^  y  vik A t , (3.14)

1 110 -til .า 11 ส นิ !ร '.1.;เๅ:

i.
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For Layer 1 ะ

1. Assume G pli ’at y = 1 (cumulative production from time 0 until start of calibration 
period)

2. At y = 2 (next time step):

G p \2  -  G pU +  q l,u A t2 (3.15)

where

A t2 =  12 (3.16)

and

q g \ \  =

J g \P  pm\2 ท2 \\G \ ~  JgPpm \2แ2 \\Gp\0 ~  Jg\Ppnwf\\z i\ G\ 
z ท G\ + J g P  pni2 ท2น ^ \ (3.17)

3. At y = 3:

where

G ptt — G pn + q  1,21 A t 2

A ^ 2  " 1 2  1 2

(3.18)

(3.19)

and

# g 2 i  =

Jg \P pทแ2 i\22\G\ ~  JgPpni\2ท22\GpU — J  g\P  pnwf 2\2 i\ G] 
2 ท2G ,  +  J g P pn,Z  1,Z2,A t 2

(3.20)

4. Do the same untily = ท.
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Thus Gp G  and Jg of each layer are the unknown parameters that are assumed 
and used in the model production rate to match the actual production rate for 
reservoirs with more than one layer. The number of unknown parameters is, therefore, 
equal to 3n.

3.2 LSFM Data Requirements
The information required in order to build and run the model are outlined below:
1. Initial static reservoir pressure of the individual reservoirs in the well. Possible 

sources of these pressure measurements include:
(a) known pore pressure gradients for the gas field;
(b) Repeat Formation Tester (RFT) pressure measurements made after drilling but 

before completion of the well
2. Temperature of the individual reservoirs in the well
3. Gas PVT properties such as gas specific gravity (y), gas density ip ) , real gas 

deviation factor (z), formation volume factor (Bg) and gas viscosity (fig) for 
calculating normalized pseudo-pressures

4. Production history of the well, which includes:
(a) flowrate of gas, water and condensate versus time
(b) flowing bottom hole pressure measurements versus time
(c) In the absence of flowing bottom hole pressure measurements, flowing tubing 

head pressure measurements versus time and the following well completion 
information for multi-phase flow correlation:
■ tubing size and estimated roughness
■  components of the well completion and their depths
■ well trajectory including measured depth of the well versus true vertical 

depth
(d) record of periods during which the well was shut-in

5. Layer information such as depth of each sand and their perforation intervals
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6. Other information such as estimates of reservoir areas from seismic data, porosity, 
permeability and water saturation, which will be of use for validating the OGIP 
calculated by the model

3.3 LSFM Assumptions and Limitations
In applying the Layered Stabilized Flow Model, the following assumptions were 

made:

(a) Average fluid properties are used for the calculation of the normalized pseudo
pressures of the layers of the commingled reservoir system unless the PVT 
properties of each layer are defined.

(b) The productivity index Jg is constant during the production period.

(c) There is no pressure loss in the tubing occuring between layers.

3.4 LSFM Calculation Method
From the required data and information outlined above, the Layered Stabilized 

Flow Model (LSFM) Program is constructed for modeling multi-layered gas 
reservoirs. The program is a spreadsheet program created in Microsoft Excel. The 
model has three main elements or modules: the production data table, the normalized 
pseudo-pressures table and the LSFM program.

3.4.1 Production Data Table
The production data input table contains all the pertinent information about the 

well production history: gas, water and condensate rates, flowing pressures and 
temperatures, and the absolute and relative flow periods of the well. A “calibration 
period” is normally selected from the production history where the model is matched. 
This calibration period should exclude transient production rate data.
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3.4.2 The Normalized Pseudo-pressure Table
The normalized pseudo-pressure table module in the LSFM program allows 
calculation and conversion of gas pressures to normalized pseudo-pressures. This is 
done through interpolation of the normalized pseudo-pressure values provided in the 
table.

As given in Eq 3.4, the normalized pseudo-pressure is:

P-4>

where the subscripts i on /u and z refers to the evaluation of these parameters at the 
initial pressure P i ,  the references pressure.

