การพัฒนาโปรปราโนลอล ไฮโดรคลอไรด์ออสโมติกปั้มชนิดฟิล์มมีรูพรุนขนาดเล็ก

นาย เปรมชัย เอี่ยมศิรินพกุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชอุตสาหกรรม ภาควิชาเภสัชอุตสาหกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541

ISBN 974-638-299-3 ลิขสิทธิ์ของบัณฑิตริยยาลัย จุฬาลงกรณ์มหาวิทยาลัย

THE DEVELOPMENT OF PROPRANOLOL HYDROCHLORIDE MICROPOROUS OSMOTIC PUMP

Mr. Pramchai Eamsirinopkhun

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Manufacturing Pharmacy

Department of Manufacturing Pharmacy

Graduate School

Chulalongkorn University

Academic Year 1998

ISBN 974-638-299-3

Thesis Title

The Development of Propranolol Hydrochloride Microporous

Osmotic Pump

By

Mr. Pramchai Eamsirinopkhun

Department

Manufacturing Pharmacy

Thesis Advisor

Associate Professor Garnpimol C. Ritthidej, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the requirements for the Master's Degree

Dea

......Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis Committee

Wichen Thanindratara

(Assistant Professor Wichein Thanindratarn, M.Sc. in Pharm)

Daryind C. Hillidy Thesis Advisor

(Associate Professor Garnpimol C. Ritthidej, Ph.D.)

Olany Santa Member

(Associate Professor Narong Sarisuth, Ph.D.)

(Naruporn Sutanthavibul, Ph.D.)

พิมพ์ตับฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

เปรมชัย เอี่ยมศิรินพกุล : การพัฒนาโปรปราโนลอล ไฮโดรคลอไรด์ออสโมติกปั้มชนิด ฟิล์มรูพรุน ขนาดเล็ก (THE DEVELOPMENT OF PROPRANOLOL HYDROCHLORIDE MICROPOROUS OSMOTIC PUMP) อ.ที่ปรึกษา : รศ.ดร. กาญจน์พิมล ฤทธิเดช, 160 หน้า. ISBN 974-638-299-3

บัจจัยต่างๆที่มีผลต่อการปลดปล่อยตัวยาออกจากระบบนำส่งยาโปรปราโนลอล ไฮโดรคลอไรด์ออสโม-ติกปั๊มเช่น ชนิดของสารพลาสติกไซเซอร์, บริมาณของสารพลาสติกไซเซอร์, ชนิดของสารก่อแรงดันออสโมติก, ขนาด ของช่องนำส่งยา เป็นตัน จะถูกประเมินผลโดยการศึกษาลักษณะทางกายภาพ และด้วยการศึกษา ลักษณะในการ ปลดปล่อยตัวยาออกจากระบบนำส่งยา ซึ่งพบว่าการใช้สารโพลีเอทที่ลีน ไกลคอล 400 เป็นสาร พลาสติกไซเซอร์จะ ส่งผลให้ตัวยาถูกปลดปล่อยออกมามากกว่าการใช้สารไดบิวทิว พาทาเลท ภาพถ่ายจากกล้อง จุลทรรศน์อิเลคตรอน แสดงให้เห็นว่าผนังของพิล์มที่มีสารโพลีเอทที่ลีน ไกลคอล 400 เป็นองค์ประกอบจะมี ลักษณะที่เป็นรูพรุนภายหลังจาก การศึกษาลักษณะการปลดปล่อยตัวยา แต่ผนังของพิล์มที่มีสารไดบิวทิว พาทาเลทเบ็นองค์ประกอบจะมีลักษณะที่เรียบ เมื่อเพิ่มบริมาณของสารโพลีเอทที่ลีน ไกลคอล 400 พบว่าตัวยาจะถูกปลดปล่อยออกมามากขึ้น ผลของภาพถ่ายจาก กล้องจุลทรรศน์อิเลคตรอนแสดงให้เห็นว่า รูที่ผนังของพิล์มจะมีลักษณะที่ไหญ่มากขึ้น ผลเช่นนี้ยังคงเกิดขึ้นเมื่อมี การใช้สารโพลีเอทที่ลีน ไกลคอล 4,000 แต่เมื่อทำการเพิ่มบริมาณของสารไดบิวทิว พาทาเลทกลับพบว่าตัวยาที่ถูก ปลดปล่อยออกมากลับไม่แตกต่างกัน โดยผลจากภาพถ่ายซี้ว่า ผนังของพิล์มยังคงมีความเรียบไม่แตกต่างกันเมื่อ ทำการเติมสารก่อแรงดันออสโมติก ชนิดต่างๆในยาเม็ดผลที่ได้พบว่า หากสารที่เติมสามารถให้แรงดันออสโมติกที่สูง แล้วตัวยาที่ถูกปลดปล่อย ออกมาก็จะมีปริมาณมากตามไปด้วย ในแง่ของชนาดช่องนำส่งยานั้นพบว่า ขนาดของ ช่องนำส่งยา จะมีผลต่อการปลดปล่อยยาออกจากระบบนำส่งยาเมื่อปริมาณของสารโพลีเอทที่ลีน ไกลคอล 400 ใน ชั้นพิล์มมีมากขึ้น

