การสร้างแบบจำลอง การปรับให้สอดคล้องของข้อมูล และการควบคุม เครื่องปฏิกรณ์อะเซทิลีนไฮโดรจีเนชัน

นางสาวธรวิภา เสือรอด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-639-506-8 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

I 18980648

1 9 S.A. 2544

PROCESS MODELING, DYNAMIC DATA RECONCILIATION AND CONTROL OF ACETYLENE HYDROGENATION REACTORS

Miss Tarawipa Saurod

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Graduate School Chulalongkorn University Academic year 1998 ISBN 974-639-506-8

Thesis Title	;	Process Modeling, Dynamic Data Reconciliation, and Control
		of Acetylene Hydrogenation Reactors
Ву	:	Miss Tarawipa Saurod
Department	:	Chemical Engineering
Thesis Advisor	:	Montree Wongsri, D. Sc.
Thesis Coadvisor	:	Paisan Kittisupakorn, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

...Dean of Graduate School

(Professor Supawat Chutivongse, M. D.)

Thesis Committee

VanthquenichakomChairman

(Professor Wiwut Tanthapanichakoon, Ph.D.)

e Worgs dvisor

(Montree Wongsri, D. Sc.)

(Paisan Kittisupakorn, Ph.D.)

Limbakul JununMember

(Sunun Limtrakul, D. Sc.)

ธรวิภา เสื้อรอด : การสร้างแบบจำลอง การปรับให้สอดคล้องของข้อมูล และการควบคุม เครื่องปฏิกรณ์อะเซที ลีนไฮโดจีเนชัน (PROCESS MODELING, DYNAMIC DATA RECONCILIATION AND CONTROL OF ACETYLENE HYDROGENATION REACTORS) อ. ที่ปรึกษา : ดร. มนตรี วงศ์ศรี, อ. ที่ปรึกษาร่วม : ดร. ไพศาล กิตติศุภกร, 245 หน้า. ISBN 974-639-506-8

งานวิจัยนี้เสนอแบบจำลองทางคณิตศาสตร์ของกระบวนการอะเซทีลีนไฮโดจีเนชัน โดยเขียนบนโปรแกรมสปีดอัฟ (SPEEDUP) ซึ่งเป็นโปรแกรมสภาวะจำลองแบบไดนามิก เครื่องปฏิกรณ์อะเซทีลีนไฮโดจีเนชันถูกจำลองด้วยชุดลำดับเครื่อง ปฏิกรณ์แบบถังกวนต่อเนื่อง ข้อมูลที่นำมาใช้ในการสร้างแบบจำลองได้จากข้อมูลโรงงานที่ผ่านการปรับให้สอดคล้องของข้อมูล ด้วยตัวแปรเกินจากสมการสมดุลมวลสารและพลังงาน จำนวนชุดลำดับเครื่องปฏิกรณ์แบบถังกวนต่อเนื่องที่เหมาะสมเท่ากับยี่สิบ ถัง ซึ่งให้ผลการเปรียบเทียบการเปลี่ยนแปลงของอุณหภูมิภายในครื่องปฏิกรณ์ และผลการทำนายค่าความเข้มข้นของอะเซทีลีน กับข้อมูลโรงงานเหมือนที่สุด สามารถเขียนชุดสมการการเกิดปฏิกิริยาของกระบวนการได้หกแบบ และทำการเลือกชุดสมการที่ เหมาะสมจากการพิจารณาเปรียบเทียบความเข้มช้นไฮโดเจนกำรังหนึ่ง, ไฮโดเจนมีการแตกตัวก่อนเกิดปฏิกิริยา, ผลิตภัณต์ที่เกิดไม่ถูกดูดชับบนตัว เร่งปฏิกิริยา, และความสามารถของตัวเร่งปฏิกิริยาขึ้นกับผลรวมของปริมาณอะเซทีลีนที่เข้าระบบ ให้ผลเปรียบเทียบผลการทำนาย จากแบบจำลองกับข้อมูลโรงงานดีที่สุด

การปรับให้สอดคล้องของข้อมูลแบบไดนามิกที่สร้างใช้สมการสมดุลมวลสารและพลังงานเป็นเงื่อนไขของการปรับ พบว่าค่าเวลาย้อนหลังที่ใช้ในการปรับข้อมูลที่ดีที่สุดเท่ากับสิบเท่าของช่วงเวลาในการเก็บข้อมูล สามารถลดค่าเบี่ยงเบนมาตราฐาน ของข้อมูลโรงงานได้ 40-70%, สามารถลดค่าเบี่ยงเบนมาตราฐานของข้อมูลที่ได้จากการจำลองได้ 90% และทดสอบโปรแกรมด้วย การใช้ข้อมูลที่มีสัญญาณรบกวน และข้อมูลที่ปรับให้สอดคล้องแล้วในการประมาณค่าตัวแปรของแบบจำลองใหม่ ผลการทำนาย อุณหภูมิของแบบจำลองที่ใช้ข้อมูลที่ปรับให้สอดคล้องแล้วคาดเคลื่อนไป 0.16% และผลการทำนายอุณหภูมิของแบบจำลองที่ใช้ ข้อมูลมีสัญญาณรบกวนคาดเคลื่อนไป 2.13%

