คุณสมบัติที่อุณหภูมิสูงของนิกเกิลเบสซูเปอร์อัลลอยด์ El 698 VD ที่ผลิตจากกระบวนการรีดร้อนในสภาวะผสมระหว่าง ความคืบและความล้า

นาย ปัญญวัซร์ วังยาว

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาตรมหาบัณฑิต สาขาวิชาวิศวกรรมโลหการ ภาควิชาวิศวกรรมโลหการ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปิการศึกษา 2541 ISBN 974-639-741-9

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

HIGH TEMPERATURE PROPERTIES OF WROUGHT NICKEL BASE SUPERALLOY EI 698 VD IN CREEP FATIGUE CONDITIONS

Mr. Panyawat Wangyao

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Metallurgical Engineering Department of Metallurgical Engineering Graduate school Chulalongkorn University Academic Year 1998 ISBN 974-639-741-9

Thesis Title	High Temperature Properties of Wrought Nickel		
	BaseSuperalloy EI 698 VD in Creep-Fatigue Conditions		
Ву	Mr. Panyawat Wangyao		
Department	Metallurgical Engineering		
Thesis Advisor	Dr. Ekasit Nisaratanaporn, Ph.D.		

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master's Degree/

Chutize an

(Professor Supawat Chutivongse, M.D.)

Thesis Committee

-----Chairman

(Associate Professor Dr. Chatchai Somsiri, Ph.D.)

101 And 15150445 Thesis Advisor

(Dr. Ekasit Nisaratanaporn, Ph.D.)

Sawa Panchaivijit. Member

(Dr. Sawai Danchaivijit, Ph.D.)

ปัญญวัชร์ วังยาว : คุณสมบัติที่อุณหภูมิสูงของนิกเกิลเบสซูเปอร์อัลลอยด์ EI 698 VD ที่ผลิต จาก กระบวนการรีดร้อนในสภาวะผสมระหว่างความคืบและความล้า (HIGH TEMPERATURE PROPERTIES OF WROUGHT NICKEL BASE SUPERALLOY IN CREEP-FATIGUE CONDITIONS) อ.ที่ปรึกษา:อ.ดร.เอกสัทธิ์ นิสารัตนพร, 94 หน้า. ISBN 974-639-741-9.

ความคืบที่มีแรงดึงคงที่มากระทำเป็นช่วง ๆ ที่อุณหภูมิสูง (Isothermal Cyclic Creep , ICC) และ ความคืบที่มีการเปลี่ยนแปลงแรงดึงคงที่มากระทำเป็นช่วง ๆ พร้อมกับที่มีการเปลี่ยนแปลงอุณหภูมิ (Cyclic Creep with Additional Thermomechanical Fatigue Stress Component, TMF) ได้ทดสอบต่อโลหะผ่านการ รีดร้อนนิกเกิลเบสซุปเปอร์อัลลอยด์ เกรด EI 698 VD ได้ถูกนำมาศึกษาในงานวิจัยนี้โดยศึกษาถึงพฤติกรรมการ แปรรูปและลักษณะโครงสร้างทางจุลภาคที่ผ่านการทดสอบแบบ ICC และ TMF โครงสร้างทางจุลภาคที่เปลี่ยน แปลงไปเนื่องจากผลของการแปรรูปจะถูกทำการตรวจสอบโดยใช้กล้องอิเลคตรอนแบบสองผ่าน (TEM) และยัง เปรียบเทียบโครงสร้างจุลภาคของทั้งแบบ ICC และ TMF ต่อความคืบและความล้าที่มีแรงดึงสูงสุดและอุณหภูมิ สูงสุดที่ 740 MPa และ 650°C นอกจากนี้ยังศึกษาถึงผลกระทบของการหยุดให้แรงดึงคงที่กระทำเป็นช่วง ๆ ผล ของการทดลองแสดงถึงอายุของการทดสอบแบบ ICC มีค่าสูงขึ้น ส่วนในการทดสอบแบบ TMF ผลการทดลอง ไม่สามารถนำมาวิเคราะห์ได้เนื่องจากข้อมูลที่ได้มีค่ากระจาย ซึ่งอาจเกิดขึ้นเนื่องจากการกระจายและเรียงตัวของ คาร์ไบด์อย่างหยาบแตกต่างกัน

