การสังเคราะห์สารประกอบ 25,27-[เอ็น,เอ็น'-ได-((2-เอทอกซี)เบนซิล)โพรพิลีนไดเอมีน]-26,28-ไดเมทอกซี-พารา-เทอร์เซียรี-บิวทิลคาลิก[4]ซารีน ไดไฮโดรคลอไรด์ และการทดสอบความเป็นเบสและการเกิดสารประกอบเชิงซ้อนกับ โลหะแทรนซิชันไอออนบางชนิด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2541 ISBN 974-331-216-1 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF 25,27-[*N*,*N*'-DI-((ETHOXY)BENZYL)PROPYLENEDIAMINE]-26,28-DIMETHOXY-*p-tert*-BUTYLCALIX[4]ARENE DIHYDROCHLORIDE AND INVESTIGATION OF ITS BASICITY AND COMPLEXATION WITH SOME TRANSITION METAL IONS

Miss Sudarath Veravong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Graduate School Chulalongkorn University Acadamic Year 1998 ISBN 974-331-216-1

1

119307330

Thesis Title	Synthesis of 25,27-[N,N'-di-((ethoxy)benzyl)propylenediamine]-
	26,28-dimethoxy-p-tert-butylcalix[4]arene dihydrochloride and
	investigation of its basicity and complexation with some
	transition metal ions
Ву	Miss Sudarath Veravong
Department	Chemistry
Thesis Advisor	Associate Professor Vithaya Ruangpornvisuti, Dr. rer. nat.
Thesis Co-advisor	Assistant Professor Thawatchai Tuntulani, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

Syma Chulize Dean of Graduate School

(Professor Supawat Chutivongse, M.D.)

Thesis Committee

Siri Varothai Chairman

(Associate Professor Siri Varothai, Ph.D.)

O- Ruaymont- Thesis Advisor

(Associate Professor Vithaya Ruangpornvisuti, Dr. rer. nat.)

J Inthum Thesis Co-advisor

(Assistant Professor Thawatchai Tuntulani, Ph.D.)

A.C.Member

(Associate Professor Chai Hok Eab, Ph.D.)

Manghan Christannin Member

(Assistant Professor Nuanphun Chantarasiri, Ph.D.)

สุดารัตน์ วีระวงศ์ : การสังเคราะห์สารประกอบ 25,27-[เอ็น,เอ็น'-ได-((2-เอทอกซี)เบนซิล)โพรพิลีน] ไดเอมีน]-26,28-ไดเมทอกซี-พารา-เทอร์เซียรี-บิวทิลคาลิก[4]ซารีน ไดไฮโดรคลอไรด์และการทดสอบ ความเป็นเบล และการเกิดสารประกอบเชิงซ้อนกับโลหะแทรนซิชันไอออนบางชนิด (SYNTHESIS OF 25,27-[*N,N'*-DI-((ETHOXY)BENZYL)PROPYLENEDIAMINE]-26,28-DIMETHOXY-*p-tert*-BUTYLCALIX[4]ARENE DIHYDROCHLORIDE AND INVESTIGATION OF ITS BASICITY AND COMPLEXATION WITH SOME TRANSITION METAL IONS) อ.ที่ปรึกษา : รศ.ดร.วิทยา เรืองพรวิสุทธิ์, อ.ที่ปรึกษาร่วม : ผศ.ดร.ธวัชชัย ตันฑุลานิ; 112 หน้า. ISBN 974-331-216-1.

