CHAPTER III

EXPERIMENT

3.1 Synthesis of 25,27-[*N*,*N*'-di-((2-ethoxy)benzyl)propylenediamine]-26,28dimethoxy-*p-tert*-butylcalix[4]arene dihydrochloride (7)

3.1.1 Chemicals

1.	Acetone		Commercial grade, Mallinckrodt,
			U.S.A.
2.	Acetonitrile		Analytical Reagent grade, Lab-
			Scan, Ireland
3.	Barium oxide		Practical grade, Fluka,
			Switzerland
4.	1,3-Diaminopropane		Analar grade, Fluka, Switzerland
5.	1,2-Dibromoethane		Analar grade, Merck, Germany
6.	Benzophenone		Purum grade, Fluka, Switzerland
7.	Deuterochloroform		Puriss grade, Fluka, Switzerland
8.	Dichloromethane		Commercial grade, Mallinckrodt,
			U.S.A.
9.	Diethyl ether		Analar grade, J.T.Baker, U.S.A.
10.	Ethanol		Absolute grade, Merk, Germany
11.	Ethyl acetate		Analytical Reagent grade, Lab-
			Scan, Ireland
12.	Hexane		Analytical Reagent grade, Lab-
			Scan, Ireland
13.	Hydrochloric acid		Analar grade, J.T.Baker, U.S.A.
14.	Methanol		Analytical Reagent grade, Lab-
		-	Scan, Ireland

15.	Methyl iodide	Analar grade, Fluka, Switzerland
16.	Potassium carbonate	Analar grade, Merck, Germany
17.	Potassium tert-butoxide	Practical grade, Fluka,
		Switzerland
18.	Salicylaldehyde	Analar grade, Fluka, Switzerland
19.	Sea sand	Fluka, Switzerland
20.	Silica gel	No.7734, Fluka, Switzerland
21.	Sodium	Purum grade, Fluka, Switzerland
22.	Sodium borohydride	Analar grade, Fluka, Switzerland
23.	Sodium sulphate anhydrous	Analar grade, Fluka, Switzerland
24.	Tetrahydrofuran	Pro Analysis grade, Merck,
		Germany
25.	Tetradeuteromethanol	Puriss grade, Fluka, Switzerland
26.	<i>p-tert</i> -butylcalix[4]arene	Synthesized according to the
		published procedure [66]
27.	Nitrogen gas	Ultrahigh purity grade

3.1.2 Instruments

- 1. CHNS/O Analyser PE2400 Series II, Perkin Elmer, U.S.A.
- 2. Eyela Magnetic Stirrer RC-2, Eyela, Japan
- 3. Fourier Transform NMR Spectrometer ACF 200 MHz, Bruker, Switzerland
- 4. Fourier Transform NMR Spectrometer 500 MHz, Jeol, Japan
- 5. Matrix Assisted Laser Description Ionization-Time of Flight Mass Spectrometer (Biflax)
- 6. Rotary Evaporator, Eyela, Japan
- 7. Vacuum-system B-169, Buchi, Switzerland

3.1.3 Preparation Methods

3.1.3.1 Preparation of 2(2'-bromoethoxy)benzaldehyde (1)

Into a 1 L two-necked round bottom flask containing a mixture of K_2CO_3 (46.00 g, 334.80 mmol), salicylaldehyde (25.4 mL, 242.4 mmol) and acetonitrile (500 mL) was slowly added 1,2-dibromoethane (205.5 mL, 2.2 mol). The reaction mixture was heated at reflux under nitrogen atmosphere for 4 hours. The mixture was cooled to room temperature and filtered off K_2CO_3 . The yellow filtrate was then evaporated in vacuo to yield a mixture of 1 and 2 which were separated on a silica gel column. CH₂Cl₂ was used as eluant. The product 1 was crystallized by addition of hexane into its CH₂Cl₂ solution. (18.10 g, 33%). δ_H (200 MHz ; CDCl₃), 10.51 (1H, s, CHO), 7.83 (1H, d, J = 7.8, H_a), 7.52 (1H, t, J = 7.9, H_b), 7.05 (1H, t, J = 7.5, H_c), 6.94 (1H, d, J = 8.4, H_d), 4.40 (2H, t, J = 6.1, OCH₂CH₂Br) and 3.69 (2H, t, J = 6.0, OCH₂CH₂OBr). The ¹H NMR spectrum of 1 is shown in Figure A.1.

