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CHAPTER I

INTRODUCTION

1.1 Functional Equations

Functional equations are equations whose unknown variables are functions.

The objective of study functional equation is to find all functions satisfying equa-

tions. The following example illustrates a functional equation problem and its

solution.

Example 1.1. Find all functions f : R→ R such that

x2f(x) + f(−x) = x3 − x

for all x ∈ R.

Solution: Replace x by −x in the equation, we have

x2f(−x) + f(x) = −x3 + x

By adding both equations, we get

(x2 + 1)(f(x) + f(−x)) = 0.

Since x2 + 1 > 0, we have

f(−x) = −f(x).

Substituting this into the first equation and solving for f(x), we get

f(x) =


x if x /∈ {1,−1}

c if x = 1

−c if x = −1

where c are constants. Conversely, the solution can be verified by substituting

back into the first equation. �
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In addition, an unknown function in functional equations can be defined in

any domain and range. We will give some example of functional equations whose

unknown is defined on R2.

Example 1.2. Find all functions f : R2 → R such that

f(x, x) + xyf(x, y) + f(y, y) = xy + 2

for all x, y ∈ R.

Solution: Let x = 0 and y = 0 into the equation, we have

f(0, 0) = 1.

Replacing y = 0 into the equation, we get

f(x, x) + f(0, 0) = 2.

So,

f(x, x) = 1.

Substituting back into the first equation, we get

xyf(x, y) = xy.

So,

f(x, y) = 1,

if x, y 6= 0. So

f(x, y) =


1 if x, y 6= 0

g1(x) if y = 0

g2(y) if x = 0

where g1, g2 are functions on R such that g1(0) = 1 = g2(0). Conversely, the

solution can be verified by substituting back into the first equation. �
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1.2 Literature Review

The functional equation has widely been studied. In this section, we review

some researches which are related to our work. In 1968, J.Aczél, H.Haruki,

M.A.Mckiernan, and G.N.Sakovič [1] published a paper which determined the

general solution of a functional equation

f(x+ α, y + β) + f(x+ α, y − β) + f(x− α, y + β) + f(x− α, y − β) = 4f(x, y).

This equation states that the value of f at the center of any rectangle with its

sides parallel to the coordinate axes, equals to the arithmetic mean of its values

at all vertices. The authors also showed that if f ∈ C(R2) and the value of f at

the center of any homothetic regular n-gons in R2 is the arithmetic mean of the

values of vertices, then f is a harmonic polynomial of degree n. Later in 1982,

S. Haruki [5] determined the general solution of triangular mean-value functional

equation

f(x− t, y − t√
3

) + f(x+ t, y − t√
3

) + f(x, y +
2t√

3
) = 3f(x, y).

Note that the triangles embedded in the above equation have the certain config-

urations that they are homothetic equilateral triangles with one side parallel to

the x-axis. In 1995, J.A. Baker [2] studied a triangular mean-value functional

equation of the form

f(z + eit) + f(z + eitω) + f(z + eitω) = 3f(z),

where z ∈ C and ω = e2πi/3. This functional equation states that the value of f at

the centroid of any triangle, obtained by rotations and translation of equilateral

triangle, equals to the arithmetic mean of its values at all vertices. He found

that a solution of this equation must be a harmonic polynomial provided that the

function f is continuous. Recently, R. Kotnara [3] studied the functional equation

which state that given z1, z2 ∈ R2,

f(z) + f(z + z1t) + f(z + z2t) = 0

for all z ∈ R2 and t ∈ Rr{0}. He found that a solution of this functional equation

is zero function.
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1.3 Purposed Problem

The objective of our studying is to solve the triangular mean-value functional

equation. Through out this thesis, the triangular mean-value functional equation

of a triangle with vertices z1, z2, z3 ∈ R2 (it may be sometime called in short as

triangular mean-value functional equation of z1, z2, z3) is referred to a functional

equation of the form

f(z + tz1) + f(z + tz2) + f(z + tz3) = 3f
(
z +

t

3
(z1 + z2 + z3)

)
, (1.1)

for all z ∈ R2 and t > 0.

Figure 1.1

Geometrically, this equation says that given an arbitrary triangle with points

z1, z2, z3 as its vertices (as Figure 1.1.), for each triangles obtained by translations

and dilations of this fixed triangle, the value of the function at its centroid is the

arithmetic mean of the values at its vertices. For example, triangular mean-value

functional equation of (0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3) is of the form

f(x− t, y − t√
3

) + f(x+ t, y − t√
3

) + f(x, y +
2t√

3
) = 3f(x, y),

for x, y ∈ R and t > 0. Note that the above equation is equivalent to the functional

equation which Haruki had studied [5].



CHAPTER II

PRELIMINARIES

In this chapter, we provide background knowledge which plays important role

in this thesis. A function A : R → R is said to be additive provided A(x + y) =

A(x) + A(y) for all x, y ∈ R. If n ∈ N and An : Rn → R, we say that An

is n−additive (multi-additive) provided it is additive in each variable. An is

symmetric provided An(x1, . . . , xn) = An(y1, . . . , yn) whenever (y1, . . . , yn) is a

permutation of (x1, . . . , xn). Throughout this paper, we use the alphabet A0 or

A0 to denote a constant and A or A1 to denote an additive function. For any

m,n ∈ N ∪ {0}, we use the following notations for specific meanings:

• If z = (x, y) ∈ R2, we denote Re(z) = x, Im(z) = y and ||z|| =
√
x2 + y2.

• S(z1, z2, z3) is the set of all solutions of a triangular mean-value functional

equation of z1, z2, z3 ∈ R2.

• Am(x1, x2, . . . , xm) : Rm → R is a symmetric m−additive function and

Am(x) : R → R be the diagonalization of Am, i.e., Am(x) = Am(x, . . . , x).

We say that Am(x) is a diagonalization of order m.

