REFERENCES

Abrams, D.S. and Prausnitz, J.M. (1975) Statistical thermodynamic of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 21, 116-128.

Azevedo, L.F.A. and Teixeira, A.M. (2003) A critical review of the modeling of wax deposition mechanism. Petroleum Science and Technology, 21(3-4), 393408.

Bondi, A. (1968) Physical Properties of Molecular Crystals, Liquids, and Glasses. New York: Wiley.

Bothorel, P. (1968) Determination of molecular optical anisotropy in solution and liquids by depolarized light scattering. Journal of Colloid and Interface Science, 27(3), 529-541.

Coutinho, J. (1999) Predictive local composition model: NRTL and UNIQUAC and their application to model solid-liquid equilibrium of n-alkanes. Fluid Phase Equilibria, 158-160, 447-457.

Coutinho, J., Andersen, S. I., and Stenby, E. H. (1995) Evaluation of activity coefficient models in prediction of alkane solid-liquid equilibria. Fluid Phase Equilibria, 103, 23-39.

Coutinho, J. and Stenby, E.H. (1996) Predictive local composition models for solidliquid and solid-solid equilibrium in alkanes: Wilson equation for multicomponent systems. Industrial Engineering \& Chemistry Research, 35, 918-925.

Dauphin, C., Daridon, J. L., Coutinho, J., Baylere, P., and Potin-Gautier, M. (1999) Wax content measurements in partially frozen paraffinic systems. Fluid Phase Equilibria, 161, 135-151.

Dirand, M., Chevallier, V., Provost, E., Bouroukba, M., and Petijean, D. (1998) Multicomponent paraffin waxes and petroleum solid deposits: Structural and thermodynamic state. Fuel, 77, 1253-1260.

Elbro, H. S., Fredenslund, A., and Rasmussen, P. (1991) Group contribution method for the prediction of liquid densities as a function of temperature for solvents, oligomers, and polymers. Industrial Engineering \& Chemistry Research, 30, 2576-2582.

Erickson, D.D., Niesen, V.G., and Brown, T.S. (1993) Thermodynamic measurement and prediction of paraffin precipitation in crude oil. SPE26604, 933-948.

Fredenslund, A., Gmehling, J., and Rasmussen, P.(1977) Vapor-liquid Equilibrium using UNIFAC. New York: Elsevier Scientific.

Hansen, A. B., Larsen, E., Pederson, W. B., Nielsen, A. B., and Ronningsen, H. P. (1991) Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy \& Fuels. 5, 914.

Hansen, J. H. (1988) A thermodynamic model for predicting wax formation in crude oils. AIChE Journal, 38, 1937.

Hildebrand, J. H. and Scott, R. L. (1950) Solubility of Nonelectrolytes. New York: Reinhold.

Kontogeorgis, G.M., Coutsikos, P., Tassios, D., and Fredenslund, Aa. (1994) Improved models for the prediction of activity coefficients in nearly athermal mixtures. Fluid Phase Equilibria, 92, 35-66.

Larsen, B.L., Rasmussen, P., and Fredenslund, A. (1987) A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Industrial and Engineering Chemistry Research, 26, 2274-2286.

Lira-Galeana, C., Firoozabadi, A., and Prausnitz, J. M. (1996) Thermodynamics of wax precipitation in petroleum mixture. AIChE Journal, 42, 239-247.

Morgan, D. L. and Kobayashi, R. (1994) Extension of Pitzer CSP models for vaporization to long-chain hydrocarbons. Fluid Phase Equilibria, 94, 51-87.

Pauly, J., Dauphin, C., and Daridon, J. L. (1998) Liquid-solid equilibria in a decane plus multi-paraffins system. Fluid Phase Equilibria, 149, 191-207.

Prausnitz, J.M., Lichtenthaler, R.N., and Azevedo, E.G. (1986) Molecular Thermodynamics of Fluid-phase Equilibria. New Jersey: Prentice-Hall, Englewood Cliffts.

Singh, P., Youyen, A., and H.S., Fogler. (2001) Existence of a critical carbon number in the aging of wax-oil gel. AIChE Journal, 47, 2111-2124.

