EFFECT OF DROPLET-PHASE ELASTICITY ON DROPLET BEHAVIOR AND MORPHOLOGY OF IMMISCIBLE BLENDS

Mr. Wanchai Lerdwijitjarud

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

1

2003

ISBN 974-13-2464-2

31 11.9. 2550

121610627

Thesis Title:	Effect of Droplet-Phase Elasticity on Droplet Behavior and
	Morphology of Immiscible Blends
By:	Wanchai Lerdwijitjarud
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Anuvat Sirivat
	Prof. Ronald G. Larson

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

K. Bunyachint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Nantayr Januant (Chairperson)

(Assoc. Prof. Nantaya Yanumet)

(Prof. Ronald G. Larson)

(Dr. Manit Nithitanakul)

Aniwal Soundt

(Assoc. Prof. Anuvat Sirivat)

hanchai Moupp'z

(Dr. Chanchai Thongpin)

บทคัดย่อ

วันชัย เลิศวิจิตรจรัส: อิทธิพลของความยืดหยุ่นของเฟสอนุภาคทรงกลมที่มีต่อ พฤติ กรรมของอนุภาคทรงกลมและลักษณะโครงสร้างของระบบของเหลวผสมแบบไม่เข้ากัน (Effect of Droplet-Phase Elasticity on Droplet Behavior and Morphology of Immiscible Blends) อ. ที่ปรึกษา: ศ.คร.โรนัลด์ จี ลาร์ซัน และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 132 หน้า ISBN 974-13-2464-2

งานวิจัยนี้ศึกษาอิทธิพลของความยืดหยุ่นของเฟสกระจายตัว ที่มีต่อพฤติกรรมของ อนุภาคทรงกลมและ โครงสร้างของพอลิเมอร์ผสมแบบไม่เข้ากันภายใต้การ ใหลแบบเนื้อน พอลิ-เมอร์ผสมที่ใช้ศึกษาประกอบด้วยระบบของผสมของของไหลแบบ "Boger" และ ระบบของผสม ของพอลิเมอร์น้ำหนักโมเลกุลสูงหลอมเหลว สำหรับพอลิเมอร์ผสมของของไหลแบบ "Boger" ประกอบด้วย ของไหล "Boger" ของพอลิบิวตาไดอีนเป็นเฟสกระจายตัว และ พอลิไดเมทธิล ไซ ลอกเซนเป็นเฟสต่อเนื่องนั้น อิทธิพลของความยืดหยุ่นของเฟสกระจายตัวที่มีต่อการเปลี่ยน แปลง ฐปร่างแบบสมคุลของอนุภาคทรงกลมโคคเคียว และ การแตกตัวของอนุภาคทรงกลมแบบ โคค ไวเซนเบอร์ก ของเฟส เคียวภายใต้การ ใหลแบบเฉือน ได้รับการศึกษาอย่างเป็นระบบ โดยมีค่า กระจายตัวสูงสุดของระบบประมาณ 3 สำหรับงานวิจัยนี้ ค่า ไวเซนเบอร์ก นิยามว่าเป็น ค่าอัตรา ส่วน ระหว่าง ค่า first normal stress difference ต่อ สองเท่าของ ค่าความเค้นแบบเฉือน นอก จากนี้ งานวิจัยนี้ยังศึกษาผลกระทบของความยืดหยุ่นของอนุภาคทรงกลมที่มีต่อโครงสร้าง แบบ สมคุลของพอลิเมอร์ผสมที่ประกอบด้วยปริมาณเฟสกระจายตัว 10 หรือ 20 เปอร์เซ็นต์ พอลิบิว ตาไดอื่นที่ใช้เป็นอนุภาคทรงกลมเตรียมได้จาก การผสมพอลิบิวตาไดอื่นน้ำหนักโมเลกุล สูงลงไป ้ในพอลิบิวตาไดอีนแบบนิวโตเนียนน้ำหนักโมเลกุลต่ำ เพื่อที่จะศึกษาอิทธิพลของความ ยืดหยุ่ นอย่

ต่อความหนืดของเฟสต่อเนืองให้มีค่าดงที่ทุกการทดลองซึ่งทำได้โดยการปรับอุณหภูมิที่ใช้ในการ ทดลองให้เหมาะสม จากผลการทดลองพบว่าเมื่อความยืดหยุ่นของอนุภาคทรงกลม เพิ่มขึ้นการ เปลี่ยนแปลงรูปร่างสมดุลของอนุภาคทรงกลมโดดเดียวจะลดลง เมื่อค่า ไวเซน- เบอร์กของ อนุภาคทรงกลมต่ำกว่าหรือเท่ากับหนึ่ง ความสัมพันธ์ระหว่าง ค่า แคปปิลลารี ที่จุด วิกฤตของ การแตกตัวของอนุภาคทรงกลม กับ ค่าไวเซนเบอร์กของอนุภาคทรงกลม จะเป็นแแบบ เส้นตรง แต่เมื่อค่าไวเซน เบอร์กของอนุภาคทรงกลมสูงกว่าหนึ่ง ค่า แคปปิลลารี ที่จุดวิกฤต ของการแตก ตัวของอนุภาคทรงกลมมีแนวโน้มเข้าสู่จุดอิมตัวที่ค่า 0.95 ในการทดลองที่ทำกับ พอลิเมอร์ ผสมที่ประกอบด้วยปริมาณเฟสกระจายตัว 10 หรือ 20 เปอร์เซ็นต์นั้นพบว่า ในระบบ พอลิเมอร์