Integration of Eq. 3.4 can be done numerically through a spreadsheet table 
calculation. Using numerical integration, equation (3.4) can be simplified into:

integral
P p n ~ ~

VPZJ,

f  „  V
^  F , (3.21)

where the “integral” is defined as:

in teg ra l = น
V

+

j - 1

f p _ )
v F Z y

( p j - p j - i ) (3.22)

From Eq. 3.4, Eq. 3.21 and Eq. 3.22, the calculation of the normalized pseudo
pressures requires the gas deviation factor z and the gas viscosity p  at each pressure. 
Therefore, the normalized pseudo-pressure component of the LSFM program has two 
other sub-components: the z-factor calculator and the fluid property calculator.
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To calculate gas deviation factors, the Dranchuk and Abu-Kassem 
correlation^1 ^ was used. The Dranchuk and Abu-Kassem correlation is an empirical
equation for determining the z-factor. It was chosen for ease of calculation since it can 
be incorporated readily in the LSFM program. The correlation is an 11-constant 
empirical equation given by:

z = * 2 . 4 น. A ท
โ 4 T 5 P r

pr 1 pi pr pr 7
+  V ท 2 -  A '  A y  ^  A . '

j 2 P r T nr T 2pr 7 \  Pr pr J

A  A  A A+ A + ะะ7- +  ะะ»- ท2 -  A 7 I *A  ■ A <5 +  +  2 P r  A<j +  2
y 1 pr 1 pr J \  pr pr y

+ A 10( l  +  A 11 p 2 ) ^ r e x p { -  A 11 p 2r )+ 1.0

P r

where pr is expressed as:

P r
0-VPpr

Z T pr

(3.23)

(3.24)

The pseudo-reduced and pseudo-critical pressures and temperatures are defined as 
follows:

(3.25)

pr (3.26)

P p c =  706 - 51.7^ - 11. 1̂ (3.27)

7 ^ = 1 8 7  + 3 3 0 ^ - 7 .1 5 ^ (3.28)
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Eq. 3.23 is implicit in z  and must be solved iteratively by the Newton-Rhapson 
technique. The 11 -empirical constants were determined from non-linear regression
on 1,500 data points from the Standing and Katz z-factor chart^2 .̂

The 11 constants in the Dranchuk and Abu-Kassem Correlation are:

A ,  = 0.3265,
A2 = -1.0700,
A3 = -0.5339,
A4 = 0.01569,
a 5 = -0.05165,
A6 = 0.5475,
a 7 = -0.7361,
Ag = 0.1844,
A9 = 0.1056,
A10 0.6134, and
An  = 0.7210

To calculate gas viscosities, the Lee e t a l correlation was used. The Lee e t al.
correlation is a semi-empirical equation for calculating gas viscosity. The viscosity 
equation is given by:

เน - 10“4 K  exp
(  n \ Y  ~

X p«
U 2 .4 J

where

r  (9.4-f0.02A/g) y ‘ 
= (209 + 19M k + t )

(3.29)

(3.30)
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Y  =  2.4 -0 .2JT (3.31)

x  = 3.5 + (3.32)

Ms =28.97yg (3.33)

3.4.3 The Layered Stabilized Flow Model Program
The Layered Stabilized Flow Model Program calculates each layer’s flow rate 

using Eq. 3.9 by initially assuming values of G p k ’, G k  and J g k  for each layer and then 
calculating the total flow rate by summing up the layer rates of the entire commingled 
system (refer to Eq. 3.13). Calculation of the total flow rate is done for each time step.

In order to get the correct values of G p k  G k  and J g k , the model rates are history 
matched with the actual production rates using non-linear least square regression 
analysis. Non-linear least square regression analysis is a multivariable optimization 
technique commonly used to infer unknown parameters of a given model function by 
comparing and minimizing the difference between the model function and the actual 
measurements.

3.4.3.1 Non-linear Regression Analysis

In general terms, non-linear regression is a mathematical procedure whereby 
model parameters are determined through minimization of the difference between the 
calculated model response and the actual measurement. In the least squares approach, 
an objective function E  is set such that the sum of the squares of the difference 
between the actual measurement (total actual rate) and the model function (total 
model rate) is minimized:
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where
it = objective function 
/  = model function 
X = independent variable 
y  = dependent variable 
6  =  model parameters

(3.34)

The objective function E  can be approximated as a quadratic relationship by taking a 
2nd order Taylor Series expansion of the function. This quadratic approximation, E*, 
is defined as:

-0 °j)
dE
d o .