• Am,n(x1, x2, . . . , xm; y1, y2, . . . , yn) : Rm+n → R is a (m+n)-additive function

which is symmetric in its first m entries while the last n entries are fixed

and vice versa.

• A0,0(x, y) : R2 → R is a constant function.

• Am,0(x, y) : R2 → R is a diagonalization of a symmetric m-additive function

while y is fixed, and is a constant while x is fixed. For convenience, we use

Am,0(x) to denote Am,0(x, y). We define A0,n(x, y) and A0,n(y) similarly.
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• Am,n(x, y) : R2 → R is defined by

Am,n(x, y) = Am,n(x, x, . . . , x︸ ︷︷ ︸
m entries

; y, y, . . . , y︸ ︷︷ ︸
n entries

).

In this study, the difference operator is extensively used. We define the differ-

ence operator of order n ∈ N for a function f : R→ R as follow;

∆
t

nf(x) =
n∑
i=0

(−1)i
(
n

i

)
f
(
x+ (n− i)t).

The following theorem shows the relationship between difference operator and

the multi-additive function.

Theorem 2.1. [4] If a function f : R→ R satisfies

∆
t

M+1f(x) = 0

for all x, t ∈ R then

f(x) =
M∑
n=0

An(x).

The difference operator can be extended to the function on R2. We define the

difference operator of order n ∈ N for a function f : R2 → R with respect to x as

follow;

∆
x,t

nf(x, y) =
n∑
i=0

(−1)i
(
n

i

)
f
(
x+ (n− i)t, y

)
.

Similarly, the difference operator of order n ∈ N with respect to y is defined as;

∆
y,t

nf(x, y) =
n∑
i=0

(−1)i
(
n

i

)
f
(
x, y + (n− i)t

)
,

where (x, y) ∈ R2 and t ∈ R.

The following theorem shows the relationship between difference operator of a

function on R2 and the multi-additive function.

Theorem 2.2. [1] If a function f : R2 → R satisfies both equations

∆
x,t

M+1f(x, y) = 0 and ∆
N+1
y,t f(x, y) = 0
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for all x, y, t ∈ R then

f(x, y) =
M∑
n=0

N∑
m=0

An,m(x, y).

S. Haruki[5] determined solution of the triangular mean-value functional equa-

tion of the certain equilateral triangle. His result will be applied in the next

chapter. The Haruki’s theorem can be rewritten in our notations as follow:

Theorem 2.3. [5] The general solution of the functional equation

f(x− t, y − t√
3

) + f(x+ t, y − t√
3

) + f(x, y +
2t√

3
) = 3f(x, y),

for all x, y, t ∈ R, can be written in the form of

f(x, y) = A0+A1,0(x)+A2,0(x)+A3,0(x)+A0,1(y)+A1,1(x, y)+A0,2(y)+A1,2(x, y),

where A0,2(
√

3t) = −3A2,0(t) and A1,2(x,
√

3t) = −9A3,0(x, t, t), for x, y, t ∈ R.



CHAPTER III

Equilateral Triangular Mean-Value Functional Equation

According to Haruki’s paper [5], Haruki determined solution of the triangular

mean-value functional equation of the certain equilateral triangle. In this chapter,

we extend Harukis’s work by solving a triangular mean-value functional equation

of any equilateral triangle.

First, we will establish fundamental knowledge which is important for solving

our problem. Recall that S(z1, z2, z3) is the set of all solutions of a triangular

mean-value functional equation of z1, z2, z3 ∈ R2, i.e.,

S(z1, z2, z3) = {f : R2 → R|f(z + tz1) + f(z + tz2) + f(z + tz3)

= 3f
(
z +

t

3
(z1 + z2 + z3)

)
, for all z ∈ R2 and t > 0}.

The following lemma shows that the set of solutions of triangular mean-value

functional equation of two triangles, where one triangle is obtained from dialation

and translation from the other, are equal.

Lemma 3.1. Let z0, z1, z2, z3 ∈ R2 and α > 0. Then

S(z1, z2, z3) = S(αz1 + z0, αz2 + z0, αz3 + z0).

Proof. Let f ∈ S(z1, z2, z3). So f satisfies the functional equation

f(z + tz1) + f(z + tz2) + f(z + tz3) = 3f
(
z +

t

3
(z1 + z2 + z3)

)
,

for all z ∈ R2 and t > 0. By substituting z as z + tz0 and t as αt in the above

equation, the equation becomes

f(z + t(αz1 + z0)) + f(z + t(αz2 + z0)) + f(z + t(αz3 + z0))

= 3f
(
z + t

(αz1 + z0) + (αz2 + z0) + (αz3 + z0)

3

)
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for all z ∈ R2 and t > 0. Hence, f ∈ S{αz1+z0, αz2+z0, αz3+z0}. Conversely, we

can similarly prove that S(αz1+z0, αz2+z0, αz3+z0) ⊂ S(z1, z2, z3) by substituting

z as z − (tz0)/α and t as t/α.

Let z1, z2, z3 ∈ R2 be noncollinear points. Define ωi = zi − (z1 + z2 + z3)/3 for

i = 1, 2, 3. This is translation and dialation the triangle with vertices z1, z2, z3 to

the triangle whose centroid is the origin point (as Figure 3.1).

Figure 3.1

By the property of ωi, we have

ω1 + ω2 + ω3 = 0

and the triangular mean-value functional equation of ω1, ω2, ω3 is, therefore, of

the form

f(z + tω1) + f(z + tω2) + f(z + tω3) = 3f(z). (3.1)

According to Lemma 3.1, we have S(z1, z2, z3) = S(ω1, ω2, ω3). Hence, to solve

triangular mean-value functional equation of z1, z2, z3 is sufficient to solve the

functional equation (3.1) instead. Thus, we will concentrate on solving only tri-

angular mean-value functional equation of a triangle which sum of its vertices is

zero (its centroid is the origin).