การสังเคราะห์สารประกอบ 25,27-[เอ็น,เอ็น'-ได-((2-เอทอกซี)เบนซิล)โพรพิลีนไดเอมีน]-26,28-ได-เมทอกซี-พารา-เทอร์เซียรี-บิวทิลคาลิก[4]ซารีน ไดไฮโดรคลอไรด์ (7, L.2HCI) ซึ่งเป็นอนุพันธ์แอมโมเนียมของ สารประกอบไดเอซาคาลิก[4]ซารีนเตรียมโดยการเมทิลเลทฟีนอกซีออกซิเจนของไดอัลดีไฮด์คาลิก[4]ซารีนด้วย CH₃! หลังจากนั้นนำสารประกอบ methylated dialdehyde ไปทำปฏิกีริยากับ 1,3-ไดอะมิโนโพรเพน ได้สารประกอบซิฟเบส ซึ่งนำไปรีดิวซ์ด้วย NaBH₄ และโปรโตเนทด้วย 2% HCI ใน CH₃OH นำสารประกอบ L.2HCI ไปศึกษา conformational isomerism โดยวิธีโปรตอนเอ็นเอ็มอาร์สเปกโตรสโกปี โปรตอนเอ็นเอ็มอาร์ สเปกตรัมของ L.2HCI ใน CDCI₃ และใน DMSO-d₆ แสดงให้เห็นว่าคาลิก[4]ซารีนมีการจัดตัวแบบโครงรูปผสม อย่างไรก็ดี เอ็นเอ็มอาร์สเปกตรัมใน CD₃OD บ่งบอก ถึงโครงรูปแบบโคน เมื่อค่อยๆเติม CD₃OD ลงใน สารละลาย CDCI₃ ของ L.2HCI พบว่าพันธะไฮโดรเจนระหว่างโมเลกุลของ CD₃OH กับ CH₃OAr-*t*-C₄H₉ ยึด โครงรูปของคาลิก[4]ซารีนให้อยู่ในรูปโคน การทดลองที่อุณหภูมิต่างๆกันของ L.2HCI ในสารละลายผสม CD₃OD/CDCI₃ แสดงถึงกลไกการเคลื่อนที่ที่อาจเป็นไปได้ของวงเฟนนิลและบ่งบอกว่าโครงรูปแบบ pinched cone จะเกิดขึ้นที่อุณหภูมิ –40 °C

นอกจากนี้ได้มีการศึกษาหาค่าคงที่ของการรับโปรตอนของ L โดยวิธีโพเทนซิโอเมทริกไทเทรซัน (potentiometric titration) ใน 1×10⁻² M Bu₄NCF₃SO₃ ในเมทานอล พบว่าค่า Log K, (Log K₂) ของ การรับโปรตอนตัวแรก (ตัวที่สอง) คือ 10.06 (6.67), 9.97 (6.75), 9.61 (6.64), 9.75 (6.77) และ 9.69 (6.68) ที่อุณหภูมิ 20, 23, 25, 27 และ 30 °C ตามลำดับ ค่าฟังก์ชันทางเทอร์โมไดนามิก ΔH₁, ΔH₂, ΔS₁ และ ΔS₂ ที่คำนวณได้ลำหรับการรับโปรตอนตัวแรกและตัวที่สอง มีค่าเป็น –67 kJ/mol, 3 kJ/mol, -38 kJ/mol·K และ 137 KJ/mol·K ตามลำดับ ในการศึกษาการเกิดสารประกอบเชิงซ้อนของ L กับไอออนของ Zn²⁺ และ Cu²⁺ ด้วยวิธีเดียวกัน พบว่า L ไม่เกิดสารประกอบเชิงซ้อนกับไอออนทั้งสองชนิด

ภาควิชาเกิ
สาขาวิชาเกฺมี
ปีการศึกษา?.รัน)

ลายมือชื่อนิสิตกิดเรียก ก็ระการ
ลายมือชื่ออาจารย์ที่ปรึกษา ใญ มีสารก
ลายมือชื่ออาจารย์ที่ปรึกษาร์วม 56666 สหบุลาน