แบบจำลองทางคณิตศาสตร์ของกระบวนการอะเซทีลีนไฮโดจีเนชันที่สร้างถูกนำมาใช้ในการออกแบบระบบควบ คุมแบบไดนามิเมทริก และการทดสอบผลการควบคุม ตัวควบคุมที่ดีที่สุดคือ ตัวควบคุมที่มีค่าขั้นการทำนายผลล่วงหน้าเท่ากับ สามเท่าของช่วงเวลาในการเก็บข้อมูล และมีค่าขั้นการควบคุมสำหรับผลในอนาคตเท่ากับสองเท่าของช่วงเวลาในการเก็บข้อมูล ตัว ควบคุมที่ได้มีประสิทธิภาพในการควบคุมกระบวนการ ผลการควบคุมให้ค่าผลร่วมความคาดเคลื่อนจากค่ากำหนด (set point) เท่ากับ 3.33% ของค่าจากตัวควบคุมแบบพีไอดี ช่วยลดปริมาณการสูญเสียเอธธีลีนได้ 80-98% เมื่อเทียบกับตัวควบคุมแบบพีไอ ดี

ภาควิชา	วิศวกรรมเคมี	
ສາ ນາວິชາ	วิศวกรรมเคมี	
ปีการศึกษา		

C817340 : MAJOR CHEMICAL ENGINEERING KEY WORD: ACETYLENE HYDROGENATION / DATA RECONCILIATION / PROCESS MODELING

TARAVIPA SAUROD : PROCESS MODELING, DYNAMIC DATA RECONCILIATION AND CONTROL OF ACETYLENE HYDROGENATION REACTORS. THESIS ADVISOR : MONTREE WONGSRI, D.Sc., THESIS CO-ADVISOR : PAISAN KITTISUPAKORN, Ph. D., 245 pp. ISBN 974-639-506-8

The mathematical model of the industrial acetylene hydrogenation process is developed and formulated on SPEEDUP program which is a dynamic simulation program. The fixed bed acetylene hydrogenation reactor is modeled as the CSTRs connected in series. The data using in modeling, the actual data from the ethylene plant are reconciled first using material and energy balance redundancy. The best number of CSTRs is found to be twenty which is given the best agreement in temperature profile and the output acetylene concentration of each bed. The six kinetic models with the different reaction mechanism are derived and selected for the best one by comparing their predicted outputs with the actual data. The kinetic model which its reaction mechanism are the reaction rate depends on the first order of H_2 , H_2 break to free atoms before react, the product are not adsorbed on the catalytic surface, and the catalytic activity depend on the accumulation of the inlet acetylene, gives the best agreement of the predicted result with the actual data.

The dynamic data reconciliation using the material and energy balance constrains of process is performed. The best time history horizon is found to be ten steps. It can reduce the standard deviation of the actual data and the simulated data to about 40-70% and 90% in series. The noised data and the reconciled data are then used to obtain the new parameters of the model, i.e. the reconstruction of the model. The noised model gives 2.13% of temperature error and the reconciled model gives 0.16% of temperature error.

The obtained model of acetylene hydrogenation reactor is used to demonstrate the design, implementation, and performance of Dynamic Matrix controller by simulation. The Dynamic Matrix controller is tuned for best performance with the control horizon, U=2, the prediction horizon, V=3. The integral error of Dynamic Matrix controller is only 3.33 % of the PID controller's error. The ethylene loss is reduced by 80-98% by using Dynamic Matrix controller over PID controller. The degree of the benefit of using the Dynamic Matrix Control is illustrated.

ภาควิชา	ภาควิชาวิศวกรรมเคมี	ลายมือชื่อนิสิต <u>รรริภา</u> เชื่อรงก
สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา ลาเริ
ปีการศึกษา	2541	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม <i>โกษล กิจุดัญ</i> พ

ACKNOWLEDGMENT

The author would like to express her sincere thanks to Dr. Montree Wongsri, the thesis advisor, and Dr. Paisan Kittisupakorn, the thesis co-advisor, for their excellent guidance and assistance toward the completion of the thesis. Sincere thanks are due to the thesis committee members, Professor Wiwut Tanthapanichakoon and Dr. Sunun Limtraku, for their kindness and constructive comments.

Thai Olefins Co., Ltd., has provided the useful data for thesis evaluation. Thanks for these people in this company who have contributed to the accomplishment of the work. Chulalongkorn University is greatly appreciated as well. Thanks to the people in the Process Control Lab and the author's friends for their kindness and assistance. Most of all, the author would like to express her highest gratitude to her parents, brothers, and sisters for their inspiration and encouragement.

CONTENTS

	Page	
ABSTRACT (i	n Thai) iv	
ABSTRACT (i	n English) v	
ACKNOWLED	GMENT vi	
LIST OF TAB	LES xii	
LIST OF FIGU	JRES xiii	
NOMENCLAT	URE xxvi	
CHAPTER 1	INTRODUCTION	
	1.1 Acetylene hydrogenation process	
	1.2 Dynamic simulation using SPEEDUP	
	1.3 Data reconciliation	
	1.4 Dynamic matrix control	
	1.5 Objective of the thesis	
	1.6 Scope of the thesis	
	1.7 Structure of this thesis	
CHAPTER 2	DYNAMIC MODELING	
	2.1 Introduction	
	2.2 Process modeling	
	2.2.1 Types of model 12	
	2.3 General modeling principles 16	
	2.4 Degrees of freedom in modeling 17	
	2.5 Summary	