Next, we consider the relationship between solutions of triangular mean-value

functional equation of two related triangles. Suppose that there exists a linear

bijection T : R2 → R2 which maps three vertices of a triangle to three vertices

of another triangle (as Figure 3.2), we find that each solution of triangular mean-

value functional equations can be formed by composition of one solution with the

linear bijection T . This fact is stated precisely as in the following lemma.
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Figure 3.2

Lemma 3.2. Let ωi,Ωi ∈ R2 for i = 1, 2, 3 be such that
3∑
i=1

ωi =
3∑
i=1

Ωi = 0. If

T : R2 → R2 be a linear bijection with T (ωi) = Ωi for i = 1, 2, 3, then

S(ω1, ω2, ω3) = {g ◦ T |g ∈ S(Ω1,Ω2,Ω3)}.

Proof. We will show that S(ω1, ω2, ω3) = {g ◦ T |g ∈ S(Ω1,Ω2,Ω3)}.

(⊃) Let g ∈ S{Ω1,Ω2,Ω3}. So,

g(z + tΩ1) + g(z + tΩ2) + g(z + tΩ3) = 3g(z).

Since z+ tΩi = T (T−1(z)) +T (tωi) = T (T−1(z) + tωi) for i = 1, 2, 3, we have that

g(T (T−1(z) + tω1)) + g(T (T−1(z) + tω2)) + g(T (T−1(z) + tω3)) = 3g(T (T−1(z))).

Hence,

g ◦T (T−1(z) + tω1) + g ◦T (T−1(z) + tω2) + g ◦T (T−1(z) + tω3) = 3g ◦T (T−1(z)).

Since T is a linear bijection, T−1(z) can be chosen arbitrary. So, we obtain that

g ◦ T ∈ S{ω1, ω2, ω3}.

(⊂) Let f ∈ S{ω1, ω2, ω3}. Since T (ωi) = Ωi, we get that T−1(Ωi) = ωi. So

f ◦ T−1 ∈ S{Ω1,Ω2,Ω3}. Since f = (f ◦ T−1) ◦ T , we have that f ∈ {g ◦ T |g ∈

S(Ω1,Ω2,Ω3)}.

Next, we will show that solutions of triangular mean-value functional equation

of ω1, ω2, ω3 ∈ R2 and −ω1,−ω2,−ω3 ∈ R2 are the same.
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Proposition 3.3. Let ω1, ω2, ω3 ∈ R2 be noncollinear and satisfied ω1 +ω2 +ω3 =

0. Then

S(ω1, ω2, ω3) = S(−ω1,−ω2,−ω3).

Proof. It is easy to see that T : R2 → R2 given by T (z) = −z is a linear bijection

which is satisfied T (ωi) = −ωi for i = 1, 2, 3. By Lemma 3.2, there exists g ∈

S(−ω1,−ω2,−ω3) such that f(z) = g ◦T (z) = g(−z). Since f ∈ S(ω1, ω2, ω3), we

have

3f(z) = f(z + tω1) + f(z + tω2) + f(z + tω3).

Because f(z) = g(−z), we obtain that f(z+tω1) = g(−z−tωi) for i = 1, 2, 3. Then

3f(z) = g(−z − tω1) + g(−z − tω2) + g(−z − tω3).

Since g ∈ S(−ω1,−ω2,−ω3), g(z) = (g(z − tω1) + g(z − tω2) + g(z − tω3))/3 for

all z ∈ R2 and t > 0. Then

3f(z) =
1

3
(g(−z − tω1 − tω1) + g(−z − tω1 − tω2) + g(−z − tω1 − tω3)

+ g(−z − tω2 − tω1) + g(−z − tω2 − tω2) + g(−z − tω2 − tω3)

+ g(−z − tω3 − tω1) + g(−z − tω3 − tω2) + g(−z − tω3 − tω3)).

Since ω1 + ω2 + ω3 = 0, the above equation becomes

3f(z) =
1

3
(g(−z − 2tω1) + g(−z + tω3) + g(−z + tω2)

+ g(−z + tω3) + g(−z − 2tω2) + g(−z + tω1)

+ g(−z + tω2) + g(−z + tω1) + g(−z − 2tω3))

=
1

3
(g(−z − 2tω1) + g(−z − 2tω2) + g(−z − 2tω3)

+ 2(g(−z + tω1) + g(−z + tω2) + g(−z + tω3))).

Because f(z) = g(−z) for all z ∈ R2 and g ∈ S(−ω1,−ω2,−ω3), we have form

the previous equation that

3f(z) =
1

3
(3g(−z) + 2(g(−z + tω1) + g(−z + tω2) + g(−z + tω3)))

=
1

3
(3f(z) + 2(f(z − tω1) + f(z − tω2) + f(z − tω3))).



12

Consequently, we have

3f(z) = f(z − tω1) + f(z − tω2) + f(z − tω3).

Hence, S(ω1, ω2, ω3) ⊂ S(−ω1,−ω2,−ω3). On the other hand, we can similarly

prove that S(−ω1,−ω2,−ω3) ⊂ S(ω1, ω2, ω3) by considering ωi as −ωi. Therefore,

S(ω1, ω2, ω3) = S(−ω1,−ω2,−ω3).

As a result of Proposition 3.3, we immediately have the following corollary.

Corollary 3.4. Let z1, z2, z3 ∈ R2. Given a function f : R2 → R satisfies (1.1)

i.e.

f(z + tz1) + f(z + tz2) + f(z + tz3) = 3f
(
z +

t

3
(z1 + z2 + z3)

)
,

for all z ∈ R2 and t > 0. Then f satisfies (1.1) for all z ∈ R2 and t ∈ R.

Originally, triangular mean value functional equation (1.1) is only for t >

0. The above corollary, however, implies that the equation hold for all t ∈ R.

This fact implies that solutions of triangular mean-value functional equation of

(0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3) which is of the form

f(x− t, y − t√
3

) + f(x+ t, y − t√
3

) + f(x, y +
2t√

3
) = 3f(x, y),

for all x, y ∈ R and t > 0 is also Haruki’s solution as in Theorem 2.3. Applying

this fact and Lemma 3.2, we can find solutions of triangular mean-value functional

equation of any equilateral triangular by composition of Haruki’s solution with the

linear bijection which maps its three vertices to (0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3),

respectively.