3972126023 : MAJOR CHEMISTTRY

KEY WORD : BASICITY/CALIX[4]ARENE/DIAZA/METHYLATION/POTENTIOMETRIC TITRATION/PROTONATION CONSTANT/SPECIES/CONFORMATIONAL ISOMERISM SUDARATH VERAVONG : SYNTHESIS OF 25,27-[*N*,*N*-DI-((ETHOXY)BENZYL) PROPYLENEDIAMINE]-26,28-DIMETHOXY-*p-tert*-BUTYLCALIX[4]ARENE DIHYDROCHLORIDE AND INVESTIGATION OF ITS BASICITY AND COMPLEXATION WITH SOME TRANSITION METAL IONS, THESIS ADVISOR ASSOC. PROF. VITHAYA RUANGPORNVISUTI, Dr. rer. nat., THESIS CO-ADVISOR : ASSIST. PROF. THAWATCHAI TUNTULANI, Ph.D. 112 pp. ISBN 974-331-216-1.

25,27-[*N*,*N'*-di-((ethoxy)benzyl)propylenediamine]-26,28-dimethoxy*p-tert*-butylcalix[4]arene dihydrochloride (7, **L.2HCl**), an ammonium derivative of diaza calix[4]arene, was prepared by methylating phenoxy oxygen of dialdehyde calix [4]arene with CH₃I. The methylated dialdehyde was then reacted with 1,3diaminopropane to give a Schiff base compound which was then reduced with NaBH₄ and protonated with 2% HCl in CH₃OH. The conformational isomerism of **L.2HCl** was studied by ¹H NMR spectroscopy. ¹H NMR spectra of **L.2HCl** in CDCl₃ and in DMSO-d₆ showed that the calix[4]arene moiety orientated in mixed conformations. However, the ¹H NMR spectrum in CD₃OD indicated cone conformation. Gradual additions of CD₃OD into a CDCl₃ solution of **L.2HCl** revealed that intermolecular hydrogen bonding between methanol and CH₃OAr-*t*-C₄H₉ held the calix[4]arene framework in cone conformation. Variable temperature experiments of **L.2HCl** in a mixed solvent of CD₃OD/CDCl₃, implied a possible mechanism of phenyl ring movement and suggested that a pinched cone conformation was preferred at -40 °C

In addition, protonation constants of L were calculated in methanolic solution of 1×10^{-2} M Bu₄NCF₃SO₃ by potentiometric titration. Log K_1 (Log K_2) values of the first protonation (second protonation) were 10.06 (6.67), 9.97 (6.75), 9.61 (6.64), 9.75 (6.77) and 9.69 (6.68) at 20, 23, 25, 27 and 30 °C, respectively. Calculated thermodynamic functions, ΔH_1 , ΔH_2 , ΔS_1 and ΔS_2 for the first and second protonations were -67 kJ/mol, 3 kJ/mol, -38 kJ/mol K and 137 kJ/mol K, respectively. Complexation studies of L with Zn²⁺ and Cu²⁺ ions by the same method showed that L could not form complexes with both ions.

ภาควิชา⊥∞ื่่	ลายมือชื่อนิสิต Andwarth Verevory
สาขาวิชา(กพี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา ²⁵ 41	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🖞 วันกุปและ

ACKNOWLEDGMENT

I would like to express my sincerest gratitude to my advisor, Assoc. Prof. Dr. Vithaya Ruangpornvisuti, co-advisor, Assist. Prof. Dr. Thawatchai Tuntulani and Dr. Buncha Pulpoka for their guidance, kindness, suggestions, supports and also aids in my writing and discussion in this thesis. In addition, I thank the thesis committee for their valuable suggestions and attention.

This thesis could not have been completed without the generous help of staffs in the Supramolecular Physico-Chemical Laboratory and staffs in Scientific and Technological Research Equipment Center of Chulalongkorn University. I am grateful to Mr. Korakot Navakhun for providing of *p-tert*-butylcalix[4]arene and Miss Gamolwan Tumcharern for ¹H NMR results.

I would like to thank Thailand Research Fund, the Department of Chemistry, Faculty of Science and the Graduate School, Chulalongkorn University for financial support.