ภาควิชาเภสัชอุตสาหกรรม	ลายมือชื่อนิสิต ให้รมชิบ เอ็จมกิริทหกอ
	ลายมือชื่ออาจารย์ที่ปรึกษา 🎞 🏂
ปีการศึกษา2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

พิมพ์ตับฉบับบทกัดย่อวิทยานิพบธ์ภายในกรอบสีเขียวนี้เพียวแผ่นเดียว

3971079033: MANUFACTURING PHARMACY

KEY WORD: PROPRANOLOL HYDROCHLORIDE / OSMOTIC PUMP TABLET /

POLYETHYLENE GLYCOL 400

PRAMCHAI EAMSIRINOPKHUN: THE DEVELOPMENT OF PROPRANOLOL

HYDROCHLORIDE MICROPOROUS OSMOTIC PUMP. THESIS ADVISOR:

ASSOC. PROF. GARNPIMOL C. RITHIDEJ, Ph.D., 160 pp. ISBN 974-638-299-3

There are several factors affecting the release of drug from the propranolol hydrochloride osmotic pump devices; such as the plasticizer type, the level of plasticizer in coated film, the type of osmotic agents within osmotic devices, the passageway size, etc. The effect of many factors was evaluated by using the scanning electron microscope and the release characteristic. The results displayed that Polyethylene glycol 400 supported the release of drug from osmotic devices whereas Dibutyl phthalate suppressed the release of drug. microporous membrane and sponge-like structure were created after the osmotic devices were coated with cellulose acetate plasticized with PEG 400 and were exposed in water. For the osmotic devices coated with cellulose acetate plasticized with DBP, the non-porous membrane was observed even when the osmotic devices was in contact attracted with water. The release of the drug from osmotic devices increased as the level of PEG 400 in coated film increased. The photomicrographs demonstrated that the size of the porosity of the film was increased with increasing level of PEG 400. In the case of PEG 4000, the results were also similar to PEG 400. The release of drug from osmotic devices was not altered when the levels of DBP in coated film increased. The photomicrographs of DBP plasticized film coated osmotic devices was the same although the level of DBP in coated film increased. However, the amount of drug release from osmotic devices increased with increasing osmotic pressure within the devices and decreased with increasing osmotic pressure of the dissolution medium. In consideration of the passageway size, the drug release rate from osmotic devices was indifferent although the size was increased from 400 to 1500 μm .