In the following theorem, we reformulate Theorem 2.3 by incorporating the

conditions on A0,2 and A1,2 into the solution.

Theorem 3.5. The solution in Theorem 2.3 is equivalent to

f(x, y) = A0 +B(x) + B̃(y) + C(x+
√

3y, 3x−
√

3y) + C̃(y, x)

+D(x, x+
√

3y, x−
√

3y),

where A0 is a constant, B, B̃ : R → R are additive functions, C, C̃ : R2 → R are

2-additive functions, and D : R3 → R is a symmetric 3-additive function.
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Proof. (⇒) Let f : R2 → R be the Haruki’s solution as in Theorem 2.3;

f(x, y) = A0+A1,0(x)+A2,0(x)+A3,0(x)+A0,1(y)+A1,1(x, y)+A0,2(y)+A1,2(x, y),

where A0,2(
√

3t) = −3A2,0(t) and A1,2(x,
√

3t) = −9A3,0(x, t, t), for all x, y, t ∈ R.

By choosing

B(x) = A1,0(x), B̃(y) = A0,1(y), D(x, y, z) = A3,0(x, y, z).

C(x, y) = A2,0(x, y)/3 and C̃(y, x) = A1,1(x, y) + A2,0(x,
√

3y)/3− A2,0(
√

3y, x),

we have that A0 is a constant, B, B̃ : R→ R are additive functions, C, C̃ : R2 → R

are 2-additive functions, and D : R3 → R is a symmetric 3-additive function and

f(x, y) = A0 +B(x) + B̃(y) + C(x+
√

3y, 3x−
√

3y) + C̃(
√

3y, x)

+D(x, x+
√

3y, x−
√

3y).

(⇐) Let

f(x, y) = A0 +B(x) + B̃(y) + C(x+
√

3y, 3x−
√

3y) + C̃(y, x)

+D(x, x+
√

3y, x−
√

3y),

where A0 is a constant, B, B̃ : R → R are additive functions, C, C̃ : R2 → R

are 2-additive functions, and D : R3 → R is a symmetric 3-additive function. By

properties of m-additive function, we have

f(x, y) = A0 +B(x) + B̃(y) + C(x, 3x)− C(x,
√

3y) + C(
√

3y, 3x)

− C(
√

3y,
√

3y) + C̃(y, x) +D(x, x, x)−D(x,
√

3y,
√

3y).

By choosing

A1,0(x) = B(x), A2,0(x) = C(x, 3x), A3,0(x) = D(x, x, x),

A0,1(y) = B̃(y), A1,1(x, y) = −C(x,
√

3y) + C(
√

3y, 3x) + C̃(y, x),

A0,2(y) = −C(
√

3y,
√

3y) and A1,2(x, y) = −D(x,
√

3y,
√

3y),
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we obtain that

A0,2(
√

3t) = −C(3t, 3t) = −3C(t, 3t) = −3A2,0(t),

A1,2(x,
√

3t) = −D(x, 3t, 3t) = −9D(x, t, t) = −9A3,0(x, t, t)

and

f(x, y) = A0+A1,0(x)+A2,0(x)+A3,0(x)+A0,1(y)+A1,1(x, y)+A0,2(y)+A1,2(x, y),

for all x, y, t ∈ R.

Now, we will determine the solution of triangular mean-value functional equa-

tion of arbitrary equilateral triangle. First, we find a linear bijection formula

which maps three vertices of any equilateral triangle to (0, 2/
√

3), (1,−1/
√

3),

(−1,−1/
√

3). We know that any equilateral triangle whose centroid is the original

point can be obtained by rotation or dilation of the triangle whose vertices are

at (0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3). Let ω1, ω2, ω3 ∈ R2 be three vertices of a

triangle whose centroid is the original point (as Figure 3.3).

Figure 3.3

Without loss of generality, we can assume that vertices of equilateral triangle are

ω1 = r(2/
√

3 sin θ, 2/
√

3 cos θ),

ω2 = r(cos θ − 1/
√

3 sin θ,−1/
√

3 cos θ − sin θ), and

ω3 = r(− cos θ − 1/
√

3 sin θ,−1/
√

3 cos θ + sin θ),

for some θ ∈ R and r > 0. On the other hand, define

T (x, y) =
2√
3r

(x cos θ − y sin θ, x sin θ + y cos θ).
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Then T is a linear bijection and

T (ω1) = (0, 2/
√

3),

T (ω2) = (1,−1/
√

3), and

T (ω3) = (−1,−1/
√

3).

By applying Lemma 3.2 with the above linear bijection T , we are able to solve

the triangular mean-value functional equation as follow:

Theorem 3.6. Let z1, z2, z3 be vertices of an equilateral triangle. Without loss

of generality, assume that ω1 = z1 − (z1 + z2 + z3)/3 with Re(ω1) > 0. Given a

function f : R2 → R satisfies (1.1),

f(z + tz1) + f(z + tz2) + f(z + tz3) = 3f
(
z +

t

3
(z1 + z2 + z3)

)
,

for all z ∈ R and t > 0. Then f is of the form

f(x, y) = A0 +B(x) + B̃(y) + C(βx+ αy, αx− βy)

+ C̃((α +
√

3β)x+ (
√

3α− β)y, (3α−
√

3β)x+ (−
√

3α− 3β)y)

+D(αx− βy, (α +
√

3β)x+ (
√

3α− β)y, (α−
√

3β)x+ (−
√

3α− β)y)

where θ = arccos(Im(ω1)/||ω1||), α = cos θ, β = sin θ, A0 is a constant, B, B̃ :

R → R are additive functions, C, C̃ : R2 → R are 2-additive functions, and

D : R3 → R is a symmetric 3-additive function.