Into a 1 L two-necked round bottom flask containing K₂CO₃ (23.00 g, 167.40 mmol) *p-tert*-butylcalix[4]arene (11.70 g, 18.10 mmol) and CH₃CN (350 mL) was added dropwise a solution of 1 (9.34 g, 40.86mmol) in CH₃CN (100 mL). The mixture was heated at reflux under nitrogen atmosphere for 72 hours. The reaction was subsequently cooled to room temperature and filtered. The pale yellow filtrate was then concentrated by reduced pressure and was added CH₃OH to precipitate **3**, 1,3-di-substistution derivative of *p-tert*-butylcalix[4]arene, and tri-substitution derivative **4**. The white solid **3** was separated from **4** by column chromatography employing CH₂Cl₂ as eluant. (8.48 g, 50%). $\delta_{\rm H}$ (200 MHz ; CDCl₃), 10.47 (2H, s, CHO), 7.81 (2H, d, *J* = 7.7, *H*_a), 7.53-7.54 (12H, m, *H*_b), 7.45 (2H, s, ArOH), 6.98-6.94 (4H, m, *H*_c and *H*_d), 7.00 (4H, s, HOArH), 6.84 (4H, s, ROArH), 4.40-4.38 (8H, m, OCH₂CH₂O), 4.29,3.29 (8H, 2d, *J* = 13.0, ArCH₂Ar), 1.24 (18H, s, HOAr-*t*-C₄H₉) and 1.00 (18H, s, ROAr-*t*-C₄H₉). The ¹H NMR spectrum of **3** is shown in Figure A.2.

3.1.3.3 Preparation of 25,27-di-((2-ethoxy)benzaledehyde)-26,28dimethoxy-*p-tert*-butylcalix[4]arene (5)

Under nitrogen atmosphere, a solution of compound 3 (1.12 g, 1.19 mmol) in dry THF (80 mL) was stirred with BaO (0.19 g, 1.21 mmol) for 1 hour and 30 minutes in a 250 mL two-necked round bottom flask. Then, t-BuOK (0.41 g, 3.63 mmol) and CH₃I (0.39 ml, 6.24 mmol) were added to the mixture. The reaction was then heated at reflux for 1 hour. When the reaction was cooled to room temperature, THF was evaporated by reduced pressure to dryness. The residue was dissolved in CH₂Cl₂ and washed with 1 M aqueous HCl. The organic phase was separated, dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was chromatographed on a silicagel column using 10% EtOAc in hexane as eluant to separate a crude product of 5, which was purified again by column chromatography using 1% CH₃OH in CH₂Cl₂ as eluant. (0.33 g, 28%). δ_H (200 MHz ; CDCl₃), 10.44 (2H, br s, CHO), 7.82 (2H, d, J = 7.7, H_a), 7.52 (2H, t, J = 8.3, H_b), 7.05-6.98 (8H, m, H_c , H_d and ROArH), 6.50 (4H, br s, CH₃OArH), 4.50-4.03 (12H, m, OCH₂CH₂O and ArCH₂Ar), 3.82 (6H, s, OCH₃), 3.14 (4H, br s, ArCH₂Ar), 1.27 (18H, br s, ROAr-t-C₄H₉), 1.04 (9H, br, s, CH₃OAr-t-C₄H₉) and 0.79 (9H, br s, CH₃OAr-t-C₄H₉). The ¹H NMR spectrum of 5 is shown in Figure A.3. Anal.Cald for C₆₄H₇₆O₈; C, 78.98%; H, 7.87%. Found : C, 78.97%; H, 7.77%.