	Pa	age
CHAPTER 3	DATA RECONCILIATION	. 19
	3.1 Introduction	19
	3.2 Data reconciliation	19
	3.3 Dynamic data reconciliation problem formulation	2 5
	3.4 Summary	29
CHAPTER 4	DYNAMIC MATRIX CONTROL	30
	4.1 Introduction	30
	4.2 The dynamic matrix control	30
	4.2.1 Step response model	31
	4.2.2 Impulse response model	31
	4.2.3 Matrix forms for predictive models	32
	4.3 Controller design method	34
	4.4 Summary	36
CHAPTER 5	ACETYLENE HYDROGENATION PROCESS	. 37
	5.1 Introduction	37
	5.2 The description of an acetylene hydrogenation process	37
	5.3 Kinetic of an acetylene hydrogenation reaction : A review	3 9
	5.4 Kinetic of catalytic reaction	41
	5.4.1 Steps in a catalytic reaction	41
	5.4.2 Synthesizing a rate law, mechanism,	
	and rate-limiting step	43
	5.4.3 Langmuir-Hinshewood kinetics	45
	5.5 Collection and analysis of rate data: to determine	
	the reaction order and rate constant	47
	5.5.1 The differential method	48
	5.5.2 Integral method	49

.

viii

	F	'age
	5.5.3 Method of initial rates	4 9
	5.5.4 Method of half-lives	. 49
	5.6 Summary	. 50
CHAPTER 6	MODELING OF ACETYLENE HYDROGENATION PROCESS	51
	6.1 Introduction	51
	6.2 Dynamic model equations	51
	6.2.1 Reactors model	. 51
	6.2.2 Shell and tube heat exchanger model	. 57
	6.3 Stage of CSTR system	. 57
	6.4 The proper reaction rate equations for	
	an acetylene hydrogenation process	63
	6.5 Summary	78
	× *	
CHAPTER 7	DYNAMIC DATA RECONCILIATION OF AN ACETYLENE	
	HYDROGENATION PROCESS	80
	7.1 Introduction	. 80
	7.2 Dynamic data reconciliation simulation of	
	an acetylene hydrogenation process	80
	7.3 The benifit of the dynamic data reconciliation	. 111
	7.4 Summary	128
CHAPTER 8	DYNAMIC MATRIX CONTROL THE AN ACETYLENE	
	HYDROGENATION PROCESS	129
	81 Introduction	129
	8.2 Dynamic matrix control of	-20
	an acetylene hydrogenation process	129
	8.2.1 The controller design	129

	I	Page
	8.2.2 The control capability of DMC with	
	U=2, V=3, a=120	134
	8.3 Summary	159
CHAPTER 9	DISCUSSION AND CONCLUSION	160
	9.1 Introduction	160
	9.2 The simulation model of the acetylene	
	hydrogenation process	. 160
	9.3 The dynamic data reconciliation of	
	the acetylene hydrogenation process	162
	9.4 The Dynamic Matrix Control design of	
	the acetylene hydrogenation process	163
REFERENCES		165
APPENDIX A	METHEMATICAL APPROACH	168
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments	168 168
APPENDIX A	METHEMATICAL APPROACH A.1 Expected values and moments. A.2 Runge-Kitta methods.	168 168 168
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments A.2 Runge-Kitta methods A.3 The method of Least-Squares analysis	168 168 168 169
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments A.2 Runge-Kitta methods A.3 The method of Least-Squares analysis A.4 Euler's method	168 168 168 169 170
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments. A.2 Runge-Kitta methods. A.3 The method of Least-Squares analysis. A.4 Euler' s method. A.5 Lagrange multiple method.	168 168 169 170 170
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments A.2 Runge-Kitta methods A.3 The method of Least-Squares analysis A.4 Euler's method A.5 Lagrange multiple method	168 168 169 170 170
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments A.2 Runge-Kitta methods A.3 The method of Least-Squares analysis A.4 Euler's method A.5 Lagrange multiple method KINETIC MODEL AND SIMULATION RESULT	168 168 169 170 170
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments. A.2 Runge-Kitta methods. A.3 The method of Least-Squares analysis. A.4 Euler's method. A.5 Lagrange multiple method. KINETIC MODEL AND SIMULATION RESULT. B.1 Kinetic model for MODEL I	168 168 169 170 170 172 172
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments. A.2 Runge-Kitta methods. A.3 The method of Least-Squares analysis. A.4 Euler's method. A.5 Lagrange multiple method. KINETIC MODEL AND SIMULATION RESULT. B.1 Kinetic model for MODEL I B.2 The simulation result of the MODEL I	168 168 169 170 170 172 172 172
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments. A.2 Runge-Kitta methods. A.3 The method of Least-Squares analysis. A.4 Euler's method. A.5 Lagrange multiple method. KINETIC MODEL AND SIMULATION RESULT. B.1 Kinetic model for MODEL I B.2 The simulation result of the MODEL I B.3 Kinetic model for MODEL I	 168 168 169 170 170 172 172 172 173 178
APPENDIX A	METHEMATICAL APPROACH. A.1 Expected values and moments. A.2 Runge-Kitta methods. A.3 The method of Least-Squares analysis. A.4 Euler' s method. A.5 Lagrange multiple method. KINETIC MODEL AND SIMULATION RESULT. B.1 Kinetic model for MODEL I B.2 The simulation result of the MODEL I B.3 Kinetic model for MODEL II B.4 The simulation result of the MODEL II	 168 168 169 170 170 172 172 172 173 178 179