Proof. Let ωi = zi − (z1 + z2 + z3) for i = 1, 2, 3. By Lemma 3.1, we have that

the set of solution of (1.1) can be solved from the functional equation (3.1),

f(z + tω1) + f(z + tω2) + f(z + tω3) = 3f(z),

for all z ∈ R2 and t > 0. Therefore, we will determine solution of (3.1) instead

of (1.1). Given a function f : R2 → R satisfies (3.1). Since ω1 + ω2 + ω3 = 0,

Re(ω1+ω2+ω3) = Re(ω1)+Re(ω2)+Re(ω3) = 0. Because ω1, ω2, ω3 are vertices of

a nondegerated equilateral triangle, they are noncollinear. Therefore, Re(ωi) > 0
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for some i = 1, 2, 3. Without loss of generality, we assume that Re(ω1) > 0. Let

r = ||ω1|| and θ = arccos(Im(ω1)/r). Define

T (x, y) =
2√
3r

(x cos θ − y sin θ, x sin θ + y cos θ).

Then T is linear bijection which

{T (ω1), T (ω2), T (ω3)} = {(0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3)}.

By corollary 3.4, we have the solution of triangular mean-value functional equation

of (0, 2/
√

3), (1,−1/
√

3), (−1,−1/
√

3) is Haruki’s solution. Assume that g is a

Haruki’s solution. Because of Theorem 3.5, g can be written in the form of

g(x, y) = A′0 +B′(x) + B̃′(y) + C ′(x+
√

3y, 3x−
√

3y) + C̃ ′(y, x)

+D′(x, x+
√

3y, x−
√

3y),

where A′0 is a constant, B′, B̃′ : R → R are additive functions, C ′, C̃ ′ : R2 → R

are 2-additive functions, and D′ : R3 → R is a symmetric 3-additive function.

Applying Lemma 3.2 with the above linear bijection T , we have

f(x, y) = g ◦ T (x, y).

Making simple manipulations using additive properties of the functions, we get

f(x, y) = A0 +B(x) + B̃(y) + C(βx+ αy, αx− βy)

+ C̃((α +
√

3β)x+ (
√

3α− β)y, (3α−
√

3β)x+ (−
√

3α− 3β)y)

+D(αx− βy, (α +
√

3β)x+ (
√

3α− β)y, (α−
√

3β)x+ (−
√

3α− β)y)

where α = cos θ, β = sin θ, A0 is a constant, B, B̃ : R→ R are additive functions,

C, C̃ : R2 → R are 2-additive functions, and D : R3 → R is a symmetric 3-

additive function. Conversely, the solution can be verified by substituting back

into (1.1).



CHAPTER IV

FUNDAMENTAL CASE OF TRIANGULAR

MEAN-VALUE FUNCTIONAL EQUATION

In this section, we prove the fundamental case of (1.1) when the three fixed

points z1, z2, z3 are (0, 1), (1, 0), and (−1,−1) respectively (as Figure 3.1).

Figure 4.1

Note that in this case, the directions of the median lines of the triangle are

parallel to the x−axis and the y−axis. In addition, its centroid is at the origin.

So, (1.1) is of the form

f(x+ t, y) + f(x, y + t) + f(x− t, y − t) = 3f(x, y), (4.1)

for all x, y ∈ R and t > 0. First, we prove the following proposition and lemmas

which are needed in the proof of Theorem 4.4.

Proposition 4.1. Let z1, z2, z3 ∈ R2 and ωi = zi − (z1 + z2 + z3)/3. Assume that

f : R2 → R satisfies (1.1). Then

f(z + 3tωi)− 3f(z + 2tωi) + 3f(z + tωi)− f(z) = 0,

for all z ∈ R2, t ∈ R and i = 1, 2, 3.
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Proof. By Corollary 3.4, we have f satisfies (1.1) for all z ∈ R2 and t ∈ R. Since

(1.1) is equivalent to (3.1), we get that
∑3

i=1 f(z+ωit) = 3f(z) for all z ∈ R2 and

t ∈ R. Define

F (z, t) = 3f(z)−
(
f(z + tω1) + f(z + tω2) + f(z + tω3)

)
.

From (3.1), we have F (z, t) = 0 for all z ∈ R2, t ∈ R. For i = 1, 2, 3. We obtain

that

0 = F (z + tωi,−t)− F (z + 2tωi, t)

= 3f(z + tωi)−
(
f(z + tωi − tω1) + f(z + tωi − tω2) + f(z + tωi − tω3)

)
−
(
3f(z + 2tωi)− (f(z + 2tωi + tω1) + f(z + 2tωi + tω2) + f(z + 2tωi + tω3))

)
= 3f(z + tωi)− f(z + t(ωi − ω1))− f(z + t(ωi − ω2))− f(z + t(ωi − ω3))

− 3f(z + 2tωi) + f(z + t(2ωi + ω1)) + f(z + t(2ωi + ω2)) + f(z + t(2ωi + ω3))

Let j, k ∈ {1, 2, 3}, i 6= j, i 6= k and j 6= k. We must have that one of ωi−ω1, ωi−

ω1, ωi−ω1 is zero and one of 2ωi+ω1, 2ωi+ω2, 2ωi+ω3 is 3ωi. Since ω1+ω2+ω3 = 0,

we get that 2ωi + ωj = ωi− ωk. Therefore, two of ωi− ω1, ωi− ω1, ωi− ω1 are the

same as two of 2ωi + ω1, 2ωi + ω2, 2ωi + ω3. By eliminating the equal terms from

the above equation, we have

0 = f(z + 3tωi)− 3f(z + 2tωi) + 3f(z + tωi)− f(z).

Lemma 4.2. Given A0,2(x, y), A2,0(x, y) and A1,1(x, y) satisfying

2A2,0(t) + 2A0,2(t) + A1,1(t, t) = 0, (4.2)

for all t ∈ R. There exist 2-additive functions C and C̃ such that

A2,0(x, y) + A1,1(x, y) + A0,2(x, y) = C(x, 2y − x) + C̃(2x− y, y).