ภาควิชา	เภสัชอุตสาหกรรม	ลายมือชื่อนิสิต framchai Eamsiningpakhun
สาขาวิชา	เภสัชอุตสาหกรรม	ลายมือชื่ออาจารย์ที่ปรึกษา Sampind C. Little L
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS.

I would like to express my sincere gratitude to my thesis advisor, Associate Professor Garnpimol C. Ritthidej, Ph.D. for her valuable advice, guidance and encouragement throughout this study. Her patience, kindness and understanding are also deeply appreciated.

A special appreciation is also given to the Graduate School, Chulalongkorn University for granting partial financial support to fulfill this investigation.

The special acknowledgments are given to all members in the Department of Manufacturing Pharmacy and my friends for their kind assistance.

Finally, the love and encouragement given to me by my parents are valuable.

CONTENTS

	Page
Thai Abstract	iv
English Abstract.	v
Acknowledgments	vi
List of Tables	viii
List of Figures	xviii
List of Abbreviations	xxiv
Chapter	
I Introduction	1
II Experiment	45
III Results	58
IV Discussion and Conclusions	104
References	113
Appendices	116
Vitae	160

LIST OF TABLES

Table		Page
1	Osmotic pressure of saturated solutions of common pharmaceutical	
	solution	10
2	The formulations of coating solution.	50
3	Physical properties of tablets prepared by direct compression technique	60
4	Absorbance of propranolol hydrochloride in methanol at 289nm	116
5	Absorbance of propranolol hydrochloride in water at 289nm	117
6	Absorbance of propranolol hydrochloride in 0.1N HCl at 289nm	117
7	Absorbance of propranolol hydrochloride in phosphate buffer pH 6.8 at	
	289nm	118
8	Percent of drug released from core tablets	123
9	Percent of drug released from coated tablet coated with cellulose acetate	
	(1 liter)	123
10	Percent of drug released from coated tablet coated with cellulose acetate	
	(2 liter)	123
11	Percent of drug released from coated tablet coated with cellulose acetate	
	(3 liter)	123
12	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 20% PEG 400(1 liter)	124
13	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 20% PEG 400(2 liter)	124
14	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 20% PEG 400(3 liter)	124
15	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 40% PEG 400(1 liter)	124

Table	e (cont.)	Page
16	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 40% PEG 400(2 liter)	125
17	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 40% PEG 400(3 liter)	125
18	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 60% PEG 400(1 liter)	125
19	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 60% PEG 400(2 liter)	125
20	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 60% PEG 400(3 liter)	126
21	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 20% DBP(2 liter)	126
22	Percent of drug released from coated tablet coated with cellulose acetate	
	plasticized with 40% DBP(2 liter)	126
23	Percent of drug released from osmotic devices coated with cellulose	
	acetate(coating solution 3liter, film thickness 95mcm)	126
24	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 (coating solution 2liter, film	
	thickness 70mcm)	127
25	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 (coating solution 3liter, film	
	thickness 135mcm)	127
26	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 40% PEG 400 (coating solution 2liter, film	
	thickness 145mcm)	127

Tabl	e (cont.)	Page
27	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 40% PEG 400 (coating solution 3liter, film	
	thickness 160mcm)	128
28	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 (coating solution 2liter, film	
	thickness 160mcm)	128
29	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 (coating solution 3liter, film	
	thickness 230mcm)	128
30	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% DBP	129
31	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 40% DBP	129
32	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% DBP and 20% PEG 4000	129
33	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% DBP and 40% PEG 4000	130
34	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% DBP and 60% PEG 4000	130
35	Percent of drug released from osmotic devices coated with cellulose	
	acetate film a 700mcm passageway	130
36	Percent of drug released from osmotic devices coated with cellulose	
	acetate film a 1000mcm passageway	131
37	Percent of drug released from osmotic devices coated with cellulose	
	acetate film a 1500mcm passageway	131