Finally, I would like to express much appreciation to my family members for their encouragement and supports to make my study successful.

CONTENTS

Abstract in Thai	iv
Abstract in English	v
Acknowledgement	vi
List of Figures	х
List of Tables	xvi
List of Symbols	xviii
List of Scheme	xix

CHAPTER I : INTRODUCTION	1
1.1 Macrocyclic compounds	1
1.2 Calixarenes	1
1.3 Calix[4]arenes	2
1.4 Chemical functionalization of calix[4]arene for host-guest chemistry	4
1.5 Objective and scope of the research	12

CHAPTER II : THEORY	13
2.1 Equilibrium constant	13
2.1.1 Equilibrium concentration constant	13
2.1.2 Acidity and basicity constants	15
2.1.3 Stability constants	16
2.2 Secondary concentration variables	18
2.2.1 The protonation formation, \overline{p}	18
2.2.2 The complex formation function, \overline{n}	20
2.2.3 The degree of formation, α_{c}	22
2.2.4 The degree of complex formation, ϕ	23

Pa	age
2.3 Calculation of equilibrium constants	24
2.4 Potentiometry 2	26
2.5 Inert background electrolyte	27
CHADTED III . EVDEDIMENT 2	20
2 1 Synthesis of 25.27 [N N ⁴ di ((2 ethoyy)benzyl)propylenediamine]-26.28-	. 7
directhering four hytrologlin [4] areas dihudzachlarida (7)	0
dimetnoxy- <i>p-tert</i> -butylcalix[4]arene dinydrochioride (7)	.,,
	.9
3.1.2 Instruments	1
3.1.3 Preparation methods	
3.1.3.1 Preparation of 2(2'-bromoethoxy)benzaldehyde (1)	1
3.1.3.2 Preparation of 25,27 – di - (2-ethoxy)benzaldehyde- <i>p-tert</i> -butyl	
calix[4]arene (3)	2
3.1.3.3 Preparation of 25,27 - di - ((2-ethoxy)benzaldehyde) - 26,28-di -	
methoxy- <i>p-tert</i> -butylcalix[4]arene (5)	3
3.1.3.4 Preparation of 25,27 - [N,N'- di - ((2-ethoxy)benzyl)propylenedi-	
imine]-26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene (6)	4
3.1.3.5 Preparation of 25,27-[N,N'- di - ((2-ethoxy)benzyl)propylene -	
diamine]-26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene	
dihydrochloride (7)	5
3.2 ¹ H NMR studies of the compound 7	6
3.2.1 Addition of CD ₃ OD and CD ₃ (SO)CD ₃ in the CDCl ₃ solution	
of the compound 7	6
3.2.2 Low temperature NMR experiments	6
3.2.2.1 In the CDCl ₃ solution	6
3.2.2.2 In the mixture of CDCl ₃ and CD ₃ OD solution	6
3.3 ¹ H NMR studies of the compound $25,27-[N,N'-di-((2-ethoxybenzyl))$	
propylenediamine]- <i>p-tert</i> -butylcalix[4]arene dihydrochloride (9)	6

