
CHAPTER 4
DYNAMIC MATRIX CONTROL

4.1 Introduction
This chapter is introduced a dynamic matrix control (DMC) that selected to control the 
acetylene concentration in ethylene product. DMC is a control approach based on 
convolution model of process(Seborg D. E., Edgar T. F., and Mellichamp D. A., 1989).

4.2 The dynam ic m atrix control
The general control objectives are :

1. To reduce the effect of the external disturbance
2. To keep the process always in the stability condition
3. To increase the quality of production such as product quality, minimum  

cost of production, or maximum profit.
One general approach to model predictive control, where the process model is 

used to predict the future outputs over a long time period and minimize the future error 
between the set point and the future outputs is the dynamic matrix control (DMC).

The DMC is a control approach based on the convolution model or the discrete 
impulse response model. The advantage of the convolution model is that the model 
coefficients which many number as many as 50, can be obtain directly from the 
experimental step response without assuming a model structure and the convolution 
model als0 provides a convenient way to design a controller based on the used of 
optimization theory like DMC.
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4.2.1 Step response model

Time

Figure 4.1 Identification of coefficients of step response (a,) and convolution model Chj)

To illustrate how a convolution model is developed, consider the typical open- 
loop step response shown in Figure 4.1. The values of the unit step response are given 
by a,,, av  aj. using the sampling period At. Let define aj = 0 for i <  0. TAt may be 
taken to be the setting time of the process (the time for the open-loop step response to 
reach 99% completion) and integer T  is called the model horizon.

Now consider the step response resulting from a change Am in the input. Let 
c  11 be the predicted value of the output variable and mn the value of the manipulated 
variable at the ท*11 sampling instant. Can also define CB as the actual output ; thus 
c  11 =  c 11 if there is no modeling error and no disturbances. Both c  and m  are 
expressed as deviation variables. Denoting Am. ะ= m i - m,..1, the convolution model is

e n + i  =  c 0 +  & 1)

4.2.2 Impulse response model
The impulse response can be expressed as the first derivative of the step response. For 
digital system  with a zero order hold the impulse response can be found by taking the
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first backward difference of the step response. The unit impulse response coefficients 
of the process, hv h2,...1hT, then are given by

hf = af aH i = 1 ,2 .... T  (4.2)
h0 = 0

and the discrete convolution model using the impulse response coefficients is

5 n+1 =  c 0 +  (4-3)

4.2.3 Matrix forms for predictive models
In this section will generalize the convolution model to include an arbitrary number of 
predictions. A central idea in predictive control is the use of horizons. The two other 
horizons will define in this section, namely

1. the control horizon บ
2. the prediction horizon V

The control horizon 17 is the number of control action (or control moves) that are 
calculated in order to affect the predicted outputs over the prediction horizon V, i.e., 
over the next sampling periods. Thus at time step ท the next บ  values of m  are 
calculated (m]11 mn+1, m B+u_ 1) as well as the next V output predictions
( c n+11 c n+2 1...,CB+V ) over V future time steps.

Consider the general case of an arbitrary sequence of บ input changes, Am0, 
Amv..., Am01 and an initial steady state c0 = 0. The response can be calculated using 
the following matrix equation, which based on equation (4.1) and a prediction horizon of 
V sampling periods ะ

ai 0 0 . . . . .0 Am0
d2

—
a2 a3 0 . . .  . .0 Anij

^D+V _av aพ-ใ aพ—2 - - av-u+l ^ น-ใ

(4.4)



33

Both บ  and V  are control design parameters.
Multistep predictions
The major advantage of predictive control is that it incorporation for a number of future 
time step. This strategy enables the model-based control system  to anticipate where 
the process is heading. The prediction horizon V is a design parameter that influences 
control system  performance. A V-step predictor can be expressed in terms of 
incremental changes in the manipulated variable :

Cn+J =  o,14.,_ 1 +  Z h ,A r ,1n+J_ , O ' = 1, 2. .... V) (4.5)

Equation (4.5) can be applied sequentially to obtain C D + V . The recursive version of 
(4.5) is

c n + j  ~  ° n + j  "*■  ( C n + j - l  ~  ^ n + j - 1  )  (4-6)
Equation (4.6) u ses the difference between c  and c  to update the new  value of 
c ' using the model prediction at t = (n+j)At, assuming a constant future prediction 
error. To obtain the solution of equation (4.6) into the future can first set c'n = C B 1 the 
current measured value.
Substituting (4.5) into (4.6) yeilds

c 'n + i  =  c ’n + j - l  +  (4 -7 )

for j  = 1, 2, .... V  and c '  = CB .