Table	e (cont.)	Page
38	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400with a 700mcm passageway	
	(film thickness 70mcm)	131
39	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 1000mcm passageway	
	(film thickness 70mcm)	132
40	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 1500mcm passageway	
	(film thickness 70mcm)	132
41	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400with a 700mcm passageway	
	(film thickness 160mcm)	132
42	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 1000mcm passageway	
	(film thickness 160mcm).	133
43	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 1500mcm passageway	
	(film thickness 160mcm)	133
44	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 400mcm passageway(using rotating basket apparatus	
	at 50 rpm)	133
45	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 400mcm passageway(using rotating basket apparatus	
	at 150 rpm)	134

Tabl	e (cont.)	Page
46	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 1500mcm passageway(using rotating basket apparatus	
	at 50 rpm)	134
47	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 1500mcm passageway(using rotating basket apparatus	
	at 150 rpm)	134
48	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 400mcm passageway	
	(using rotating basket apparatus at 50 rpm)	135
49	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 400mcm passageway	
	(using rotating basket apparatus at 150 rpm)	135
50	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 1500mcm passageway	
	(using rotating basket apparatus at 50 rpm)	135
51	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 1500mcm passageway	
	(using rotating basket apparatus at 150 rpm)	136
52	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 400mcm passageway	
	(using rotating basket apparatus at 50 rpm)	136
53	Percent of drug released from osmotic devices with cellulose acetate	
	plasticized with 60% PEG 400 with a 400mcm passageway	
	(using rotating basket apparatus at 150 rpm)	136

Tabl	e (cont.)	Page
54	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 1500mcm passageway	
	(using rotating basket apparatus at 50 rpm)	137
55	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 1500mcm passageway	
	(using rotating basket apparatus at 150 rpm)	137
56	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 400mcm passageway(using rotating paddle apparatus	
	at 100 rpm)	137
57	Percent of drug released from osmotic devices coated with cellulose	
	acetate with a 1500mcm passageway(using rotating paddle apparatus	
	at 100 rpm)	138
58	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 400mcm passageway	
	(using rotating paddle apparatus at 100 rpm)	138
59	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 with a 1500mcm passageway	
	(using rotating paddle apparatus at 100 rpm)	138
60	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 400mcm passageway	
	(using rotating paddle apparatus at 100 rpm)	139
61	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 with a 1500mcm passageway	
	(using rotating paddle apparatus at 100 rpm)	139
62	Percent of drug released from osmotic devices coated with cellulose	
	acetate in pH-change medium(film thickness 65 mcm)	139

Table	e (cont.)	Page
63	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 20% PEG 400 in pH-change medium	
	(film thickness 70 mcm)	140
64	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 40% PEG 400 in pH-change medium	
	(film thickness 145 mcm)	140
65	Percent of drug released from osmotic devices coated with cellulose	
	acetate plasticized with 60% PEG 400 in pH-change medium	
	(film thickness 160 mcm)	140
66	Percent of drug released from drug-lactose osmotic devices coated with	
	cellulose acetate plasticized with 20% PEG 400	141
67	Percent of drug released from drug-sucrose osmotic devices coated with	
	cellulose acetate plasticized with 20% PEG 400	141
68	Percent of drug released from drug-mannitol osmotic devices coated with	
	cellulose acetate plasticized with 20% PEG 400	141
69	Percent of drug released from drug-sodium chloride osmotic devices with	
	cellulose acetate plasticized with 20% PEG 400	142
70	Physical properties of propranolol hydrochloride core tablets	143
71	Physical properties of propranolol hydrochloride-lactose core tablets	143
72	Physical properties of propranolol hydrochloride-mannitol core tablets	144
73	Physical properties of propranolol hydrochloride-sucrose core tablets	144
74	Physical properties of propranolol hydrochloride- sodium chloride core	
	tablets	145
75	Film thickness of core tablets coated with cellulose acetate	145
76	Film thickness of core tablets coated with cellulose acetate plasticized with	
	20% PEG 400	146