Tancrede, P., Patterson, D., and Bothorel, P. (1997) Interactions in alkane systems by depolarized rayleigh scattering and calorimetry. Journal of the Chemical Society-Faraday Transection II, 73, 15-39 .

Wilson, G. M. (1964) Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. Journal of the American Chemical Society, 86, 127130.

Won, K. W. (1986) Thermodynamics for solid-liquid equilibria: Wax phase formation from heavy hydrocarbon mixtures. Fluid Phase Equilibria, 30, 265-279.

APPENDICES

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

Appendix A Calculation of molar volume and van der Waals volume.

Molar volume of component i

The group contribution method given by Elbro et al. (1991) was used to calculate molar volume of n-alkane and aromatic compound. This method can not be used to calculate the molar volume for cycloalkane which has carbon number less than 9 . The liquid density is used to obtain the molar volume of cyclohexane and cyclopentane and the density is obtained from Yaws (1999). The molar volume (V_{i}) and density $\left(\rho_{i}\right)$ of component i is calculated from the following equations,

$$
\begin{align*}
& V_{i}=\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} T \tag{A1}\\
& V_{i}=\frac{\mathrm{MW}_{\mathrm{i}}}{\rho_{\mathrm{i}}} \tag{A2}\\
& \rho_{i}=\mathrm{C}_{\mathrm{i}} \times \mathrm{D}_{\mathrm{i}}\left(1+\frac{T}{T_{c}}\right)^{n} \tag{A3}
\end{align*}
$$

where T is the temperature, T_{c} is the critical temperature and MW is the molecular weight. The parameters $A_{i}, B_{i}, C_{i}, D_{i}$ and n are shown in the Table A1 and Table A2.

Table A1 Group contributions for saturated molar volume (Fredenslund et al., 1977)

Group	$\mathrm{A}\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$	$\mathrm{B}\left(\mathrm{cm}^{3} / \mathrm{mol} \mathrm{K}\right)$
CH_{3}	18.960	45.58
CH_{2}	12.520	12.94
ACH	10.090	17.37
ACCH_{3}	23.58	24.43

Table A2 The parameters calculating the liquid density (Elbro et al., 1990)

Solvent	C	D	$T_{c}(\mathrm{~K})$	n
Cyclohexane	0.27376	0.27408	553.54	0.28511
Cyclopentane	0.27236	0.27247	511.76	0.28571

Van der Waals volume of component i

Van der Waals volume of component i was calculated from the group contribution method given by Bondi (1968).

$$
V_{w i}=\sum_{k} v_{k}^{i} \times V_{w}^{k}
$$

The term of $v_{k}{ }^{i}$ is the number of group k in the component i. The values for cycloalkane were adjusted to account for the intramolecular crowding losses which also described by Bondi (1968). Table A3 shows the Van der Waals volume (V_{w}^{k}) of different groups.

Table A3 Group Van der Waals volume (Bondi, 1968)

Group (k)	$V_{w}^{k}\left(\mathrm{~cm}^{3} / \mathrm{mol}\right)$
CH_{3}	13.67
CH_{2}	10.23
ACH	8.06
AC	5.54
CH_{2} (cyclohexane)	9.78
CH_{2} (cyclopentane)	9.83

Appendix B Calculation of residual activity coefficient.

System: Octacosane-Cyclohexane mixture at octacosane mole fraction $=0.015$ and $T=291.25 \mathrm{~K}$

The residual activity coefficient is calculated from Equation (3.5). For this system, Equation (3.5) can be written as,

$$
\begin{equation*}
\ln \gamma_{C 28}^{\text {res }}=2 \times\left[\ln \Gamma_{\mathrm{CH}_{3}}^{m i x}-\ln \Gamma_{\mathrm{CH}_{3}}^{p u r}\right]+26 \times\left[\ln \Gamma_{\mathrm{CH}_{2}}^{m i x}-\ln \Gamma_{\mathrm{CH}_{2}}^{p u r}\right] \tag{B1}
\end{equation*}
$$

where $\Gamma_{k_{3}}^{\text {mix }}$ is the activity coefficient of group k in the mixture composition and $\Gamma_{k_{3}}^{\text {pur }}$ is the activity coefficient of group k in the pure octacosane. Both $\Gamma_{k_{3}}^{\text {mix }}$ and $\Gamma_{k_{3}}^{\text {pur }}$ are calculated from Equation (3.6). Table C 1 shows the groups and its surface area parameter used in this calculation. The calculation consisted of 2 part, mixture composition and pure octacosane composition.