The equation (4.7) can be written in more convenient vector-matrix from by taking the 
future incremental input changes AmB+j out of the summations and rearranging. For a 
prediction horizon V and control horizon บ  where บ <  V, equation (4.7) is equivalent to

'ท+1 

:ท+2

a1 0 0.
a2 a} 0 ..........0

Am
Amn + 1

c , + p,

+

'n + v a v a V - J  a v - 2  - - - a v - บ+ไ Amn+ U - ไ c ท + p v

(4.8)
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where the {a,.} are the same step response coefficients defined earlier, namely

a , = 2 > ,  (4.9)
and

p , =  2 > ,  fori =  1,2....V (4.10)
1=1

ร. =  AmD+H forj = 1,2,..., V (4.11)

The Pt terms are elem ents of the projection vector, which essentially includes future 
predictions of c  based on previously implemented input changes.

4.3 Controller design method
Controller design in model predictive control is based on the predicted behavior of the 
process over the prediction horizon. Values of the manipulated variables are computed 
to ensure that the predicted response has certain desirable characteristics. One 
sampling period after the application of the current control action, the predicted 
response is compared with the actual response. Using corrective feedback action for 
any errors between actual and predicted responses, the entire sequence of calculations 
is then repeated at each sampling instant.

The control objective is to have the corrected predictions c'n+]. approach the set 
point as closely as possible. Denote the set point trajectory, that is , the desired values 
of the set point V  time steps into the future, as rB+j1 j  = ไ, 2, .... V, and define the 
following vectors :

rn + l  ~  c n + l

^ n + 2  ภ + 2

E = (4.12)

rn+v ~  CJJ+V
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ร .-* ,
ร . - * ,

, r _

E - P vท V

(4.13)

E ' is the predicted value of the process error, r-c, at V future sampling instants based 
on manipulated variable(input) changes up to time (ท-ไ)A t and the current error signal, 
Ea = I n-C D . Pj 1 an element of the projected output vector, is defined in equation (4.13) 

Note that both E  and E ' are vectors of prediction errors. E r is an open-loop 
prediction because it is based only on part control actions. It dose not include the 
current and future control actions (AmD+j foi i £  0). By contrast, E  is referred to as a 
close-loop prediction because it is based on the current and future control actions.
With the above definitions equation (4.9) can be written as follows :

E = -A A m + E ' (4.14)
where A is the v*u  triangular matrix given in equation (4.10), Am is the บ*ไ vector of 
future control moves. If a perfect match between the predicted output trajectory of 
close-loop system  and the desired trajectory is required, then E = 0 and, from equation 
(4.14),

0 = -AAm+E1 (4.15)
If the number of control moves and the number of predicted outputs are equal 

(บ=V), then the solution to equation (4.15) is given by
A m = À 1E' (4.16)

Dynamic matrix control requires that บ < V so that the resulting system of 
equations is overdetermined. Thus, only บ future control actions(zlm) are calculated 
and A is the v*u dynamic matrix. However, to obtain the best solution in the least- 
squares by minimizing the performance index

J[A m j = ETE (4.17)

X ' l cb c l <b < J (o A  จ)
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The optimal solution is
Am = (AtA)"‘a te ' = K cE ' (4.18)

One difficult with the control law of equation (4.17) is that it can result in 
excessively large changes in the manipulated variable. This undesired phenomenon 
occurs when the matrix Ai A  is ill-conditioned or singular. Can over came this problem 
by multiplying the diagonal elements of Ai A  by a number greater than one before 
performing the matrix inversion, thus, the performance index is

where พ 1 and พ2 are positive-definite weighting matrices (usually diagonal matrices 
with positive elements). The resulting control law that minimizes J  is

4.4 Summary
The Dynamic Matrix Control is the selected control approach for this thesis. The basic 
theories that are presented in this chapter will apply to controller design for the 
acetylene hydrogenation process. The designed controller and the simulation results aie 
shown later in chapter 8. The next chapter is the first section in an area of the 
application. The reviews and the detail of an acetylene hydrogenation process are 
presented in it.

J[Am] = E?พ 1E + A n พ 'ุ2A m (4.19;

Am = (Atพ 1A + W / W พ 1E '  = KeE ' (4.20)
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