Table	(cont.)	Page
77	Film thickness of core tablets coated with cellulose acetate plasticized with	
	40% PEG 400	146
78	Film thickness of core tablets coated with cellulose acetate plasticized with	
	60% PEG 400	147
79	Film thickness of core tablets coated with cellulose acetate plasticized with	
	20%DBP	147
80	Film thickness of core tablets coated with cellulose acetate plasticized with	
	40%DBP	147
81	Film thickness of core tablets coated with cellulose acetate plasticized with	
	20% DBP and 20% PEG 4000	148
82	Film thickness of core tablets coated with cellulose acetate plasticized with	
	20% DBP and 40% PEG 4000	148
83	Film thickness of core tablets coated with cellulose acetate plasticized with	
	20% DBP and 60% PEG 4000	148
84	The Anova analysis of percentage of drug released from osmotic devices co.	ated
	with various levels of PEG 400 in coating film	152
85	The Anova analysis of percentage of drug released from osmotic devices con	ated
	with cellulose acetate with varying size of passageway	152
86	The Anova analysis of percentage of drug released from osmotic devices coa	ated
	with cellulose acetate plasticized with 20% PEG 400 with varying size of	
	passageway	153
87	The f-value of percentage of drug released from osmotic devices coated with	1
	cellulose acetate plasticized with 20% PEG 400 with varying size of	
	naccageway	153

Table	(cont.)	Page
88	The Anova analysis of percentage of drug released from osmotic devices	
	coated with cellulose acetate plasticized with 60 % PEG 400 with varying	
	size of passageway	154
89	The f-value of percentage of drug released from osmotic devices coated with	1
	cellulose acetate plasticized with 60 % PEG 400 with varying size of	
	passageway	154
90	The Anova analysis of percentage of drug released from osmotic devices	
	coated with cellulose acetate with varying rotating speed	155
91	The Anova analysis of percentage of drug released from osmotic devices	
	coated with cellulose acetate plasticized with 20% PEG 400 with	
	varying rotating speed	155
92	The f-value of percentage of drug released from osmotic devices coated with	ı
	cellulose acetate plasticized with 20% PEG 400 with varying rotating speed	156
93	The Anova analysis of percentage of drug released from osmotic devices	
	coated with cellulose acetate plasticized with 60% PEG 400 with varying	•
	rotating speed	156
94	The f-value of percentage drug release from core tablets coated with cellulos	se
	acetate plasticized with 60 % PEG 400 with varying rotating apparatus	157
95	The Anova analysis of percentage of drug released from osmotic devices coa	ated
	with cellulose acetate with varying rotating type	157
96	The Anova analysis of percentage of drug released from osmotic devices coa	ated
	with cellulose acetate plasticized with 20 % PEG 400 with varying the rotati	ng
	speed	158
97	The f-value of percentage of drug released from osmotic devices coated with	1
	cellulose acetate plasticized with 20% PEG 400 with varying rotating speed	158

Table	(cont.)	Page
98	The Anova analysis of percentage of drug released from osmotic devices co	ated
	with cellulose acetate plasticized with 60 % PEG 400 with varying the rotat	ing
	speed	159
99	The f-value of percentage of drug released from osmotic devices coated with	h
	cellulose acetate plasticized with 60% PEG 400 with varying rotating speed	159

LIST OF FIGURES

Figure		Page
l(a)	The basic structure of elementary osmotic pump	2
l(b)	The basic structure of elementary osmotic pump	2
2	Model of osmosis phenomenon	6
3	Model of basic osmometer	8
4	Model of Rose-Nelson pump	11
5	Model of Higuchi-Leeper pump	13
6	Model of Higuchi-Theeuwes pumps	14
7	Insertion of osmotic pump delivery system	15
8	Comparative size of osmotic devices.	16
9	Model of devices with a second expandable osmotic chamber	19
10	Model of Adalat CR® (Procardia XL®)	19
11	Model of devices with a non-expanding second chamber	21
12	The laser drill machine	23
13	Method of laser-drilling osmotic tablets	24
14	Chemical structure of propranolol hydrochloride	32
15	Chemical structure of Cellulose Acetate	34
16	Empirical formula of Dibutyl Phthalate	41
17	General empirical formula of PEGs	42
18	The photomicrographs of passageway (A : Passageway size 400 μ m x50, B :	
	Passageway size 700μm x50)	62
19	The photomicrographs of passageway (A: Passageway size 1000µm x35,	
	B: Passageway size 1500μm x35)	63