-el) d 2E
dOA (3.35)

where the subscripts j  and k refer to the unknown parameters and the superscript 0 in 0 
refers to the initial guesses for the unknown parameters. The use of the 2nd order 
approximation or Eq. 3.35 is known as the Newton’ร Method.

If we define a vector of 1st order partial derivatives as,

g -

a vector of increments in the independent variables as Ô0,

(3.36)

6 6  =  6 - 0 ° (3.37)
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and a matrix of 2nd order partial derivatives of the function as,

82E
80A 0° . (3.38)

this allows Eq. 3.35 to be written in the following matrix form as:

E ' =  E\e0 + { ô d ) T g  + -2 {ร ร), H { s e )  (3.39)

where g  is the gradient of the objective function (known as the Jacobian) and H  is the 
Hessian matrix.

Taking the first derivative of E  with respect to the unknown parameters, we obtain 
from Eq 3.34:

ÔE
~ d 6 ,

0 0

(3.40)

And the second derivative is defined by:

d2Ed9,e, ~ 2 ±
1 0 i=1

df
8 6 .

df + h - f  ( ^ ) ]^ (3.41)

In order to minimize E*, its derivative with respect to 80 must be zero:

m
=  0 (3.42)

From Eq 3.39, we obtain
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m
=  g  +  H { â 8 ) (3.43)

Thus, by equating Eq. 3.42 and Eq. 3.43, we obtain:

s o  =  ~ H ' g (3.44)

Note that 80 obtained from Eq 3.44 is from E *  which is used to approximate the 
true objective function E. Therefore, s o  should be solved iteratively until E *  is very 
close to E  or 6  ก is approximately equal to 6.

In summary, the objective is to find s o  that ensures £  is a minimum value. This 
will allow the determination of 0  (model parameters) which for a quadratic surface 
will be the optimum values 0*. For general non-linear function, the minimum of E  
will not be obtained in one iteration, hence solving for 0  is normally modified as a 
recursive formula where:

00 = 0k+l- 0 k
(3.45)

And the new solution to the unknown model parameters is

8k+] = 0k +Ô6 (3.46)

Here 6 k+l represents the new solution vector to the unknown parameters and the final 
(or optimum) solutions are obtained when a set of termination or convergence criteria 
is satisfied.

The Newton’s method requires the Hessian matrix to be positive definite, i.e., all 
the diagonal terms in the Hessian matrix are positive. In order to ensure positive 
definiteness of the Hessian matrix, Gauss-Newton method can be used. In this
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method, the second derivatives of the function are set to zero. However, even with the 
application of the Gauss-Newton method, the Hessian matrix may still be ill
conditioned. Levenberg and Marquardt^14̂  proposed an algorithm that forces the
Hessian matrix to be positive-definite by introducing a small constant to the diagonal 
elements of the Hessian matrix. This method is known as the Gauss-Marquardt 
Algorithm.

In general, the Gauss-Marquardt algorithm is summarized in Figure 3.1 :

Figure 3.1 : Gauss-Marquardt algorithm.
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The algorithm starts by introducing a positive constant p  large enough to make 
the Hessian matrix positive definite when it is not. For the first iteration (k=0), an 
initial value of 1000 is used for p  and is multiplied by an identity matrix I  to modify 
the Hessian matrix. The vector of increments of the model parameters 5 9  is then 
solved using Eq.3.44 using the modified Hessian matrix. The new solution to the 
unknown model parameters 9 k+l is then determined. The first condition to be satisfied 
is that the model function with the new solution vector should be smaller than the 
previous one. If so, the value of p  can be reduced (by a quarter). This new p  can be 
used in the new iteration following the same procedure until the second condition, the 
termination or convergence criteria for the Jacobian g ( 9 )  is satisfied. If the first 
condition is not satisfied, the initially assumed p  is doubled and 5 9  is again solved 
until both conditions for the model function and the termination criteria are achieved.