		P	age
	B.6	The simulation result of the MODEL III	184
	B .7	Kinetic model for MODEL IV	189
	B.8	The simulation result of the MODEL IV	190
	B.9	Kinetic model for MODEL VI	194
	B.10	The simulation result of the MODEL VI	195
x-	B.11	Kinetic model for MODEL VII	200
	.B.12	The simulation result of the MODEL VII	201
	B.13	Kinetic model for MODEL VIII	205
	B. 14	The simulation result of the MODEL VIII	206
	B.15	Kinetic model for MODEL IX	211
	B.16	The simulation result of the MODEL IX	212
	B.17	Kinetic model for MODEL X	216
	B.18	The simulation result of the MODEL X	217
	B.19	Kinetic model for MODEL XI	222
	B.20	The simulation result of the MODEL XI	223
	B.21	Kinetic model for MODEL XII	227
	B.22	The simulation result of the MODEL XII	228
÷			
APPENDIX C	SPE	EDUP PROGRAM	233
	C.1	Flowsheet section	235
	C.2	Model section	236
	C.3	Unit section	239
	C.4	Declare section	240
	C.5	Operation section	241
	C.6	Option section	243
VITA			245

 $\overline{\mathbf{v}}$

LIST OF TABLES

	Pa	ıge
Table 5.1	Steps in a catalytic reaction	42
Table 6.1	Equilibrium constant values for the rate equations	55
Table 6.2	Reaction rate constants for Ac, Eth, MA and PD	
	hydrogenation reaction rate equations	58
Table 6.3	Calculation time for solving the simulation program	59
Table 6.4	The type of simulation model and its description	65
Table 6.5	The soluted parameter values from dynamic parameter estimation	69
Table 6.6	The simulated result by using input data from	
	the plant design-case I	71
Table 6.7	The proper estimated reaction rate constants	79
Table 7.1	Simulation condition summaries	82
Table 7.2	The descriptions of the Figure 7.1 to 7.12	82
Table 7.3	The data reconciliation results	95
Table 7.4	Computation time for the data reconciliation	97
Table 8.1	Control performance for each controller	134
Table 9.1	The proper estimated reaction rate constants	161

xii

LIST OF FIGURES

.

Figure 1.1	The ethylene plant with the front-end selective	
	catalystic reactors	3
Figure 1.1	The ethylene plant with the tail-end	
	catalystic reactors	4
Figure 2.1	A dynamic system with input u(t), output y(t)	
	and distrubance d(t), where t denotes time	9
Figure 2.2	A stirred tank	10
Figure 3.1	Steps for processing measurement data	21
Figure 3.2	History horizon for NDDR	26
Figure 4.1	Identification of coefficients of step response (a_i) and	
67	convolution model (h _i)	31
Figure 5.1	An acetylene hydrogenation under study in this thesis	37
Figure 5.2	Bed reactor	38
Figure 5.3	Steps in a heterogeneous catalytic reaction	43
Figure 5.4	Differenctial method to determine reaction order and rate constant	48
Figure 6.1	Similar-comparing between fixed-bed catalytic reactor	
	and N number CSTRs	52
Figure 6.2	Temperature profile in the reactor I compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	59
Figure 6.3	Outlet acetylene concentration for the reactor I compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	6 0
Figure 6.4	Temperature profile in the reactor II compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	60
Figure 6.5	Outlet acetylene concentration for the reactor II compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	61

.

Page

	Pa	age
Figure 6.6	Temperature profile in the reactor III compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	61
Figure 6.7	Outlet acetylene concentration for the reactor III compose with	
	N=8, N=12, N=20 and N=24 stages of CSTR	62
Figure 6.8	The percent predicted errorof each outlet variables of	
	each model types	73
Figure 6.9	Model V : Outlet temperature of reator I with error 0.375%	74
Figure 6.10	Model V : Outlet temperature of reator II with error 0.23%	74
Figure 6.11	Model V : Outlet temperature of reator III with error 0.205%	75
Figure 6.12	Model V : Outlet acetylene concentration of reator I	
	with error 7.422%	75
Figure 6.13	Model V : Outlet acetylene concentration of reator II	
	with error 1.981%	76
Figure 6.14	Model V : Outlet acetylene concentration of reator III	
	with error 2.067%	76
Figure 6.15	Model V : Outlet ethylene concentration of reator III	
	with error 2.263%	77
Figure 6.16	Model V : Outlet methyl acetylene concentration of reator III	
	with error 25.66%	77
Figure 6.17	Model V : Outlet propadien concentration of reator III	
	with error 7.620%	78
Figure 7.1	Outlet acetylene estimate response through 5% noise	
	measured data with H = 5	83
Figure 7.2	Outlet acetylene estimate response to step change in	
	feec concentration through 5% noise measured data with $H = 5$	84
Figure 7.3	Outlet acetylene estimate response through 5% noise	
	measured data with $H = 10$	85