Figure	e (cont.)	Page
20	The photomicrographs of cellulose acetate without plasticizer film coated	
	osmotic pump tablets before dissolution test(A : surface x2500, B :	
	cross-section x350, C: surface x10000)	66
21	The photomicrographs of cellulose acetate without plasticizer film coated	
	osmotic pump tablets after dissolution test(A : surface x2500, B :	
	cross-section x750, C: surface x10000)	67
22	The photomicrographs of cellulose acetate plasticized with 20 % dibutyl	
	phthalate film coated osmotic pump tablets before dissolution test. (A:	
	surface x3500, B: cross-section x350, C: surface x10000)	68
23	The microphotographs of cellulose acetate plasticized with 20% dibutyl	
	phthalate film coated osmotic pump tablets after dissolution test. (A:	
	surface x2000, B: cross-section x350, C: surface x10000)	69
24	The photomicrographs of cellulose acetate plasticized with 40% dibutyl	
	phthalate film coated osmotic pump tablets before dissolution test. (A:	
	surface x3500, B: cross-section x350, C: surface x10000)	70
25	The microphotographs of cellulose acetate plasticized with 40% dibutyl	
	phthalate film coated osmotic pump tablets after dissolution test. (A:	
	surface x2000, B: cross-section x350, C: surface x10000)	71
26	The photomicrographs of cellulose acetate plasticized with 20 %PEG	
	400 before dissolution test. (A : surface x2000, B : cross-section x350,	
	C : surface x10000)	72
27	The photomicrographs of cellulose acetate plasticized with 20 %PEG	
	400 after dissolution test. (A : surface x5000, B : cross-section x350,	
	C : surface x10000)	73

Figure	e (cont.)	Page
28	The photomicrographs of cellulose acetate plasticized with 40%PEG 400	
	before dissolution test. (A: surface x2500, B: cross-section x350,	
	C : surface x10000)	74
29	The photomicrographs of cellulose acetate plasticized with 40%PEG 400	
	after dissolution test. (A : surface x5000, B : cross-section x350,	
	C: surface x10000)	75
30	The photomicrographs of cellulose acetate plasticized with 60%PEG 400	
	before dissolution test. (A : surface x2500, B : cross-section x350,	
	C : surface x10000)	76
31	The photomicrographs of cellulose acetate plasticized with 60%PEG 400	
	after dissolution test. (A : surface x5000, B : cross-section x350,	
	C : surface x10000)	77
32	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 20%PEG 4000 before dissolution test. (A : surface x2500, B	:
	cross-section x350, C: surface x10000)	79
33	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 20%PEG 4000 after dissolution test. (A : surface x3500, B :	
	cross-section x350, C: surface x10000)	80
34	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 40%PEG 4000 before dissolution test. (A : surface x3500, B	
	: cross-section x350, C : surface x10000)	81
35	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 40%PEG 4000 after dissolution test. (A : surface x3500, B	
	: cross-section x350, C : surface x10000)	82