Initially, the values of the convergence and termination criteria, d G , dJg and 
d G p ’ (the difference between the values of the guessed parameters in the two 
successive iterations), are set to be 5% of the guessed values for G, Jg and Gp ’. Further 
refinement is done by reducing the values of d G , dJg and d G p ’ to less than 5% 
depending on the actual data used to match the model equation.

3.4.3.2 Non-linear Regression Equation for the Layered Stabilized Flow Model

Applying the principle of non-linear least squares regression analysis to the 
Layered Stabilized Flow Model, the objective function E  can be represented as:

(3.47)

The model function/ as defined earlier in Eq. 3.13 is:

f { e d j ) = q rj = £

f j - \  \  ไ
J gk P ik  z ik z jk G k  —  J  gk P ik  z ik z  jk Z h  y  glk I I ~  J g i P w ff z  tk G k

z ik G k +  J gkp tkz ikz j k & t j (3.48)
V /
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The gradient vector (Jacobian) is:

(3.49)
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And the Hessian matrix is:

H  =  \ d 2EdOdO.,
9° .

dfde. df
๙. d0y + [q,1- i Y  ■‘1)] ร 2/  dû de, (3.50)

Simplifying with the Gauss-Newton Method,

d2fde de, =  0

๙ '

The final form of the Hessian matrix is given in Eq. 3.50:

(3.51)

f  d f d%_ y  d f 5/ ÿ  d f i t ท
■ t 0/ ^  5/ 5/ y  d f df

èôG, ac. è à G 1 ac, ]f\ ac. ay, Z-Jj=\ ac. ay, é a c , 3Gp, T i d G t d G ' 11

V  d f d f

7 ^ d G k ac,
f  d f d f _

d J\ ac.
f  d f df_

d J k ac,
V  df d f

i d G p]1ac,
V  df d f r  d f d f

U d G pk d G k d G  1,k

(3.52)

All the partial derivatives are solved using numerical differentiation (finite- 
difference approximation), e.g., for the partial derivative of/  with respect to G  I,

d fdo; 11, f  (g ,2) - / ( g ,“)
G I° -  G \

(3.53)

where
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f(Gi°) = model function evaluated at 1% less of the guessed value of Gi (other 
unknown parameters held constant at their guessed value) 

f(G|2) = model function evaluated at 1% more of the guessed value of Gi (other 
unknown parameters held constant at their guessed value)

G|° = GI decreased by 1% from its guessed value 
G]2 = G| increased by 1% from its guessed value

3.5 LSFM Procedure for Calculating Original Gas In Place
The algorithm for calculating the OGIP is outlined below:

1. Determine the following reservoir and fluid properties for each layer:
a) initial reservoir pressure
b) initial reservoir temperature
c) gas specific gravity

2. Setup the production history table with the following required information:
a) Date when initial production starts

The production start date is an important information in order to get the 
correct total cumulative production from all layers from the start of production 
to the start of the calibration period. From this total initial cumulative 
production, the initial cumulative production from each layer can then be 
estimated.

b) Production data at each time step that provides the following information:
■ Date of measurement

The date at which the production data is taken gives the duration or time 
period in which the well flows at that given rate. This information is used 
for the calculation of cumulative production from each layer at each time 
step in the calibration period.

■ Choke setting
■ Flowing temperature at the surface
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■ Flowing pressures, either tubing head or bottomhole flowing pressures. If 
flowing pressures are given in terms of surface pressures, any multi-phase 
flow calculator can be used for pressure loss calculation to get the flowing 
bottomhole pressure

■ Gas rates
■ Condensate and/or water rates

In the absence of measured flowing bottomhole pressure, the condensate 
and/or water rates together with the flowing temperature and tubing head 
pressure are used to calculate the flowing bottomhole pressure using an 
appropriate multi-phase flow correlation. For the bottomhole pressue 
calculation, this research used the “Prosper Module” of the Petroleum 
Experts Program Suite for the calculation of the flowing bottomhole 
pressures.

3. Setup the normalized pseudo-pressure table for each layer. This will require 
the calculation of the z-factors and viscosities at each pressure.

4. Perform the history matching using the Layered Stabilized Flow Model 
Program.

The algorithm for history matching using the Layered Stabilized Flow Model
Program is presented in the schematic flow chart in Fig. 3.2.
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Figure 3.2: Algorithm for the layered stabilized flow model program.
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