•

	Page
Figure 7.4	Outlet acetylene estimate response to step change in
	feec concentration through 5% noise measured data with H = 10
Figure 7.5	Outlet acetylene estimate response through 5% noise
	measured data with $H = 1587$
Figure 7.6	Outlet acetylene estimate response to step change in
	feec concentration through 5% noise measured data with H = 15
Figure 7.7	Outlet acetylene estimate response through 10% noise
	measured data with $H = 5$
Figure 7.8	Outlet acetylene estimate response to step change in
	feec concentration through 10% noise measured data with H = 590 $$
Figure 7.9	Outlet acetylene estimate response through 10% noise
	measured data with $H = 1091$
Figure 7.10	Outlet acetylene estimate response to step change in
	feec concentration through 10% noise measured data with $H = 1092$
Figure 7.11	Outlet acetylene estimate response through 10% noise
	measured data with $H = 1593$
Figure 7.12	Outlet acetylene estimate response to step change in
	feec concentration through 10% noise measured data with H = 15 94
Figure 7.13	Standard deviation corresponding to the history horizon
Figure 7.14	%SD reduction and computation time
	corresponding to the history horizon
Figure 7.15	Acetylene fraction estimated response
Figure 7.16	Ethylene fraction estimated response
Figure 7.17	Hydrogen fraction estimated response 100
Figure 7.18	Methyl acetylene fraction estimated response 101
Figure 7.19	Propadiene fraction estimated response
Figure 7.20	Carbonmonoxide fraction estimated response 103
Figure 7.21	Ethane fraction estimated response

÷

Figure 7.22 The comparison between the actual data and reconciled data of the inlet temperature data and outlet temperature data...... 105 Figure 7.23 The comparison between the actual data and reconciled data of the inlet methane and the inlet hydrogen concentration data...... 106 Figure 7.24 The comparison between the actual data and reconciled data Figure 7.25 The comparison between the actual data and reconciled data of the inlet acetylene and the inlet methyl acetylene concentration data......107 Figure 7.26 The comparison between the actual data and reconciled data of the inlet ethane and the inlet propadiene concentration data...... 108 Figure 7.27 The comparison between the actual data and reconciled data of the outlet methane and the outlet hydrogen concentration data..... 108 Figure 7.28 The comparison between the actual data and reconciled data of the inlet ethylene and the inlet proprene concentration data...... 109 Figure 7.29 The comparison between the actual data and reconciled data of the inlet acetylene and the inlet methyl acetylene concentration data......109 Figure 7.30 The comparison between the actual data and reconciled data of the inlet ethane and the inlet propadiene concentration data...... 110 Figure 7.32 Comparison of predicted product temperature Figure 7.33 Comparison of predicted outlet acetylene Figure 7.34 Comparison of predicted outlet ethylene Figure 7.35 Comparison of predicted outlet hydrogen

Page

		F	age
	Figure 7.36	Comparison of predicted outlet methyl acetylene	
		corresponding to step change in total mass flowrate	117
	Figure 7.37	Comparison of predicted outlet propadiene	
		corresponding to step change in total mass flowrate	118
	Figure 7.38	Comparison of predicted outlet methane	
		corresponding to step change in total mass flowrate	119
	Figure 7.39	Comparison of predicted product temperature	
		corresponding to step change in feed temperature	120
	Figure 7.40	Comparison of predicted outlet acetylene	
		corresponding to step change in feed temperature	121
	Figure 7.41	Comparison of predicted outlet ethylene	
		corresponding to step change in feed temperature	122
	Figure 7.42	Comparison of predicted outlet hydrogen	
		corresponding to step change in feed temperature	123
	Figure 7.43	Comparison of predicted outlet methyl acetylene	
		corresponding to step change in feed temperature	124
	Figure 7.44	Comparison of predicted outlet propadiene	
		corresponding to step change in feed temperature	125
	Figure 7.45	Comparison of predicted outlet methane	
		corresponding to step change in feed temperature	126
	Figure 7.46	The capability to erase the bias of measurement	127
	Figure 8.1	The convolution model of outlet Ac fraction	
		by increasing valve position 1%	. 130
	Figure 8.2	Valve position change to step change in total mole flow	
		(increasing 1%)	131
•	Figure 8.3	Outlet acetylene response to step change in total mole flow	
		(increasing 1%)	132
		•	

		Page
Figure 8.4	Inlet temperature response to step change in total mole flow	
	(increasing 1%)	133
Figure 8.5	The controlperformance of the selected DMC to step change	
	in set point (from 0.1 to 0.15)	136
Figure 8.6	The controlperformance of the selected PID to step change	
	in set point (from 0.1 to 0.15)	138
Figure 8.7	The controlperformance of the selected DMC to step change	
	in set point (from 0.1 to 0.07)	139
Figure 8.8	The controlperformance of the selected PID to step change	4
	in set point (from 0.1 to 0.07)	140
Figure 8.9	The controlperformance of the selected DMC to step change	
	in feed temperature (from 320 K to 325 K)	141
Figure 8.10	The controlperformance of the selected PID to step change	
	in feed temperature (from 320 K to 325 K)	142
Figure 8.11	The controlperformance of the selected DMC to step change	
	in feed temperature (from 320 K to 315 K)	143
Figure 8.12	The controlperformance of the selected PID to step change	
	in feed temperature (from 320 K to 315 K)	144
Figure 8.13	The controlperformance of the selected DMC to step change	
	in feed flowrate (2% increase)	145
Figure 8.14	The controlperformance of the selected PID to step change	
	in feed flowrate (2% increase)	146
Figure 8.15	The controlperformance of the selected DMC to step change	
	in feed flowrate (2% decrease)	147
Figure 8.16	The controlperformance of the selected PID to step change	
	in feed flowrate (2% decrease)	148
Figure 8.17	The controlperformance of the selected DMC to step change	
	in inlet acetylene concentration (from 0.39% to 0.41%)	149