Figur	re (cont.)	Page
36	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 60%PEG 4000 before dissolution test. (A : surface x2500, B	
	: cross-section x350, C : surface x10000)	83
37	The photomicrographs of cellulose acetate plasticized with 20%DBP and	
	fluxed with 60%PEG 4000 after dissolution test. (A : surface x2500, B :	
	cross-section x350, C: surface x10000)	84
38	The release profile of propranolol hydrochloride from core tablets	87
39	The release profile of propranolol hydrochloride from tablets coatedwith	
	varying amount of cellulose acetate coating solution	87
40	The release profile of propranolol hydrochloride from core tablets coated	
	with varying amount of cellulose acetate plasticized with 20% PEG 400	
	solution	88
41	The release profile of propranolol hydrochloride from core tablets coated	
	with varying amount of cellulose acetate plasticized with 40% PEG 400	
	solution)	88
42	The release profile of propranolol hydrochloride from core tablets coated	
	with varying amount of cellulose acetate plasticized with 60% PEG 400	
	solution)	89
43	The release profile of propranolol hydrochloride from core tablets coated	
	with varying amount of cellulose acetate plasticized with 20 and 40%	
	DBP	89
44	The influence of plasticizer type on the release profiles from osmotic pump	
	tablets	91
45	The effect of level of PEG 400 in coated film on the release profiles of osmo	tic
	pump tablets	91

Figure	(cont.)	Page
46	The effect of level of DBP in coated film on the release profiles of osmotic	
	pump devices	92
47	The effect of caoting level on the release profiles of osmotic pump tablets	92
48	The effect of level of PEG 4000 in coated film on the relaese profiles	95
49	The effect of passageway size on the release profiles of osmotic pump	
	devices coated with cellulose acetate	95
50	The effect of passageway size on the release profiles of osmotic devices	
	coated with 20% PEG 400plasticized film	96
51	The effect of passageway size on the release profiles of osmotic pump device	es
	coated with 60% PEG 400 plasticized film	96
52	The effect of rotating speed on the release profiles of osmotic pump tablets	
	coated cellulose acetate	98
53	The effect of rotating speed on the release profiles of osmotic pump tablets	
	coated with cellulose acetate plasticized with 20 % PEG	98
54	The effect of rotating speed on the release profiles of osmotic pump tablets	
	coated with cellulose acetate plasticized with 60 % PEG 400	99
55	The effect of rotating type on the release profiles of cellulose acetate withou	t
	plasticizer coated osmotic pump devices	99
56	The effect of rotating type on the release profiles of 20 % PEG 400 plasticize	ed
	film coated osmotic pump devices	100
57	The effect of rotating type on the release profiles of 60 % PEG 400 plasticiz	ed
	film coated osmotic pump devices	100
58	The effect of dissolution medium on the release profiles from osmotic pump	
	devices	102
59	The effect osmotic agent within osmotic pump devices on the release	
	profiles	102

Figure	e (cont.)	Page
60	The representative maximum wavlength of propranolol hydrochloride in	
	water	119
61	The representative maximum wavlength of propranolol hydrochloride in	
	methanol	119
62	The representative maximum wavlength of propranolol hydrochloride in 0.	1 N
	HCI	120
63	The representative maximum wavelength of propranolol hydrochloride in	
	phosphate buffer pH 6.8	120
64	Calibration curve of propranolol hydrochloride in water	121
65	Calibration curve of propranolol hydrochloride in methanol	121
66	Calibration curve of propranolol hydrochloride in 0.1N HCl	122
67	Calibration curve of propranolol hydrochloride in phosphate buffer pH6.8	122

LIST OF ABBREVIATIONS

°C degree celsius (centigrade)

cm centimeter (s)

DBP dibutyl phthalate

e.g. exampli gratia, for example

et al. Et alii, and others

hr hour (s)

i.e. id est, that is

TI thrrapeutic index

mcg microgram (s)

min. minute (s)

mg milligram (s)

ml milliliter (s)

mm millimeter (s)

N normality

nm nanometre (s)

pH the negative logarithm of the hydrogen ion concentration

qs. make to volume

rpm revolution per minute

SEM scanning electron microscope

USP The United States Pharmacopoeia

UV ultraviolet