.4

P	a	g	e	
		_	-	

ix

	Page
3.4 Basicity of 25,27-[N,N'-di-((2-ethoxy)benzylpropylenediamine]- 26,28-	
dimethoxy-p-tert-butylcalix[4]arene (L) and complexation of ligand L	
with transition metals	37
3.3.1 Chemicals	37
3.3.2 Instruments	37
3.5 Preparation of solutions	38
3.5.1 Potentiometric method	39
3.6 The calibration of electrode	39
3.7 Calculations	39
3.8 Potentiometric titration	39
CHAPTER IV : RESULTS AND DISCUSSION	45
4.1 Synthesis of 25,27 - [N,N' - di - ((2-ethoxy)benzyl)propylenediamine] -	
26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene dihydrochlorid (7, L.2HCl)	45
4.2 ¹ H NMR studies of the compound 7	52
4.2.1 Variable ${}^{1}H$ NMR experiments for compound 7 in the CDCl ₃	
solution of 7	52
4.2.2 Addition of CD_3OD and $DMSO-d_6$ in the $CDCl_3$ solution of 7	52
4.2.3 Low temperature NMR experiments in the mixted solvent	60
4.3 Basicity of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylenediamine]-26,28-	
dimethoxy- <i>p-tert</i> -butylcalix[4]arene (L)	67
4.4 Thermodynamic aspects of potentiometric titration data	71
4.5 Complexation of 25,27 - [N,N ^e -di-((2-ethoxy)benzyl)propylenediamine]-	
26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene (L) with Zn^{2+} and Cu^{2+} cations	73
CHAPTER V : CONCLUSION	76
REFERENCES	78
APPENDICE.	83
VITA	112

LIST OF FIGURES

I USU

Figure 1.1	Preparation of calix[4]arene by condensation of p-substituted	
	phenol with formaldehyde	2
Figure 1.2	Four conformations of the calix[4]arene	3
Figure 1.3	Tetralkoxy calix[4]arene derivatives	4
Figure 1.4	Calix[4]arene derivatives	4
Figure 1.5	Aza-crown-calix[4]arene derivatives	6
Figure 1.6	Diaza-benzo-crown ether- <i>p-tert</i> -butylcalix[4]arene	7
Figure 1.7	Schiff base compounds with different of lengths of carbon	
	chain in their capping units	8
Figure 1.8	25,27 - [N,N'-di-((2-ethoxy)benzyl)propylenediamine] -p-tert-	
	butylcalix[4]arene	9
Figure 1.9	Ammonium derivative of triaza-benzo-crown ether-p-tert-	
	butylcalix[4]arene	9
Figure 1.10	Triaza-benzo-crown ether- <i>p-tert</i> -butylcalix[4]arene	10
Figure 1.11	Tripodal-amine capped benzo crown- <i>p-tert</i> -butylcalix[4]arene.	11
Figure 1.12	Structure of a) 25,27-[N,N'-di-((2-ethoxy)benzyl)propylene-	
	diamine]-26,28-di-methoxy- <i>p-tert</i> -butylcalix[4]arene	12
	dihydrochloride (7, L.2HCl) and b) 25,27-[N,N'-di-((2-ethoxy)	
	benzyl)propylenediamine]-26,28-di-methoxy- <i>p-tert</i> -butylcalix	
	[4]arene (L)	
Figure 2.1	Plot of the formation, \overline{n} against the logarithm of the free ligand	
	concentration, log [L] for mononuclear complex	19
Figure 2.2	Diagrammatic representation of types of experimental error	
	a) high precision, high accuracy; b) low precision, high	
	accuracy c) high precision, poor accuracy (due to systematic	
	errors)	22
Figure 4.1	¹ H NMR spectrum of 7 in CDCl ₃	47
Figure 4.2	¹ H NMR spectrum of 7 in DMSO-d ₆	48