THF was fresh distilled with Na metal and benzophenone (Na : benzophenone = 1:3 by weight) under nitrogen atmosphere.

3.1.3.4 Preparation of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylenediimine]-26,28-dimethoxy-*p-tert*-butylcalix[4]arene (6)

Into a stirred solution of compound 5 (0.56 g, 0.58 mmol) in CH₃CN (60 mL) was added dropwise a solution of 1,3-diaminopropane (0.08 mL, 0.96 mmol) in methanol (12 mL). The reaction was heated at reflux for 24 hours. White solid of 6, precipitated after the reaction was cooled to room temperature. It was isolated by filtration, dried and washed with cold methanol. (0.32 g, 55%). $\delta_{\rm H}$ (200 MHz ; CDCl₃), 8.65 (2H, br s, *H*C=N), 7.90 (2H, d, *J* = 7.2, *H*_a), 7.32-7.27 (2H, m, *H*_b), 7.10-6.70 (8H, m, *H*_c,*H*_d and ROAr*H*), 6.50, 6.43 (4H, br s, CH₃OAr*H*), 4.50-3.90 (12H, m, OC*H*₂C*H*₂O and ArC*H*₂Ar), 3.74 (3H, s, OC*H*₃), 3.61-3.32 (3H, m, OC*H*₃), 3.32-2.80 (8H, m, NC*H*₂CH2 and ArC*H*₂Ar), 2.05-1.85 (1H, m, NCH₂C*H*₂CH₂N), 1.70-1.52 (1H,m, NCH₂C*H*₂CH₂N), 1.32, 1.27 (1H, br s, ROAr-*t*-C₄*H*₉), 1.03 (9H, br, s, CH₃OAr*t*-*t*-C₄*H*₉) and 0.79 (9H, br s, CH₃OAr*t*-*t*-C₄*H*₉). The ¹H NMR spectrum of 6 is shown in Figure A.4. Anal.Cald for C₆₇H₈₂O₆N₂; C, 79.57%; H, 8.17%; N, 2.77%. Found : C, 79.49%; H, 8.03%; N, 2.62.

3.1.1.5 Preparation of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylenediamine]-26,28-dimethoxy-*p-tert*-butylcalix[4]arene dihydro chloride (7)

The compound 6 (0.47 g, 0.46 mmol) was stirred with NaBH₄ (0.48 g, 12.64 mmol) in CH₂Cl₂ (100 ml) under nitrogen atmosphere for 2 days. Excess NaBH₄ was then destroyed by a cupious amount of water. The organic layer was extracted, dried over Na₂SO₄ and removed solvent to yield a white residue. The residue was added 2% HCl/CH₃OH until pH of the solution reached 1. Upon removal of CH₃OH white solid precipitated. (0.39 g, 77%). $\delta_{\rm H}$ (200 MHz; CD₃OD), 7.49-7.40 (4H, m, $H_{\rm a}$ and $H_{\rm b}$), 7.21 (4H, s, and ROAr*H*), 7.14-7.01 (4H, s, $H_{\rm c}$, and $H_{\rm d}$), 6.71 (4H, br s, CH₃OAr*H*), 4.45 (4H, br s, ArCH₂NH), 4.28-4.23 (16H , br m, ArCH₂Ar and OCH₂CH₂O), 3.52 (6H, br s, OCH₃), 3.34-3.28 (4H, *, ArCH₂Ar), 2.90 (4H, br s, NCH₂CH₂) 2.01 (2H, br s, NCH₂CH₂CH₂N), 1.34 (18H, s, ROAr*-t*-C₄H₉), 0.99 (18H, s, CH₃OAr*-t*-C₄H₉). The ¹H-NMR spectrum of 7 is shown in Figure A.6. Anal.calcd for C₆₇H₈₈O₆N₂Cl₂.2CH₃OH.2H₂O ; C, 69.73% ; H, 8.48% ; N, 2.36%. Found : C, 69.84% ; H, 7.87% ; N, 2.39%. MALDI-TOF MS for [M⁺] ; 1014.2 m/z.