Table B1 Group surface area parameter and group number (Fredenslund et al., 1977)

Group number	Name	Q_{k}
1	CH 3	0.848
คุ2 2 ลงก	CH 2	0.540
CHU3 ALONV	$\mathrm{c}-\mathrm{CH} 2$	0.540

Mixture composition

There are 3 groups in this system which are $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ in n-alkane and CH_{2} group in cyclohexane ($\mathrm{c}-\mathrm{CH}_{2}$) so Equation (3.6) can be written as

$$
\ln \Gamma_{C H_{3}}^{m i x}=Q_{C H_{3}}\left[\begin{array}{l}
1-\ln \left(\theta_{1} \psi_{11}+\theta_{2} \psi_{21}+\theta_{3} \psi_{31}\right)-\frac{\theta_{1} \psi_{11}}{\theta_{1} \psi_{11}+\theta_{2} \psi_{21}+\theta_{3} \psi_{31}} \tag{B2}\\
-\frac{\theta_{2} \psi_{12}}{\theta_{1} \psi_{12}+\theta_{2} \psi_{22}+\theta_{3} \psi_{32}}-\frac{\theta_{3} \psi_{13}}{\theta_{1} \psi_{13}+\theta_{2} \psi_{23}+\theta_{3} \psi_{33}}
\end{array}\right]
$$

The subscribed number represents the group number shown in the Table B1. Surface area fraction is calculated from Equation (3.7) which can be written as following equation,
$\theta_{1}=\frac{Q_{1} X_{1}}{Q_{1} X_{1}+Q_{2} X_{2}+Q_{3} X_{3}}$
$\theta_{2}=\frac{Q_{2} X_{2}}{Q_{1} X_{1}+Q_{2} X_{2}+Q_{3} X_{3}}$
$\theta_{3}=\frac{Q_{3} X_{3}}{Q_{1} X_{1}+Q_{2} X_{2}+Q_{3} X_{3}}$
with
$X_{1}=\frac{v_{1}^{C 28} x_{C 28}+v_{1}^{c C 6} x_{c C 6}}{v_{1}^{C 28} x_{C 28}+v_{1}^{c C 6} x_{c C 6}+v_{2}^{C 28} x_{C 28}+v_{2}^{c c 6} x_{c C 6}+v_{3}^{C 28} x_{C 28}+v_{3}^{c C 6} x_{c C 6}}$
$X_{2}=\frac{v_{2}^{C 28} x_{C 28}+v_{2}^{c C 6} x_{c C 6}}{v_{1}^{C 28} x_{C 28}+v_{1}^{c C 6} x_{c C 6}+v_{2}^{C 28} x_{C 28}+v_{2}^{c C 6} x_{c C 6}+v_{3}^{C 28} x_{C 28}+v_{3}^{c C 6} x_{c C 6}}$
$X_{3}=\frac{v_{3}^{C 28} x_{C 28}+v_{3}^{c C 6} x_{c C 6}}{v_{1}^{C 28} x_{C 28}+v_{1}^{c C 6} x_{c C 6}+v_{2}^{C 28} x_{C 28}+v_{2}^{c C 6} x_{c C 6}+v_{3}^{C 28} x_{C 28}+v_{3}^{c C 6} x_{c C 6}}$
where v_{k}^{i} is the number of group k in component i and x_{i} is the mole fraction of component i. The values of v_{k}^{t} and calculated θ_{k} are shown in the Table B2.