		Pa
Figure 4.3	¹ H NMR spectrum of 7 in CD ₃ OD	2
Figure 4.4	¹³ C NMR spectrum of 7 in CD ₃ OD	4
Figure 4.5	The structure of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylene-	
	diamine]-26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene	
	dihydrochloride, 7 and 25,26,27,28- <i>p-tert</i> -butylcalix[4]arene,	
	8	-
Figure 4.6	Dipole orientation of cone and partial cone conformation	4
Figure 4.7	1 H NMR spectra of compound 7 in the mixture of CDCl ₃ and	
	CD ₃ OD at various temperatures	4
Figure 4.8	^{1}H NMR spectra of compound 7 in CDCl ₃ when various	
	amount of CD ₃ OD was added	4
Figure 4.9	The proposed structure of intermolecular hydrogen bonding	
	between compound 7 and CD ₃ OH	4
Figure 4.10	$^1\mathrm{H}$ NMR spectra of compound 7 in the mixture of CDCl_3 and	
	CD ₃ OD at various temperatures	e
Figure 4.11	Enlargement of aromatic signals at various	
	temperatures	6
Figure 4.12	Enlargement of CH_3OAr - <i>t</i> - C_4H_9 and $ROAr$ - <i>t</i> - C_4H_9 signals at	
	various temperatures	6
Figure 4.13	Potentiometric titration of L in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 20 °C, based on the	
	initial concentration ratio of L : proton as follows :	
	a) 0.500 mM : 5.682 $mM,$ b) 0.914 mM : 6.084 mM $$ and $$	
	c) 0.603 mM : 1.206 mM. Equivalent is defined as the ratio of	
	$(n_{OH} - n_{acid})$ to n_{ligand}	e
Figure 4.14	Plot between \overline{p} and log $[H^+]$ for L in the methanolic solution	
	of 1x10 ⁻² M Bu ₄ NCF ₃ SO ₃ at 20 °C, based on the initial	
	concentration ratio of the ligand L to proton of	
	0.914 mM : 6.084 mM	7
	· ·	

		Page
Figure 4.15	Species distribution curves of L in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 20 °C, C _L = 0.914 mM	71
Figure 4.16	The plot between the log K of the 25,27-[N,N' -di-((2-ethoxy)	
	benzyl)propylenediamine]-26,28-dimethoxy-p-tert-butylcalix	
	[4]arene (L) and the reciprocal of the experimental	
	absolute temperatures	72
Figure 4.17	Potentiometric titration curves of \mathbf{L} with Cu^{2+} in the methanolic	
	solution of 1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at a) C _L 0.909 mM and	
	based on the initial concentration ratio of the ligand to Cu^{2-}	
	of b) 0.788 mM : 0.396 mM $$ and c) 0.766 : 0.780 mM at	
	25 °C. Equivalent is defined as the ratio of $(n_{OH} - n_{acid})$ to	
	n _{ligand}	74
Figure 4.18	Potentiometric titration curves of L with Zn^{2+} in the methanolic	
	solution of $1x10^{-2}M$ Bu ₄ NCF ₃ SO ₃ a) at C _L 0.909 mM and	
	based on the initial concentration ratio of the ligand to Zn^{2-}	
	of b) 0.833 mM : 0.860 mM and c) 0.874 : 0.449 mM at	
	25 °C. Equivalent is defined as the ratio of $(n_{OH} - n_{acid})$ to	
	n _{ligand}	75
Figure A.1	¹ H NMR (CDCl ₃) spectrum of 2(2'-bromoethoxy)	
	benzaldehyde (1)	84
Figure A.2	¹ H NMR (CDCl ₃) spectrum of 25,27-di-(2-ethoxy)	
	benzaldehyde- <i>p-tert</i> -butylcalix[4]arene (3)	85
Figure A.3	¹ H NMR (CDCl ₃) spectrum of 25,27-di-((2-ethoxy)	
	benzaldehyde)-26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene	
	(5)	86
Figure A.4	¹ H NMR (CDCl ₃) spectrum of 25,27-di-((2-ethoxy)benzyl)	
	propylene-diimine-26,28-dimethoxy- <i>p-tert</i> -butylcalix[4]arene,	
	(6)	87