The observed signal aggregates with the solvent peak

3.2 ¹H NMR studies of the compound 7

3.2.1 Addition of CD₃OD and DMSO-d₆ in the CDCl₃ solution of the compound 7

Typically, in a NMR tube, the compound 7 (0.01 g, 0.009 mmol) was dissolved in CDCl₃ (0.4 ml). CD₃OD or DMSO-d₆ (5 μ L) was added into the tube. The spectrum was then recorded. A series of experiment was carried out by increasing the amount of CD₃OD or DMSO-d₆ to 10, 15, 20, 25, 30, 40 and 100 μ L.

3.2.2 Low temperature NMR experiments

3.2.2.1 In the CDCl₃ solution

In a NMR tube, the compound 7 (0.01 g, 0.009 mmol) was dissolved in CDCl₃ (0.5 ml). CD₃OD (20 μ L) was then added. The spectra were recorded at 27, 0, -15, -25, -35, and -40 °C.

3.2.2.2 In the mixture of CDCl₃ and CD₃OD solution

In a NMR tube, the compound 7 (0.01g, 0.009 mmol) was dissolved in CDCl₃ (0.5 ml). CD₃OD (20 μ L) was then added. The spectra were recorded at 27, 0, -15, -25, -35 and -40 °C.

3.3 ¹H NMR studies of the compound 25,27-[*N*,*N'*-di-((2-ethoxy)benzyl) propylenediamine]-*p*-tert-butylcalix[4]arene dihydrochloride (9)

In a NMR tube, the compound 9 (0.02 g, 0.019 mmol) was dissolved in CDCl₃ (0.5 ml). 5 μ L of CD₃OD was added into the tube. The spectrum was then recorded. A series of experiment was carried out by increasing the amount of CD₃OD to 10, 15, 20, 25, 30, 40, 50, 60, 80, 100 and 200 μ L.

3.4 Basicity of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylenediamine]-26,28dimethoxy-*p-tert*-butylcalix[4]arene (L) and complexation of ligand L with transition metals

3.4.1 Chemicals

1. Tetrabutylammonium	Electrochemical grade, Fluka,
trifluoromethanesulfonate	Switzerland
2. Tetrabutylammoniumhydroxide 1.0 M	Analar grade, Aldrich, U.S.A.
solution in methanol	
3. Copper (II) trifluoromethanesulfonate	Analar grade, Aldrich, U.S.A.
4. Zinc (II) trifluoromethanesulfonate	Analar grade, Aldrich, U.S.A.
5. Potassium hydrogen phthalate	Analar grade, Carlo Erba, Italy
6. Perchloric acid 70-72 %	Analar grade, Merck, Germany
7. Methanol	Actual Analysis grade, J.T.Baker,
	U.S.A.
8. 25,27-[N,N'-di-((2-ethoxy)benzyl)	Obtained from synthesis
propylenediamine]-26,28-dimethoxy	
-p-tert-butylcalix[4]arene dihydrochloride	
(7, L.2HCl)	
9. Argon gas	Ultra high pure grade

3.4.2 Instruments

- 1. Automatic titrator, Mettler, Model DL 25, Switzerland
- 2. Combined pH electrode, Mettler, Model DG113-SC, Switzerland
- 3. Thermostat, Heto, Model DT-2, Denmark
- 4. Microcomputer, Model 486/DX4

3.5 Preparation of solutions

3.5.1 Potentiometric method

3.5.1.1 Primary standard solution of potassium hydrogen phthalate (KHP) was prepared by dissolving a weighted quantity of KHP in double distilled water.