	Page
Figure 8.18	The controlperformance of the selected PID to step change
	in inlet acetylene concentration (from 0.39% to 0.41%) 150
Figure 8.19	The controlperformance of the selected DMC to step change
	in inlet acetylene concentration (from 0.39% to 0.37%) 151
Figure 8.20	The controlperformance of the selected PID to step change
	in inlet acetylene concentration (from 0.39% to 0.37%) 152
Figure 8.21	The controlperformance of the selected DMC to step change
	in inlet hydrogen concentration (from 14.9% to 14.5%) 153
Figure 8.22	The controlperformance of the selected PID to step change
	in inlet hydrogen concentration (from 14.9% to 14.5%) 154
Figure 8.23	The control performance of DMC controller in the sense of outlet
	ethylene concentration to the step change in the feed temperature 155
Figure 8.24	The control performance of PID controller in the sense of outlet
	ethylene concentration to the step change in the feed temperature 156
Figure 8.25	The control performance of DMC controller in the sense of
	outlet ethylene concentration to the step change in
	the inlet acetylene concentration 157
Figure 8.26	The control performance of PID controller in the sense of
	outlet ethylene concentration to the step change in
	the inlet acetylene concentration158
Figure B.1	Model I : Outlet temperature of reator I with error 0.576% 173
Figure B.2	Model I : Outlet temperature of reator II with error 0.65% 174
Figure B.3	Model I : Outlet temperature of reator III with error 0.66% 174
Figure B.4	Model I : Outlet acetylene concentration of reator I
	with error 36.22%175
Figure B.5	Model I : Outlet acetylene concentration of reator II
	with error 9.84%

1.4.1

1		Pa	age
Figure E	3.6	Model I : Outlet acetylene concentration of reator III	
		with error 10.08% 1	176
Figure B	3.7	Model I : Outlet ethylene concentration of reator III	
		with error 5.41%1	176
Figure E	3.8	Model I : Outlet methyl acetylene concentration of reator III	
		with error 25.52% 1	177
Figure E	3.9	Model I : Outlet propadien concentration of reator III	
		with error 32.96% 1	177
Figure E	3.10	Model II : Outlet temperature of reator I with error 0.94%	179
Figure E	3.11	Model II : Outlet temperature of reator II with error 0.56% 1	179
Figure E	3.12	Model II : Outlet temperature of reator III with error 0.75% 1	180
Figure E	3.13	Model II : Outlet acetylene concentration of reator I	
		with error 35.7%	180
Figure E	3.14	Model II : Outlet acetylene concentration of reator II	
		with error 12.28%	181
Figure E	3.15	Model II : Outlet acetylene concentration of reator III	
		with error 12.65%	181
Figure E	3.16	Model II : Outlet ethylene concentration of reator III	
		with error 6.93%	182
Figure E	3.17	Model II : Outlet methyl acetylene concentration of reator III	
		with error 30.92%	182
Figure E	3.18	Model II : Outlet propadien concentration of reator III	
		with error 74.71%	183
Figure E	3.19	Model III : Outlet temperature of reator I with error 0.49%	184
Figure E	3.20	Model III : Outlet temperature of reator II with error 0.63%	185
Figure E	B. 21	Model III : Outlet temperature of reator III with error 0.6%	185
Figure H	B.22	Model III : Outlet acetylene concentration of reator I	
		with error 11.86%	186

•

Figure B.23 Model III : Outlet acetylene concentration of reator II	
with error 4.92%	186
Figure B.24 Model III : Outlet acetylene concentration of reator III	
with error 11.81%	187
Figure B.25 Model III : Outlet ethylene concentration of reator III	
with error 6.15%	. 187
Figure B.26 Model III : Outlet methyl acetylene concentration of reator III	
with error 16.34%	.188
Figure B.27 Model III : Outlet propadien concentration of reator III	
with error 18.52%	.188
Figure B.28 Model IV : Outlet temperature of reator I with error 0.74%	. 190
Figure B.29 Model IV : Outlet temperature of reator II with error 0.79%	190
Figure B.30 Model IV : Outlet temperature of reator III with error 0.76%	191
Figure B.31 Model IV : Outlet acetylene concentration of reator I	
with error 20.74%	191
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II	191
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92%	191 . 192
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III	191 . 192
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62%	191 . 192 . 192
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III	191 . 192 . 192
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03%	191 . 192 . 192 . 193
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methyl acetylene concentration of reator III	191 . 192 . 192 . 193
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methylene concentration of reator III with error 8.03% with error 26.13%	191 . 192 . 192 . 193 . 193
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methyl acetylene concentration of reator III with error 26.13% Figure B.36 Model IV : Outlet propadien concentration of reator III	191 . 192 . 192 . 193 . 193
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methyl acetylene concentration of reator III with error 26.13% Figure B.36 Model IV : Outlet propadien concentration of reator III with error 21.45%	191 . 192 . 192 193 193 193
with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methyl acetylene concentration of reator III with error 26.13% Figure B.36 Model IV : Outlet propadien concentration of reator III with error 21.45% Figure B.37 Model VI : Outlet temperature of reator I with error 0.67%	191 . 192 . 192 193 193 193 194 .195
 with error 20.74% Figure B.32 Model IV : Outlet acetylene concentration of reator II with error 18.92% Figure B.33 Model IV : Outlet acetylene concentration of reator III with error 12.62% Figure B.34 Model IV : Outlet ethylene concentration of reator III with error 8.03% Figure B.35 Model IV : Outlet methyl acetylene concentration of reator III with error 26.13% Figure B.36 Model IV : Outlet propadien concentration of reator III with error 21.45% Figure B.37 Model VI : Outlet temperature of reator I with error 0.67% 	191 . 192 . 192 193 193 193 194 195 196