Deer

xii

Page

¹ H NMR (CDCl ₃) spectrum of 25,27-[N,N'-di-((2-ethoxy)	
benzyl)propylenediamine]-26,28-dimethoxy-p-tert-butylcalix	
[4]arene dihydrochloride, (7)	88
¹ H NMR (CD ₃ OD) spectrum of 7	89
MALDI-TOF mass spectrum of 7	90
1 H NMR spectrum of compound 9 in CDCl ₃ when various	
amount of CD ₃ OD was added	91
^1H NMR spectrum of 7 in CDCl3 when 5 μL of DMSO-d_6 was	
added	94
^1H NMR spectrum of 7 in CDCl3 when 10 μL of DMSO-d_6	
was added	95
^1H NMR spectrum of 7 in CDCl3 when 15 μL of DMSO-d_6	
was added	96
^1H NMR spectrum of 7 in CDCl3 when 20 μL of DMSO-d_6	
was added	97
^1H NMR spectrum of 7 in CDCl3 when 25 μL of DMSO-d_6	
was added	98
^1H NMR spectrum of 7 in CDCl3 when 30 μL of DMSO-d_6	
was added	99
^1H NMR spectrum of 7 in CDCl3 when 40 μL of DMSO-d_6	
was added	100
^1H NMR spectrum of 7 in CDCl3 when 100 μL of DMSO-d_6	
was added	101
Potentiometric titration curves of L in the methanolic solution	
of 1x10 ⁻² M Bu ₄ NCF ₃ SO ₃ at 23 °C, based on the initial	
concentration ratio of L proton as follows :	
a) 0.456 mM : 4.892 mM, b) 0.460 mM : 4.568 mM and	
c) 0.301 : 0.602 mM. Equivalent is defined as the ratio of	
$(n_{OH} - n_{acid})$ to n_{ligand}	102
	 ¹H NMR (CDCl₃) spectrum of 25,27-[<i>N</i>,<i>N</i>²di-((2-ethoxy) benzyl)propylenediamine]-26,28-dimethoxy-<i>p</i>-tert-butylcalix [4]arene dihydrochloride, (7). ¹H NMR (CD₃OD) spectrum of 7. ¹H NMR (CD₃OD) spectrum of 7. ¹H NMR spectrum of compound 9 in CDCl₃ when various amount of CD₃OD was added. ¹H NMR spectrum of 7 in CDCl₃ when 5 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 10 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 15 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 20 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 20 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 20 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 20 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 25 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 30 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 30 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 100 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 100 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 100 µL of DMSO-d₆ was added. ¹H NMR spectrum of 7 in CDCl₃ when 100 µL of DMSO-d₆ was added.

Pag	e
Figure A.18 Potentiometric titration curves of L in the methanolic solution	
of 1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 25 °C, based on the initial	
concentration ratio of L : proton as follows :	
a) 0.454 mM : 0.909 mM, b) 0.909 mM : 6.166 mM and	
c) 0.542 : 4.995 mM. Equivalent is defined as the ratio of	
$(n_{OH} - n_{acid})$ to n_{ligand} 103	5
Figure A.19 Potentiometric titration curves of L in the methanolic solution	
of 1x10 ⁻² M Bu ₄ NCF ₃ SO ₃ at 27 °C, based on the initial	
concentration ratio of L proton as follows	
a) 0.459 mM : 4.845 mM, b) 0.463 mM : 4.526 mM and	
c) 0.303 : 0.606 mM. Equivalent is defined as the ratio of	
$(n_{OH} - n_{acid})$ to n_{ligand} . 104	ŀ
Figure A.20 Potentiometric titration curves of L in the methanolic solution	
of 1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 30 °C, based on the initial	
concentration ratio of L : proton as follows :	
a) 0.459 mM : 4.695 mM, b) 0.505 mM : 1.011 mM and	
c) 0.303 : 0.606 mM. Equivalent is defined as the ratio of	
$(n_{OH} - n_{acid})$ to n_{ligand} 105	I
Figure A.21 Plot between \overline{p} and log $[H^+]$ for L in the methanolic solution	
of 1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 23 °C, based on the initial	
concentraton ratio of the ligand L to proton of	
0.460 mM : 4.568 mM	
Figure A.22 Plot between \overline{p} and log [H ⁻] for L in the methanolic solution	
of 1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 25 °C, based on the initial	
concentration ratio of the ligand L to proton of	
0.909 mM : 6.166 mM	
Figure A.23 Plot between \overline{p} and log [H ⁺] for L in the methanolic solution	
of 1×10^{-2} MBu ₄ NCF ₃ SO ₃ at 27 °C, based on the initial	
concentration ratio of the ligand L to proton of	
0.463 mM · 4.526 mM 108	