3.5.1.2 Stock solution of 1 M perchloric acid (HClO₄) in methanol was prepared by diluting the concentrated HClO₄.

3.5.1.3 Stock solution of 1×10^{-1} M perchloric acid (HClO₄) in methanol was prepared by diluting the stock solution of 1 M HClO₄ with methanol.

3.5.1.4 Solution of $5x10^{-2}$ M HClO₄ in $1x10^{-2}$ M tetrabutylammonium trifluoromethanesulfonate (Bu₄NCF₃SO₃) was prepared by dilution of the stock solution of $1x10^{-1}$ M HClO₄ in methanol; a certain amount of dried Bu₄NCF₃SO₃ was added before diluting by methanol.

3.5.1.5 pH standard solution of pH 2 and 3 were prepared by dilution of the stock solution of $1x10^{-1}$ M HClO₄ in methanol; a weighted quantity of dried Bu₄NCF₃SO₃ was included to make $1x10^{-2}$ M Bu₄NCF₃SO₃.

3.5.1.6 1x10⁻³ M 25,27-[*N*,*N*²-di-((2-ethoxy)benzyl)propylenediamine]-26,28dimethoxy-*p-tert*-butylcalix[4]arene dihydrochloride (7, L.2HCl), $5x10^{-2}$ M Cu (CF₃SO₃)₂ and $5x10^{-2}$ M Zn(CF₃SO₃)₂ in methanolic solution of $1x10^{-2}$ M Bu₄NCF₃SO₃ were obtained by dissolving Bu₄NCF₃SO₃ and the mentioned substances and diluted with methanol.

3.5.1.7 Electrolyte solution of 1×10^{-2} M Bu₄NCF₃SO₃ in methanol was prepared by dissolving an exact quantity of Bu₄NCF₃SO₃ in methanol.

3.5.1.8 Solution of $5x10^{-2}$ M Bu₄NOH in methanolic solution of $1x10^{-2}$ M Bu₄NCF₃SO₃ was prepared by dilution of the 1.0 M Bu₄NOH in methanol; a certain amount of dried Bu₄NCF₃SO₃ was added before diluting by methanol.

3.6 The Calibration of Electrode

An automatic titrator including combined pH electrode was used in the titration. The pH electrode was calibrated by two different standard pH. The pH of the standard solution of pH 2 was assigned to be 2.00 ± 0.005 pH units by adjusting the Nernstian slope as defined the ratio of pH to millivolt at isopotential point of pH 8.30 = 0.0 millivolt. The pH of solution can be corrected by the following equation (3.1).

$$pH_{corrected} = pH_{measured} + a + b[H^{\dagger}]_{measured}$$
(3.1)

where a and b are constants. The standard pH 3 was currently measured by the same electrodes and was used in the calculation for a and b constants.

3.7 Calculations

The titration data for determination of basicity constants of 25,27-[N,N'-di-((2-ethoxy)benzyl)propylenediamine-26,28-dimethoxy-*p-tert*-butylcalix[4]arene (L) and stability constants of complex between ligand L with transition metal ions were evaluated by the refinement program. The calculations were performed on the microcomputer. The titration data obtained from the measurements were used in the evaluation and the optimization process by the SUPERQUAD program [65].