÷

	Page
Figure B.40 Model VI : Outlet acetylene concentration of reator I	
with error 12.64%	197
Figure B.41 Model VI : Outlet acetylene concentration of reator II	
with error 11.87%	197
Figure B.42 Model VI : Outlet acetylene concentration of reator III	
with error 16.92%	198
Figure B.43 Model VI : Outlet ethylene concentration of reator III	
with error 5.16%	198
Figure B.44 Model VI : Outlet methyl acetylene concentration of reator III	
with error 12.83%	199
Figure B.45 Model VI : Outlet propadien concentration of reator III	
with error 25.02%	199
Figure B.46 Model VII : Outlet temperature of reator I with error 0.94%	201
Figure B.47 Model VII : Outlet temperature of reator II with error 0.75%	201
Figure B.48 Model VII : Outlet temperature of reator III with error 0.84%	202
Figure B.49 Model VII : Outlet acetylene concentration of reator I	
with error 21.76%	202
Figure B.50 Model VII : Outlet acetylene concentration of reator II	
with error 10.87%	203
Figure B.51 Model VII: Outlet acetylene concentration of reator III	
with error 37.99%	203
Figure B.52 Model VII : Outlet ethylene concentration of reator III	
with error 11.46 %	204
Figure B.53 Model VII : Outlet methyl acetylene concentration of reator III	
with error 39.1%	204
Figure B.54 Model VII : Outlet propadien concentration of reator III	
with error 27.67%	205
Figure B.55 Model VIII : Outlet temperature of reator I with error 0.72%	206

1

.

n

Pag	je
Figure B.56 Model VIII : Outlet temperature of reator II with error 0.4% 20	07
Figure B.57 Model VIII : Outlet temperature of reator III with error 0.55% 20	07
Figure B.58 Model VIII : Outlet acetylene concentration of reator I	
with error 10.52% 20) 8
Figure B.59 Model VIII : Outlet acetylene concentration of reator II	
with error 9.1% 20	08
Figure B.60 Model VIII : Outlet acetylene concentration of reator III	
with error 8.9% 20	09
Figure B.61 Model VIII : Outlet ethylene concentration of reator III	
with error 2.39% 20	09
Figure B.62 Model VIII : Outlet methyl acetylene concentration of reator III	
with error 22.77% 21	10
Figure B.63 Model VIII : Outlet propadien concentration of reator III	
with error 19.91% 21	10
Figure B.64 Model IX : Outlet temperature of reator I with error 0.37% 21	12
Figure B.65 Model IX : Outlet temperature of reator II with error 0.43% 21	12
Figure B.66 Model IX : Outlet temperature of reator III with error 0.49%21	13
Figure B.67 Model IX : Outlet acetylene concentration of reator I	
with error 8.97% 21	13
Figure B.68 Model IX : Outlet acetylene concentration of reator II	
with error 11.56% 21	14
Figure B.69 Model IX : Outlet acetylene concentration of reator III	
with error 6.65%	14
Figure B.70 Model IX : Outlet ethylene concentration of reator III	
with 4.12%	15
Figure B.71 Model IX : Outlet methyl acetylene concentration of reator III	
with error 32.34% 21	15

 \sim

Page

Figure B.72 Model IX : Outlet propadien concentration of reator III	
with error 16.09%	216
Figure B.73 Model X : Outlet temperature of reator I with error 0.62%	. 217
Figure B.74 Model X : Outlet temperature of reator II with error 0.97%	218
Figure B.75 Model X : Outlet temperature of reator III with error 0.66%	218
Figure B.76 Model X : Outlet acetylene concentration of reator I	· ·
with error 12.66%	. 219
Figure B.77 Model X : Outlet acetylene concentration of reator II	
with error 17.89%	. 219
Figure B.78 Model X : Outlet acetylene concentration of reator III	
with error 28.87%	. 220
Figure B.79 Model X : Outlet ethylene concentration of reator III	
with 8.35%	. 220
Figure B.80 Model X : Outlet methyl acetylene concentration of reator III	
with error 41.02%	221
Figure B.81 Model X : Outlet propadien concentration of reator III	
with error 26.02%	221
Figure B.82 Model XI : Outlet temperature of reator I with error 0.63%	223
Figure B.83 Model XI : Outlet temperature of reator II with error 0.43%	223
Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63%	223 . 224
Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I	. 223 . 224
Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44%	. 223 224 224
 Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44% Figure B.86 Model XI : Outlet acetylene concentration of reator II 	. 223 224 224
 Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44% Figure B.86 Model XI : Outlet acetylene concentration of reator II with error 13.67% 	. 223 224 224 . 225
 Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44% Figure B.86 Model XI : Outlet acetylene concentration of reator II with error 13.67% Figure B.87 Model XI : Outlet acetylene concentration of reator II 	. 223 224 224 . 225
 Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44% Figure B.86 Model XI : Outlet acetylene concentration of reator II with error 13.67% Figure B.87 Model XI : Outlet acetylene concentration of reator III with error 15.46% 	. 223 224 224 . 225 . 225
 Figure B.83 Model XI : Outlet temperature of reator II with error 0.43% Figure B.84 Model XI : Outlet temperature of reator III with error 0.63% Figure B.85 Model XI : Outlet acetylene concentration of reator I with error 8.44% Figure B.86 Model XI : Outlet acetylene concentration of reator II with error 13.67% Figure B.87 Model XI : Outlet acetylene concentration of reator III with error 15.46% Figure B.88 Model XI : Outlet ethylene concentration of reator III 	. 223 224 224 . 225 . 225