ภาควิชา	วิศวกรรมโลหการ	ลายมือชื่อนิสิต 556 วันบา
สาขาวิชา	วิศวกรรมโฉหการ	ลายมือชื่ออาจารย์ที่ปรึกษา <i>(CARNO LESISERIES)</i>
ปีการศึกษา.	2541	ถายมือชื่ออาจารย์ที่ปรึกษาร่วม

C818201 : MAJOR METALLURGY KEY WORD: CYCLIC CREEP / HOLL

CYCLIC CREEP / HOLDING TIME / SUPERALLOY / CREEP-FATIGUE PANYAWAT WANGYAO : HIGH TEMPERATURE PROPERTIES OF WROUGHT NICKEL BASE SUPERALLOY EI 698 VD IN CREEP-FATIGUE CONDITIONS. THESIS ADVISOR Dr. EKASIT NISARATANAPORN. Ph.D. 94 pp. ISBN 974-639-741-9.

Isothermal cyclic creep (ICC) and cyclic creep with additional thermal-mechanical tatigue stress component (TMF) were performed on a wrought nickel base superalloy El 698 VD. Both ICC and TMF tests were investigated in term of deformation characteristics and dislocation substructures of specimens. Transmission electron microscopy was conducted to examine the deformation substructures and reveal correlations with both ICC and TMF deformation behaviours. They also were compared to pure creep and high temperature fatigue at same maximum loading and temperature. All tests were tensile load controlling at operated temperature of 650°C. The effect of the individual tensile hold periods in both tests was studied. The experimental results exhibit that the introduction of tensile hold periods in ICC tests causes an increase in fracture life time proportional to the duration of the individual tensile hold periods. In TMF tests which were produced by cooling at cyclic creep between individual tensile cycles showed scattered and unreliable results which might be due to the heterogenity of MC coarse carbide affecting to the initial strain of tested specimens.

ภาควิชา METALLURGICAL ENGINEERING	ลายมือชื่อนิสิต 75565 800
สาขาวิชา METALLURGICAL ENGINEERING	ถายมือชื่ออาจารย์ที่ปรึกษา <i>โอาริท</i> ช์ มี <i>รารก</i> เพศ
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

Firstly, the author wishes sincerely to express his very sincere thanks and appreciation to his adviser, namely, Dr. Ekasit Nisaratanaporn for his constant supervision, interest, encouragement and many benevolent and invaluable useful helps, and the member of committee, namely Associate Prof. Chatchai Somsiri for providing the great opportunity to the author to carry out research project in Slovakia, as well as Dr. Sawai Danchaivijit, for good guidance and supervision.

Secondly, the author would like to acknowledge and express his gratitude to his abroad co-advisor, namely, Prof. Ing. Josef Zrnik, head of materials science department faculty of metallurgy Technical University of Kosice, Slovakia for his helpful advice and many useful helps over the duration of this research programme in Slovakia. Acknowledgement are also extende to the Slovak co-worker, namely, Ing. Vladimir Vrchovinsky, Dr.Ing Peter Hornak and all of Slovak staffs and technicians at the department for great friendship, good advice and helpful information.

Thirdly, the author wishes to greatly thank to National Science and Technology Development Agency, Thailand for financial support for this research project in Slovakia.

Lastly, but by no means least, Many thanks to his parents and family for other beneficial supports and very much lovely thanks to his unique special Slovak friend, namely, Ing. Sona Klimova who made the author always having great will power to stand and solve most of all trobles, furthermore, contributed his heart and soul endeavours to the success of this thesis.