Proof. Since A2,0 is a quadratic function, there exists 2-additive function C such

that A2,0(x) = −C(x, x). Let

C̃(x, y) = −C(x, y) +
1

2
A1,1(x; y).
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Then C̃(x, y) is also 2-additive function and

A1,1(x; y) = 2C(x, y) + 2C̃(x, y).

From (4.2), we have

−2C(t, t) + 2A0,2(t) + 2C(t, t) + 2C̃(t, t) = 0, for t ∈ R.

Therefore, A0,2(t) = −C̃(t, t) for all t ∈ R. So, we get

A1,1(x, y) + A2,0(x) + A0,2(y) = 2C(x, y) + 2C̃(x, y)− C(x, x)− C̃(y, y)

= C(x, 2y − x) + C̃(2x− y, y).

Lemma 4.3. Given A1,2(x, y) and A2,1(x, y) satisfying

A1,2(x, t) + A2,1(x, t; t) = 0 and A2,1(t, x) + A1,2(t;x, t) = 0 (4.3)

for all x ∈ R and t ∈ R. There exists a symmetric 3-additive function D such

that

A2,1(x, y) + A1,2(x, y) = D(x− y, x, y).

Proof. Substituting t = y + z into (4.3), we get

2A1,2(x; y, z) + A2,1(x, y; z) + A2,1(x, z; y) = 0, and (4.4)

2A2,1(y, z;x) + A1,2(y; z, x) + A1,2(z; y, x) = 0. (4.5)

Since (4.5) holds for arbitrary x, y, z ∈ R, we have

2A2,1(x, z; y) + A1,2(x; z, y) + A1,2(z;x, y) = 0, and

2A2,1(y, x; z) + A1,2(y;x, z) + A1,2(x; y, z) = 0. (4.6)

Using (4.4) and (4.6), we get

2A1,2(x; y, z) = A1,2(y;x, z) + A1,2(z;x, y). (4.7)
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The cyclic permutations of (x, y, z) and (4.7) give

2A1,2(y;x, z) =A1,2(x; y, z) + A1,2(z;x, y), and

2A1,2(z;x, y) =A1,2(y;x, z) + A1,2(x; y, z). (4.8)

From (4.7) and (4.8), we conclude that

A1,2(x; y, z) = A1,2(y; z, x) = A1,2(z; y, x). (4.9)

Hence A1,2 is a symmetric 3-additive function and so is A2,1. Moreover A1,2(x, y) =

−A2,1(x, y; y). Therefore,

A1,2(x, y) + A2,1(x, y) = −A2,1(x, y; y) + A2,1(x, x; y) = −A2,1(x− y, x; y)

= D(x− y, x, y),

where D is a symmetric 3-additive function.

Now, we are ready to establish the general solutions of the mean-value func-

tional equation (4.1).

Theorem 4.4. A function f : R2 → R satisfies (4.1),

f(x+ t, y) + f(x, y + t) + f(x− t, y − t) = 3f(x, y),

for all x, y ∈ R and t > 0 if and only if

f(x, y) = A0 +B(x) + B̃(y) + C(x, 2y − x) + C̃(2x− y, y) +D(x− y, x, y),

where A0 is a constant, B, B̃ : R → R are additive functions, C, C̃ : R2 → R are

2-additive functions, and D : R3 → R is a symmetric 3-additive function.

Proof. Since (4.1) is the triangular mean-value functional equation which is ob-

tained from the three fixed points (1, 0), (0, 1) and (−1,−1), by Proposition 4.1,

we have

f(x+ 3t, y)− 3f(x+ 2t, y) + 3f(x+ t, y)− f(x, y) = 0, and

f(x, y + 3t)− 3f(x, y + 2t) + 3f(x, y + t)− f(x, y) = 0
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for all x, y and t ∈ R. This means that ∆
x,t

3f(x, y) = 0 and ∆
y,t

3f(x, y) = 0 for all

x, y and t ∈ R. Consequently, Theorem 2.2 implies that

f(x, y) =
2∑

n=0

2∑
m=0

An,m(x, y). (4.10)

Substituting (4.10) into (4.1), we have the following equation:(
2A2,2(t, y) + 2A2,2(x, t) + 2(A2,2(t, t; y, t) + A2,2(x, t; t, t))

+ 4A2,2(x, t; y, t) + A2,2(t, t)
)

+
(
2A2,1(t, y) + A2,1(t, t) + 2A2,1(x, t; t)

)
+
(
2A1,2(x, t) + A1,2(t, t) + 2A1,2(t; y, t)

)
+
(
A1,1(t, t) + 2A2,0(t) + 2A0,2(t)

)
= 0. (4.11)

We then substitute x, y and t by rx, ry and rt respectively, where r is rational.

Note that after the substitution, we have the equation which is a polynomial in

variable r. Since this is true for all r, by considering the coefficient of r4, r3 and

r2 we must have

2A2,2(t, y) + 2A2,2(x, t) + 2(A2,2(t, t; y, t)

+A2,2(x, t; t, t)) + 4A2,2(x, t; y, t) + A2,2(t, t) = 0, (4.12)

(
2A2,1(t, y) + A2,1(t, t) + 2A2,1(x, t; t)

)
+
(
2A1,2(x, t) + A1,2(t, t) + 2A1,2(t; y, t)

)
= 0, (4.13)

and

A1,1(t, t) + 2A2,0(t) + 2A0,2(t) = 0, (4.14)

for all x ∈ R and t ∈ R. From (4.12), we again substitute t by rt, where r is

rational, and let y = 0, and by considering the coefficient of r2, we obtain that

A2,2(x, t) = 0 for x ∈ R and t ∈ R. So

A2,2(x, y) = 0

for all (x, y) ∈ R2. Similarly, from (4.13), we have,

A2,1(t, x) + A1,2(t;x, t) =0, and

A1,2(x, t) + A2,1(x, t; t) =0 (4.15)
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for all x ∈ R and t ∈ R. By Lemma 4.2 and (4.14), we get that

A0,2(x, y) + A1,1(x, y) + A2,0(x, y) = C(x, 2y − x) + C̃(2x− y, y),

for some 2-additive functions C and C̃. By Lemma 4.3 and (4.15), we have that

A2,1(x, y) + A1,2(x, y) = D(x− y, x, y),

for some symmetric 3-additive function D : R3 → R. Hence

f(x, y) = A0 + A1,0(x) + A0,1(y) + C(x, 2y − x) + C̃(2x− y, y) +D(x− y, x, y).