3.8 Potentiometric Titration

Experiments for determination of basicity constants of 25,27-[*N*,*N'*-di((2ethoxy)benzyl)propylenediamine]-26,28-dimethoxy-*p-tert*-butylcalix[4]arene (L) by means of potentiometric titrations were carried out at various constant temperature, namely 20, 23, 25, 27 and 30 °C \pm 0.1 °C. The stability constants of its complex with transition metal ions were carried out at 25 °C. Argon gas saturated by the electrolyte solution of 1×10^{-2} M Bu₄NCF₃SO₃ in methanol was flowed through the titration chamber. The temperature of the titration chamber was kept by the external circulation of thermostat bath. The solution of 5×10^{-2} M HClO₄ in 1×10^{-2} M Bu₄NCF₃SO₃ used for adjustment the pH of titration system was standardized with Bu₄NOH titrant. At least three titrations of each experiment were employed in the computer refinement, except the experiment of complexation studies of L with Zn^{2+} , only 2 titrations were used. The pH range and initial concentration of the ligand L at 20, 23, 25, 27 and 30 °C are shown in Tables 3.1, 3.2, 3.3, 3.4 and 3.5, respectively. The pH range and initial concentration of the ligand L at 2n²⁺ are shown in Tables 3.6 and 3.7, respectively.

Table 3.1 Experimental data used in computer simulations for determining the protonation constants of L in the methanolic solution of 1.0×10^{-2} M Bu₄NCF₃SO₃ at 20 ± 0.1 °C.

Titration	Initial concen	tration (mM)	pH range	Data points	
	L	proton			
1	0.500	5.682	2.69-13.02	58	
2	0.914	6.084	2.52-12.89	63	
3	0.603	1.206	5.62-13.14	39	

Table 3.2 Experimental data used in computer refinement for determining the protonation constants of L in the methanolic solution of 1.0×10^{-2} M Bu₄NCF₃SO₃ at 23 ± 0.1 °C.

Titration	Initial concen	tration (mM)	pH range Data p	Data points
	L	proton		
1	0.456	4.892	2.58-12.90	54
2	0.460	4.568	2.58-12.78	54
3	0.301	0.602	5.88-12.97	30

Table 3.3 Experimental data used in computer refinement for determining the protonation constants of L in the methanolic solution of 1.0×10^{-2} M Bu₄NCF₃SO₃ at 25 ± 0.1 °C.

Titration	Initial concen	tration (mM)	pH range	Data points	
	L	proton			
1	0.455	0.909	5.37-12.51	34	
2	0.909	6.165	2.44-12.33	64	
3	0.542	5.621	2.43-12.27	51	

Table 3.4 Experimental data used in computer refinement for determining the protonation constants of L in the methanolic solution of 1.0×10^{-2} M Bu₄NCF₃SO₃ at 27 ± 0.1 °C.

Titration	Initial concer	tration (mM)	pH range	Data points
	L	proton		
1	0.459	4.845	2.51-12.85	52
2	0.463	4.526	2.44-12.75	57
3	0.303	0.606	5.45-12.97	31

Table 3.5 Experimental data used in computer refinement for determining the protonation constants of L in the methanolic solution of 1.0×10^{-2} M Bu₄NCF₃SO₃ at 30 ± 0.1 °C.

Titration	Initial concer	ntration (mM)	pH range	Data points
	L	proton		
1	0.297	4.372	2.56-13.01	57
2	0.459	4.695	2.56-12.73	52
3	0.505	1.011	4.82-13.05	45

Table 3.6 Experimental data used in computer refinement for determining the stability constants of L with Cu^{2+} in the methanolic solution of 1.0 $\times 10^{-2}$ M $Bu_4NCF_3SO_3$ at 25 ± 0.1 °C.

Titration	Initial c	oncentration	n (mM)	pH range	Data points
	L	proton	Cu ²⁺		
1	0.776	5.231	0.780	2.53-11.00	60
2	0.841	5.667	0.423	2.39-11.02	58
3	0.788	4.674	0.396	2.64-11.15	61

Table 3.7 Experimental data used in computer refinement for determining the stability constants of L with Zn^{2+} in the methanolic solution of $1.0x10^{-2}$ M Bu₄NCF₃SO₃ at 25 ± 0.1 °C.

Titration	Initial c	oncentration	n (mM)	pH range	Data points
	L	proton	Zn ²⁻		
1	0.833	6.264	0.860	2.40-12.39	72
2	0.874	5.772	0.449	2.54-12.46	69

.