CONTENTS

p	age
Abstract (in Thai)i	iv
Abstract (In English)	V
Acknowledgements	vi
Contents	ii
List of Tables	 111
List of Figuresi	X
List of Diagramsxi	ii
Chapter	
1. Introduction	. 1
2. Literature Survey	.8
3. Experimental Procedure	39
4. Experimental Result and Discussion	47
5. Conclusion	31
References	3
Appendix	86
Biography	.93

List of Table

Table		page
2.1	The Chemical composition of EI 698 VD alloy	9
41	The tensile Testing Properties at Room and elevated Temperature	51
4.2	The creep Test Properties	62
4.3	The Isothermal Cyclic Creep Test Properties	70
4,4	The Cyclic Creep with Thermomechanical Fatigue Stress Component	
	Test Properties	75

List of Figures

Figu	ure	Page
2.1	Schematic Representation of High Temperature Creep Curves	22
2.2	Schematic Representation of the Effect on Stress Levels on Creep curves at	t
	Constant Temperature	24
2.3	Schematic Representation of Nabarro-Hering Curve Creep	
2.4	Schematic Representation of Wedge-Shaped Crack at Triple Grain Junction	133
2.5	Schematic Representation of Grain Boundary Nucleation	33
3.1	Schematic Representation of Size and Shape of Tested Specimens	40
3.2	Schematic Representation of Form of Stress Wave of Isothermal	
	Cyclic Creep	42
3.3	Schematic Representation of Form of Stress Wave of Cyclic Creep with	
	Thermomechanical fatigue stress component	43
3.4	Schematic Representation of Size and Dimensions of Tested Specimens	
	for of Cyclic Creep with Thermomechanical fatigue stress component	44
3.5	Schematic Representation of Stress Wave Form for Fatigue Test	45
4.1	The Microstructure of EI 698 VD Superalloy as Wrought Structure	
	(as polished)	49
4.2	The Microstructure of the Alloy as Unetched Structure	49

4.3	As Wrought Structure in SEM (as Unetched)	49
4.4	Homogenised Gamma Prime Morphology in Austenite mMatrix in TEM	51
4.5	Grain Boundary as Substructure in TEM	51
4.6	As Deformation Regim Microstructure near Fracture Surface	51
4.7	As Cracks of Coarse Carbides	54
4.8	a) As Crack Opening along Grain Boundary on the Specimen Surface	
	b) As Intergranular Crack in Interior Surface	54
4.9	As Grain Deformation near fracture Surface	50
4.10	As Fracture Profile Line at Fracture Surface	
4.11	As Low Deformation Microstructure of Primary Creep Stage	56
4.12	As Dislocation Substructure in TEM of Primari Creep Stage	58
4.13	As Slip Bands of Substructure in TEM of primary Creep Stage	58
4.14	As Dislocation Movements passed Gamma Prime of primary Creep Stage	
	in TEM	58
4.15	As Particles Shearing Mechanism of Substructure in TEM	60
4.16	As Dislocation Substructure of Secondary Creep Stage in TEM	60
4,17	As Dislocation piled-up at Grain Boundary of Secondary Creep Stage	
	Substructure in TEM	60
4.18	As Dense Dislocation Substructure of Tertiary Creep Stage in TEM	65
4.19	As Creep Cavitation of Microstructure in SEM	65

4.20	As Dislocation Substructure of ICC Test with 1 hr Hold Time in TEM65
4.21	As Particle Shearing Mechanism of ICC Test with 1 hr Hold Time in TEM68
4,22	As Dense Dislocation Networks of ICC Test with 10 hrs Hold Time in TEM68
4 23	As Multiple Slip Bands Substructure of Fatigue Test in TEM
4.24	As Dislocation Tangle within Narrow Bands of Fatigue Test in TEM73
4.25	As Low Density Dislocation Substructure of TMF Test with 1 hr Hold Time
	in TEM
4.26	As Brittle Intergranular Mode Fracture in SEM
4.27	As Mixing Fracture Mode between Intergranular and Transgranular in SEM78
4.28	As Ductile Transgranular Fracture Mode in SEM
4.29	As Fracture Initiated Intergranularly from Fatigue Test in SEM78
4.30	As Fracture Propagated Transgranularly from Fatigue Test in SEM
4.31	As Small Fatigue Facet at Fracture Surface of TMF Test with 1 hr Hold Time
	in SEM

List of testing diagrams

4.1	Diagram of Strain-Time of Creep Tests	.61
4.2	Diagram of Strain-Time of ICC Tests	70
4.3	Diagram of Strain-Time of TMF Tests	.75