Conversely, the solution can be verified by substituting back into (4.1).



CHAPTER V

TRIANGULAR MEAN-VALUE FUNCTIONAL

EQUATION

In the previous section, we have established the general solution for the fun-

damental case of the triangular mean-value functional equation which will play

an important role for the main theorem of this section. Given three noncollinear

points z1, z2, z3 ∈ R2. So, these points generate an actual triangle which its ver-

tices are at z1, z2, z3 and its centroid is at (z1 + z2 + z3)/3 (as Figure 5.1).

Figure 5.1

Let ωi = zi − (z1 + z2 + z3)/3. This mean that the triangle is translated and

dialated to the triangle which its vertices are at ω1, ω2, ω3 and its centoid is at the

origin point (as Figure 5.2).

Figure 5.2
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Assume that ω1 = (α1, β1) and ω2 = (α2, β2). Since z1, z2, z3 are noncollinear,

α1β2 − α2β1 6= 0 (ω1, ω2 are linearly independent). Given T : R2 → R2 be such

that T (ω1) = (1, 0) and T (ω2) = (0, 1). By simple calculation, we have

T (x, y) =
1

α1β2 − α2β1

(xβ2 − yα2, yα1 − xβ1).

Then T is linear bijection. Applying Lemma 3.2 with the linear bijection T , we

can solve triangular mean-value functional equation of z1, z2, z3. The following

theorem shows the general solution of triangular mean-value functional equation.

Theorem 5.1. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈ R2 be noncollinear

points. A function f : R2 → R satisfies (1.1) if and only if

f(z) = A0 +B(x) + B̃(y) +D(β1x− α1y, β2x− α2y, β3x− α3y)

+ C(β2x− α2y, δ1x− γ1y) + C̃(δ2x− γ2y, β1x− α1y),

where αi = xi − (x1 + x2 + x3)/3 ,βi = yi − (y1 + y2 + y3)/3, γi = x3 − xi,

δi = y3 − yi for all i = 1, 2, 3, A0 is a constant, B, B̃ : R → R are additive

functions, C, C̃ : R2 → R are 2-additive functions, and D : R3 → R is a symmetric

3-additive function.

Proof. Given a function f : R2 → R2 satisfies (1.1). Let ωi = zi− (z1 + z2 + z3)/3,

for i = 1, 2, 3. WLOG, assume that ω1 = (α1, β1), ω2 = (α2, β2) and ω2 = (α2, β3).

By Lemma 3.1, f also satisfies (3.1) i.e.

f(z + tω1) + f(z + tω2) + f(z + tω3) = 3f(z).

Define

T (x, y) =
1

α1β2 − α2β1

(xβ2 − yα2, yα1 − xβ1).

Then T is a linear bijection and T (ω1) = (1, 0), T (ω2) = (0, 1) and T (ω3) =

(−1,−1). Let g be a solution of the triangular mean-value functional equation of

(1, 0), (0, 1), (−1,−1). By Theorem 4.4, we have

g(x, y) = A0 +B(x) + B̃(y) + C(x, 2y − x) + C̃(2x− y, y) +D(x− y, x, y),
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where A0 is a constant, B, B̃ : R → R are additive functions, C, C̃ : R2 → R

are 2-additive functions, and D : R3 → R is a symmetric 3-additive function.

Applying Lemma 3.2 with the linear bijection T , we have

f(x, y) = g ◦ T (x, y) = g(
1

α1β2 − α2β1

(xβ2 − yα2, yα1 − xβ1)).

By making simple manipulations using additive properties of the functions and

changing of variable, we have

f(x, y) = A0 +B(x) + B̃(y) +D(β1x− α1y, β2x− α2y, β3x− α3y)

+ C(β2x− α2y, δ1x− γ1y) + C̃(δ2x− γ2y, β1x− α1y),

αi = xi−(x1 +x2 +x3)/3 ,βi = yi−(y1 +y2 +y3)/3, γi = x3−xi, δi = y3−yi for all

i = 1, 2, 3, A0 is a constant, B, B̃ : R→ R are additive functions, C, C̃ : R2 → R

are 2-additive functions, and D : R3 → R is a symmetric 3-additive function.

Conversely, the solution can be verified by substituting back into (1.1).



CHAPTER VI

DEGERNERATED TRIANGULAR MEAN-VALUE

FUNCTIONAL EQUATION

For the sake of completion, we will treat triangular mean-value functional

equation of a degenerated triangle (three vertices of triangle are collinear). In this

case, we will show that the general solution varies independently among the lines

parallel to the line generated by z1, z2, z3.

Now, we will solve the triangular mean-value functional equation of a degen-

erated triangle. Assume that z1, z2, z3 ∈ R2 are collinear points and a function

f : R2 → R satisfying (1.1). If z1 = z2 = z3, then it is obvious that any function is

a solution. In the case where z1, z2, z3 are not all equal, let ωi = zi−(z1+z2+z3)/3

for all i = 1, 2, 3. Without loss of generality, we assume ||ω1|| ≥ ||ω2|| ≥ ||ω3||.