xiv

Figure A.24	Plot between \overline{p} and log $[H^{\dagger}]$ for L in the methanolic solution	
	of 1x10 ⁻² M Bu ₄ NCF ₃ SO ₃ at 30 °C, based on the initial	
	concentration ratio of the ligand L to proton of	
	0.459 mM : 4.695 mM	109
Figure A.25	Species distribution curves of L in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 23 °C, C _L = 0.460 mM	110
Figure A.26	Species distribution curves of L in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 25 °C, C _L = 0.909 mM	110
Figure A.27	Species distribution curves of \mathbf{L} in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 27 °C, C _L = 0.463 mM	111
Figure A.28	Species distribution curves of L in the methanolic solution of	
	1×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 30 °C, C _L = 0.505 mM	111

LIST OF TABLES

	Page
Table 2.1 Summary of the secondary concentration variables, \overline{n} , α_c and $\phi_{}$	24
Table 3.1 Experimental data used in computer simulations for determining	
the protonation constants of L in the methanolic solution of	
1.0×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 20 ± 0.1 °C	41
Table 3.2 Experimental data used in computer simulations for determining	
the protonation constants of L in the methanolic solution of	
$1.0 \times 10^{-2} M Bu_4 NCF_3 SO_3$ at $23 \pm 0.1 \ ^{\circ}C$	41
Table 3.3 Experimental data used in computer simulations for determining	
the protonation constants of L in the methanolic solution of	
$1.0 \times 10^{-2} M Bu_4 NCF_3 SO_3$ at $25 \pm 0.1 °C$	42
Table 3.4 Experimental data used in computer simulations for determining	
the protonation constants of L in the methanolic solution of	
$1.0 \times 10^{-2} M Bu_4 NCF_3 SO_3 at 27 \pm 0.1 °C$	42
Table 3.5 Experimental data used in computer simulations for determining	
the protonation constants of L in the methanolic solution of	
$1.0 \times 10^{-2} M Bu_4 NCF_3 SO_3$ at $30 \pm 0.1 \ ^{\circ}C$	43
Table 3.6 Experimental data used in computer simulations for determining	
the protonation constants of L with Cu^{2-} in the methanolic	
solution of 1.0×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 25 ± 0.1 °C	43
Table 3.7 Experimental data used in computer simulations for determination	
the protonation constants of L with Zn^{2-} in the methanolic	
solution of 1.0×10^{-2} M Bu ₄ NCF ₃ SO ₃ at 25 ± 0.1 °C.	44
Table 4.1 Changes of the chemical shifts of CD ₃ OH, ROArH, CH ₃ OArH,	
ROAr-t-C ₄ H_9 , and CH ₃ OAr-t-C ₄ H_9 of the compound 7 in the	
mixture of CDCl ₃ and CD ₃ OD	57

-

x

xvii

LIST OF SYMBOLS

α_{c}	degree of formation
β_n	overall stoichiometric stability constant for ML_n
°C	degree Celcius
ΔG	free energy change
ΔH	enthalpy energy change
ΔS	entropy change
e	error associated with the i th component
E	observed potential (e.m.f.)
E°	standard potential
ϕ	degree of complex formation
γ	activity coefficient
ln	logarithm to base e
log	logarithm to base 10
М	metal
μ	ionic strength
ML	mononuclear complex
n	(in association with ligand) number of ligands in a complex
n	complex formation function
0	experimental observations
П	product
\overline{p}	protonation formation function
pХ	-log ₁₀ [X]
Σ	sum
Т	absolute temperature
[]	concentration
[]T	total concentration

-

LIST OF SCHEME

	Page
Scheme 4.1 Possible phenyl ring movement mechanism	66

1.5