Page

Figure B.89 Model XI : Outlet methyl acetylene concentration of reator III	
with error 23.1% 226	3
Figure B.90 Model XI : Outlet propadien concentration of reator III	
with error 13.45%	7
Figure B.91 Model XII : Outlet temperature of reator I with error 0.86% 228	3
Figure B.92 Model XII : Outlet temperature of reator II with error 0.68%	9
Figure B.93 Model XII : Outlet temperature of reator III with error 0.71% 229	9
Figure B.94 Model XII : Outlet acetylene concentration of reator I	
with error 22.65% 230)
Figure B.95 Model XII : Outlet acetylene concentration of reator II	
with error 18.76% 230)
Figure B.96 Model XII : Outlet acetylene concentration of reator III	
with error 17.09% 231	1
Figure B.97 Model XI : Outlet ethylene concentration of reator III	
with 4.94% 231	1
Figure B.98 Model XII : Outlet methyl acetylene concentration of reator III	
with error 25.91%	2
Figure B.90 Model XII : Outlet propadien concentration of reator III	
with error 14.11% 232	2
Figure C.1 Mixing process floeshart	6

ų.

•

NOMENCLATURE

•

C_{total}	=	the total concentration of sites, sites/weight
C,	=	the concentration of free sites
C _{AS}	=	the A specie adsorbed sites
C _{B.S}	=	the A specie adsorbed sites
CAc	=	acetylene concentration, mol/M ³
C_{Eth}	=	ethylene concentration, mol/M ³
$C_{_{H\!2}}$	=	hydrogen concentration, mol/M ³
C _{MA}	=	methyl acetylene concentration, mol/M ³
C_{PD}	=	propadiene concentration, mol/M ³
C _{co}	=	carbonmonoxide concentration, mol/M ³
C _E	=	ethane concentration, mol/M ³
C_{Pr}	=	propylene concentration, mol/M ³
$C_{M^{o}}$	=	methane concentration, mol/M ³
$C_{_{BD}}$	=	butadiene concentration, mol/M ³
Ср	=	heat capacity of feed stream
C_{m}	=	heat capacity of the reacting system including catalyst
D	=	fluid density
f	=	differential equation constraints
F _i	=	outlet volumetric flow rate of the feed at i th stage, M^3/hr
g	=	inequality constraints including simple upper and lower
		bounds
h		algebraic equality constraints
Н	=	the history horizon time
Hr _{Ac}	=	heat of acetylene hydrogenation
Hr_{Eth}	=	heat of ethylene hydrogenation
$Hr_{MA} =$	he	at of methyl acetylene hydrogenation

Hr _{PD}	=	heat of propadiene hydrogenation
i	=	i th stage
K _{Ao}	=	adsorption equilibrium constant of acetylene
K _{Eth}	=	adsorption equilibrium constant of ethylene
K _{H2}	=	adsorption equilibrium constant of hydrogen
K _{co}	=	adsorption equilibrium constant of carbonmonoxide
k	=	reaction rate constant
M _i	=	mass of reacting system at i th stage including catalyst
N _F	=.	the degrees of freedom
N _v	=	the total number of variables (unspecified inputs plus
		outputs)
N _E	=	the number of independent equations
NV	=	the number of variables in the type section
NI	=	the number of input stream variables
NE	=	the number of equations
NS	=	the number of set variables that should expect to set for a
		simulation.
NDYN	=	the number of the dynamic run
NSS	=	the number of the steady state run
NT	=	the number of the time step of the actual input-output data
NM	=	the number of the the output variables
P _i	=	the elements of the projection vector
Q_i	=	heat loss at i th stage
R _{Ac}	=	rate of acetylene hydrogenation
R_{Eth}	=	rate of ethylene hydrogenation
R _{MA}	=	rate of methyl acetylene hydrogenation
R_{PD}	=	rate of propadiene hydrogenation
R _{co}	=	adsorption rate of carbonmonoxide
t _c	=	the current time

=	time step size
=	the half-life time
=	temperature
=	the control horizon
=	the prediction horizon
=	the variance-covariance matrix
=	volume of one CSTR stage, M^3
=	the weight fraction
= .	discrete measurement
=	estimate function
=	lower limit of y
=	upper limit of y
=	the estimated value of estimation equation at time t_j
=	the measured value at time t_j
=	the actual output data
Ŧ	the predic output
=	the catalyst activity
=	objective function equation
	measurement noise standard deviation

. .

•

•