Own-Price Elasticity of Labour Demand:

A Case study of Danish Steel Works, Ltd.

Mr. Kent Busk

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Arts in Business and Managerial Economics

> Department of Economics Graduate School Chulalongkorn University Academic Year 1999 ISBN: 974-332-950-1

118701895

Thesis Title	: Own-Price Elasticity of Labour Demand: A Case Study of Danish Steel Works, Ltd.
By	: Kent Busk
Program	: Master of Arts in Business and Managerial Economics
Thesis Advisor	: Assist. Prof. Jittapatr Kruavan, Ph.D.

Accepted by the Graduate School, Chulalongkorn University, in Partial Fulfilment of the Requirements for the Master of Arts in Business and Managerial Economics

uchoch Graduate School

(Assoc. Prof. Suchada Kiranandana, Ph.D.)

Thesis Committee:

S. Ritayang Chairman

(Assoc. Prof. Sumalee Pitayanon, Ph.D.)

filt-pats Kuraren Thesis Advisor

(Assist. Prof. Jittapatr Kruavan, Ph.D.)

9. Sakuntalakora Thesis Co-advisor

(Assoc. Prof. Prachark Sakuntalaksna, Ph.D.)

st Chalaj Member

(Assoc. Prof. Chalaiporn Amonvatana, Ph.D.)

NTruch Member

(Assist. Prof. Nualnoi Treerat, Ph.D.)

421430

5721029 : Major BUSINESS AND MANAGERIAL ECONOMICS
KEY WORD ELASTICITY / OWNPRICE / LABOUR DEMAND / DANISH STEELWORKS
KENT BUSK : OWN-PRICE ELASTICITY OF LABOUR DEMAND: A CASE STUDY OF DANISH STEEL WORKS, LTD THESIS ADVISOR: ASSIST. PROF. JITTAPATR KRUAVAN, Ph.D. THESIS CO-ADVISOR: ASSOC. PROF. PRACHARK SAKUNTALAKSNA, Ph.D. 111 pp. ISBN 974-332-950-1

This paper attempts to build a model explaining the long run own-price elasticity of demand for labour-hours at the Danish Steelworks, Ltd. The model is constrained to conceive the firm as isolated from the rest of the steelworks industry.

The theoretical mathematical foundation explaining labour supply, labour demand, and the firms responsiveness to factor price changes is built. Next, the study proceeds with a static analysis where the Cobb-Douglas production function's parameters are estimated, under the assumptions of homogeneous labour-hours and production output. Last, the estimates of the firm's responsiveness to increase in labour-hours cost concerning employment of labour-hours are given and its implications are discussed.

The study finds that an increase in cost of labour-hours will force the firm to expand output, and hence, reduce the degree of the substitution away from labour-hours. This interesting result is explained under the assumption that the production function is homogeneous and that the firm is operating on an increasing return to scale.

ภาควิชา และระวรสารตร์ สาขาวิชา และระวรสารตร์ ปีการศึกษา 2542

ลายมือชื่อนิสิต // UU/IN ลายมือชื่ออาจารย์ที่ปรึกษา Jutepats Knava ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 9. Sakentalakona

Acknowledgements

I have spent three years as engineer at the Danish Steel Works, Ltd. after graduating as mechanical engineer. My tasks were mainly plant optimising, project management and co-ordination.

In the period working there I got a basic understanding of steel production. My motivation for conducting this labour-demand study is to get an understanding of the economics in production of steel.

My first general interest in the subject stems from my first experience that managing a production is not solely dependent on the technical production possibilities but rather influenced by other equally important factors such as factor-input markets and production-output markets.

I would, first of all, like to express gratitude to my advisor Asst. Prof. Jittapatr Kruavan Ph.D. and co-advisor Assoc. Prof. Prachark Sakuntalaksna, Ph.D. for their advises in structuring and organising the study. Moreover I would like to thank Chairman Assoc. Prof. Sumalee Pitayanon, Ph.D., Assoc. Prof. Chalaiporn Amonvatana, Ph.D., and Asst. Prof. Nualnoi Treerat, Ph.D. for there advises suggestions and feedback.

I am grateful to the Chulalongkorn University, Bangkok, for providing facilities into the study and also to my brother Ivan Busk for providing material and articles that were not reachable from Bangkok.