Since z1, z2, z3 are not all equal and ω1 +ω2 +ω3 = 0, we get ||ω1|| > 0. By letting

α = ||ω2||/||ω1||, we have ω2 = −αω1 and ω3 = (α − 1)ω1. So, the triangular

mean-value functional equation in this case is of the form

f(z + ω1t) + f(z − αω1t) + f(z + (α− 1)ω1t) = 3f(z) (6.1)

for all z ∈ R2 and t > 0. By Proposition 4.1, we have

f(z + 3ω1t)− 3f(z + 2ω1t) + 3f(z + ω1t)− f(z) = 0. (6.2)

for all z ∈ R2 and t ∈ R. First, we consider the case where Re(ω1) = 0. Without

loss of generality, we assume that ω1 = (0, 1). Therefore, (6.1) in this case is of

the form

f(x, y + t) + f(x, y − αt) + f(x, y + (α− 1)t)) = 3f(x, y) (6.3)

for all x, y and t > 0. Fixed x ∈ R, define fx(y) = f(x, y). Then (6.3) becomes

fx(y + t) + fx(y − αt) + fx(y + (α− 1)t)) = 3fx(y). (6.4)
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for all x, y and t > 0. By (6.2), we also have

fx(y + 3t)− 3fx(y + 2t) + 3fx(y + t)− fx(y) = 0

for all y, t ∈ R. This implies that

∆
t

3fx(y) = 0 (6.5)

for all y, t ∈ R

We observe that the equation reduces to functional equation whose domain is

R. The following lemma shows the solution of any fx.

Lemma 6.1. Let α ∈ R. A function f : R→ R satisfies

f(x+ t) + f(x− αt) + f(x+ (α− 1)t) = 3f(x)

for all x ∈ R and t > 0. Then

f(x) = A0 + A(x) + A2(x)

where A2((1− α)x) + A2(αx, x) = 0 for all x ∈ R. In particular, if α is rational

number, f(x) = A0 + A(x).

Proof. By (6.5), we have

∆
t

3f(x) = 0.

Because of Theorem 2.1, we get

f(x) = A0 + A(x) + A2(x).

Substituting back to the equation, we have a condition

A2((1− α)x) + A2(αx, x) = 0

for all x ∈ R. If α is rational number, 1− α is rational number. By the property

of multi-additive function, we get

A2((1− α)x) + A2(αx, x) = (1− α)2A2(x) + αA2(x, x)

= (α2 − α + 1)A2(x)
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From the condition of A2 and (α2 − α+ 1) > 0, we have A2(x) = 0 for all x ∈ R.

In conclusion,

f(x) = A0 + A(x) + A2(x)

where A2((1 − α)x) + A(αx, x) = 0 for all x ∈ R. If α is rational number,

f(x) = A0 + A(x).

Therefore, Lemma 6.1 implies that

fx(y) = A0
x + A1

x(y) +Bx(y, y)

where A0
x is a constant, A1

x is additive function and Bx is symmetric 2−additive

function equipped with the condition Bx((1− α)y, (1− α)y) + Bx(αy, y) = 0 for

all y ∈ R. We can see that the general solution of this functional equation varies

independently among the lines parallel to x-axis.

Now, we will determine the general solution of triangular mean-value func-

tional equation of a degenerated triangle which the line generated by its vertices

is not parallel to y-axis (Re(ω1) 6= 0). We can rewrite (6.1) of the form

f(x+ Re(ω1)t, y + Im(ω1)t) + f(x− αRe(ω1)t, y − αIm(ω1)t)

+ f(x+ (α− 1)Re(ω1)t, y + (α− 1)Im(ω1)t) = 3f(x, y).

Let m = Im(ω1)/Re(ω1). Substituting t as t/Re(ω1) in the above equation, we

have

f(x+ t, y+mt) + f(x−αt, y−αmt) + f(x+ (α− 1)t, y+ (α− 1)mt) = 3f(x, y).

Define

Ly0 = {(x, y)|y = y0 +mx}.

Therefore, Ly0 is the line which parallel to the line generated by z1, z2, z3 and pass

(0, y0). We will show that the general solution varies independently among Ly0 .

Define

fLy0
(x) = f(x, y0 +mx).
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Let (x, y) ∈ R2. Given y0 = y −mx, we have

f(x+ t, y0 +m(x+ t)) + f(x− αt, y0 +m(x− αt))

+ f(x+ (α− 1)t, y0 +m(x+ (α− 1))t) = 3f(x, y0 +mx).

Hence,

fLy0
(x+ t) + fLy0

(x− αt)) + fLy0
(x+ (α− 1)t) = 3fLy0

(x).

Therefore, Lemma 6.1 implies that

fLy0
(x) = A0

y0
+ A1

y0
(x) +By0(x, x)

where A0
y0

is a constant, A1
y0

is additive function and By0 is symmetric 2−additive

function equipped with the condition By0((1 − α)x, (1 − α)x) + By0(αx, x) = 0

for all x ∈ R. We can see that the general solution of this functional equation

varies independently among the lines parallel to the line generated by z1, z2, z3.

In conclusion, we have the following theorem.

Theorem 6.2. Let z1, z2, z3 ∈ R2 be collinear points and not all equal. Choose

ωi = zj − (z1 + z2 + z3)/3 for i, j = 1, 2, 3 such that ||ω1|| ≥ ||ω2|| ≥ ||ω3||. A

function f : R2 → R satisfies (1.1). Let α = ||ω2||/||ω1|| and m = Im(ω1)/Re(ω1).

If Re(ω1) = 0, then

f(x, y) = A0
x + A1

x(y) +Bx(y, y)

where A0
x is a constant, A1

x is additive function and Bx is symmetric 2−additive

function equipped with the condition Bx((1 − α)y, (1 − α)y) + Bx(αy, y) = 0 for

all y ∈ R. If Re(ω1) 6= 0, then

f(x, y) = A0
y−mx + A1

y−mx(x) +By−mx(x, x)

where A0
y−mx is a constant, A1

y−mx is additive function and By−mx is symmet-

ric 2−additive function equipped with the condition By−mx((1 − α)x, (1 − α)x) +

By−mx(αx, x) = 0 for all x ∈ R.
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