Table B2 The number of group in each component and group surface area fraction of each group

k	$\nu_{k}^{c 28}$	$\nu_{k}^{c \text { c6 }}$	θ_{k}
1	2	0	0.0074
2	26	0	0.0615
3	0	6	0.9311

The interaction terms, $\psi_{m n}$, are calculated from Equations (3.8) and (3.9). The interaction parameters used in this calculation are shown in the Table 5.1.

$$
\begin{aligned}
\psi_{13} & =\psi_{23}=\exp \left(-\frac{73.3124-0.1627 \times(291.25-298.15))}{291.25}\right) \\
& =0.77447
\end{aligned}
$$

$$
\psi_{31}=\psi_{32}=\exp \left(-\frac{-69.0285-0.1627 \times(291.25-298.15)}{291.25}\right)
$$

$$
=1.26257
$$

$$
\psi_{11}=\psi_{12}=\psi_{22}=\psi_{21}=\exp \left(-\frac{0}{291.25}\right)=1
$$

From Equation (B2),

$$
\begin{aligned}
\ln \Gamma_{C H_{3}}^{m i x} & =0.848 \times-0.00658 \\
& =-0.00558
\end{aligned}
$$

Similarly for $\Gamma_{\mathrm{CH}_{2}}^{m \times}$,

$$
\begin{aligned}
\ln \Gamma_{C H_{3}}^{\operatorname{mix}} & =0.540 \times-0.00658 \\
& =-0.00355
\end{aligned}
$$

Pure octacosane composition

There are 2 groups in octacosane which are CH_{3} and CH_{2}. The surface area fractions for each group are needed to be evaluated for this system. The interaction parameters between CH_{2} and CH_{3} groups are zero $\left(\psi_{i j}=1\right)$ and $\theta_{1}+\theta_{2}=1$. The equation (3.6) can be written as

$$
\begin{aligned}
\ln \Gamma_{C H_{3}}^{p u r} & =0.848\left[1-\ln \left(\theta_{1} \psi_{11}+\theta_{2} \psi_{21}\right)-\frac{\theta_{1} \psi_{11}}{\theta_{1} \psi_{11}+\theta_{2} \psi_{21}}-\frac{\theta_{2} \psi_{12}}{\theta_{1} \psi_{12}+\theta_{2} \psi_{12}}\right] \\
& =0.848\left[1-\ln \left(\theta_{1}+\theta_{2}\right)-\frac{\theta_{1}}{\theta_{1}+\theta_{2}}-\frac{\theta_{2}}{\theta_{1}+\theta_{2}}\right] \\
& =0
\end{aligned}
$$

Similarly, $\Gamma_{\mathrm{CH}_{2}}^{\mathrm{pur}}=0$

The residual activity coefficient of octacosane in cyclohexane can be calculated by Equation (3.5).

$$
\begin{aligned}
\ln \gamma_{C 28}^{r e s} & =2 \times(-0.00558-0)+26 \times(-0.00355-0) \\
& =-0.10346
\end{aligned}
$$

Appendix C Structural parameters of component $i\left(r_{i}\right.$ and $\left.q_{i}\right)$ for solid phase activity coefficient.

Values of r_{i} and q_{i} used in the solid phase activity coefficient calculations were obtained from the following equations,

$$
\begin{align*}
& r_{i}=0.1483 \times r_{i, o r g} \tag{C1}\\
& q_{i}=0.1852 \times q_{i, o r g} \tag{C2}
\end{align*}
$$

where $r_{i, o r g}$ and $q_{i, o r g}$ are calculated from the group volume parameters $\left(R_{k}\right)$ and group surface area parameters $\left(Q_{k}\right)$,

$$
\begin{align*}
& r_{i, o r g}=\sum_{k} v_{k}^{i} R_{k} \tag{C3}\\
& q_{i, \text { org }}=\sum_{k} v_{k}^{i} Q_{k} \tag{C4}
\end{align*}
$$

where $v^{i}{ }_{k}$ is the total number of group k in component i. Group volume and surface area has been determined by Abrams and Prausnitz (1975) and used in both UNIQUAC and UNIFAC model. The values of both R_{k} and Q_{k} are shown in Table C1.

Table C1 The values of group structural parameters

Group	R_{k}	Q_{k}	Group	R_{k}	Q_{k}
CH_{3}	0.9011	0.848	ACH	0.5313	0.400
CH_{2}	0.6744	0.540	AC	0.3652	0.120

CURRICULUM VITAE

Name:	Mr. Suchat Komesvarakul
Date of Birth:	April 29, 1980
Nationality:	Thai

University Education:

1998-2002 Bachelor Degree of Engineering in Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