In addition, I would like to thank the Danish Statistical Database for providing price indices data; EUROSTAT (The European Statistical Office) for providing data on production outputs and steel prices; and finally the Danish Industry and Company Committee for providing the financial statements for the Danish Steel Works, Ltd.

Kent Busk Chulalongkorn University, Bangkok August 1999 ŝ,

Table of Contents

Abstract Acknowledgements	Pag iii iv
Table of Contents List of Tables List of Figures	v vii vii
Chapters 1. Labour supply	1
¹ 1.1 How many hours to supply: The Basic Model	1
1.2 The Individual's supply of Labour hours	3
1.3 The Presence of trade Unions: The Basic Model	9
2. Theory of Demand for Labour Hours	15
2.1 Theory of Demand: The Basic Model	15
2.2 Response in Input Demand to Changes in Input Prices	30
2.2.1 Own-Price Elasticity for Constant Output	31
2.2.2 Own-Price Elasticity for Variable Output	33
2.3 Labour as Quasi-Fixed Factor of Production	34
2.4 The Cobb-Douglas Production Function Properties	36
3. Literature Review	48
3.1 Underlying Model Assumptions	48
3.2 Econometric vs. Engineering Production Function	50
4. The Danish Steelworks industry	52
4.1 Presentation of the Danish Steel Works, Ltd.	52
4.2 The Steel Market	56
4.3 Important Notes Regarding the Model Assumptions	61
5. Production Function Variables	63
5.1 Output	63
5.2 Labour Hours	63
5.3 Capital	64
5.4 Technical Progress	65
5.4.1 Technical Progress: embodied or disembodied?	66
5.4.2 Human Capital	67

5.4.3 Bias Resulting from Leaving out Intermediate Inputs	68
5.5 Energy	69
5.6 The Final Production Function Model	69
6. Estimating the Production Function	70
6.1 The Cobb-Douglas Function	70
6.2 Model Specification	70
6.3 Estimated Model and Results	73
6.4 Model Restrictions and Economic Hypothesis Testing	74
6.5 Problems Concerning the OLS- Assumptions	75
7. Estimating the Elasticity of Labour Demand	82
7.1 Own Price Elasticity for Constant Output	82
7.2 Own Price Elasticity for Variable Output	83
7.3 The Elasticity of Labour Demand	87
7.4 Interpreting the result	89
8. Summary and Conclusion	90
8.1 Summary	90
8.2 Conclusion	94
References	96
Appendices	9 8
Curriculum Vitae	111

vi

List of Tables

Table 4.1 flat-product production (for the period 1992-1996)	58
Table 4.2 Long-products production (for the period 1992-1996)	59

List of Figures

Figure 1.1 Substitution and income effect on the individual's Lh-supply	
Figure 1.2 Changes in substitution effect as income change	5
Figure 1.3 Consumption path for N as an inferior good	6
Figure 1.4 The individual's supply of Lh	6
Figure 1.5 Constrained utility maximisation	8
Figure 1.6 Market supply of Lh	9
Figure 1.7 The firm's optimum employment of Lh	11
Figure 1.8 The trade-union's optimum wage	13
Figure 2.1 Fixed proportion production function isoquant map	17
Figure 2.2 Variable proportion production function isoquant map	18
Figure 2.3 Increasing output in the short run	20
Figure 2.4 Equilibrium wage and Lh employment	21
Figure 2.5 The firm's cost minimisation of production	25
Figure 2.6 Cost curves for homogeneous and non-homogeneous functions	27
Figure 4.1 Labour-hours per ton finished steel	55
Figure 4.2 Development of labour-hours employed	56
Figure 4.3 Danish steel consumption	56
Figure 4.4 Export share of production	57
Figure 4.5Return on total capital	58
Figure 4.6 Price index for steel and industrial products	60
Figure 4.7 Output ton 1976 to 1998	60
Figure 4.8 Price index adjusted revenue	61

Figure 4.9 Labour-hours' income share of total revenue	
Figure 5.1 Capital development	65
Figure 6.1 Labour-hours per output ton	72
Figure 6.2 Capital at cost per output ton	72
Figure 6.3 Log-output	77
Figure 6.4 Log-factor inputs	77
Figure 6.5 Output ton 1976 to 1998	
Figure 7.1 Cost-Price determined output	84
Figure 7.2 New cost-Price determined output	85
Figure 7.3 Labour-hours' income share of total revenue	86
Figure 7.4 Output-price relationship Denmark	88
Figure 7.4 Output-price relationship Germany	