พอลิเมอร์ผสมที่ประกอบควยปริมาณเฟสกระจายตัว 10 หรือ 20 เปอร์เซ็นต์นั้นพบว่า ในระบบ พอลิเมอร์ผสมเดียวกัน ค่า แคปปิลลารี่สมคุลที่คำนวณได้จากขนาดของอนุภาคทรงกลมเฉลี่ยโดย ปริมาตรนั้น น้อยกว่า ค่า แคปปิลลารี ที่งุดวิกฤต ของการแตกตัวของอนุภาคทรงกลมโดคเดี่ยว ค่าแคปปิลลารี่สมดุลที่คำนวณได**้**จากขนาดของอนุภาคทรงกลมเฉลี่ยนี้จะเพิ่มขึ้นเมื่อ ิ คำ first normal stress difference ของเฟสของอนุกาคทรงกลมเพิ่มขึ้น สำหรับระบบพอลิเมอร์ผสม ของพอลิเมอร์น้ำหนักโมเลกุลสูงหลอมเหลวประกอบควย พอลิสไตรีน เป็นเฟสกระจายตัว และ พอลิเอทธิลีนชนิคความหนาแน่นสูง เป็นเฟสต่อเนื่อง โดยจะทำการทดลองในสภาวะที่พอลิเมอร์ จากผลการทคลองพบว่า เมื่อให้การใหลแบบเฉือนสู่ระบบ ทั้งสองชนิดมีความหนืดเท่ากัน อนุภาคทรงกลมของระบบพอลิเมอร์ผสมแบบน้ำหนักโมเลกุลสูงนี้ จะมีการยืดตัวออกในทิศทาง การใหลในช่วงแรก แต่เมื่อเวลาผ่านไป รูปร่างของอนุภาคกระจายตัวจะเปลี่ยนกลับมาเป็นทรง-กลม และ ในที่สุดเมื่อระบบเข้าสู่สมดุล อนุภาคจะยืดตัวออกในทิศทาง vorticity ของการไหล เมื่อทำการทดลองให้ค่าแคปปิลลารีกับระบบพอลิเมอร์ผสมสูงขึ้น พบว่า อนุภาคจะ แบบแฉือบ ยืดตัวออกในทิศทาง vorticity ในอัตราส่วนที่มากขึ้น และเมื่อค่าแคปปิลลารีที่ให้กับระบบสูง เกินกว่างุดวิกฤตของการแตกตัว อนุภาคจะแตกตัวออกเนื่องจากสวนปลายทั้งสองของอนุภาค กระจายตัวถูกแยกออกจากกัน เพราะปลายทั้งสองของอนุภาคอยู่ในตำแหน่งที่ความเร็วของการ พบว่า สำหรับอนุภาคทรงกลมที่มีความ ยืดหยุ่นสูง ๆ นั้น ใหลในระบบแตกต่างกันมาก การเปลี่ยนแปลงรูปร่างในทิศทาง vorticity ภายใต้แรงเฉือนนี้เป็นผลทำให้ค่าแคปปิลลารีที่จุด วิกฤตของการแตกตัวของระบบพอลิเมอร์ผสมแบบนี้สูงขึ้นอย่างมาก โดยสูงกว่าระบบที่ประกอบ ด้วยของใหลแบบ นิวโตเนียน ถึงประมาณ 30 เท่า ในการศึกษาอิทธิพลของความยืดหยุ่นของ ้ส่วนผสมในพอลิเมอร์ผสมของพอลิเมอร์หลอมเหลวน้ำหนักโมเลกุลสูง ที่ประกอบควยปริมาณ เฟสกระจายตัว 20% พบว่า ระบบพอลิเมอร์ผสมที่มีอัตราสวนความหนืดของเฟสกระจายตัวต่อ ความหนืดของเฟสต่อเนื่องเท่ากับ 0.5, 1, และ 2 นั้น ความสัมพันธระหว่างค่าอัตราสวนของค่า first normal stress difference ของ เฟสกระจายตัวต่อ คา first normal stress difference ของเฟสต่อเนื่อง และ ค่าแคปปิลารีสมดุลนั้น เป็นฟังก์ชันยกกำลัง โดยค่าของเลขดัชนีชี้กำลัง อยูระหว่า 1.7 ถึง 1.9

ABSTRACT

4182003063 : POLYMER SCIENCE PROGRAM
Wanchai Lerdwijitjarud: Effect of Droplet-Phase Elasticity on Droplet Behavior and Morphology of Immiscible Blends
Thesis Advisors: Prof. Ronald G. Larson
and Assoc. Prof. Anuvat Sirivat, 132 pp. ISBN 974-13-2464-2
Keywords : immiscible blends/ steady-state deformation/ droplet breakup/

steady-state droplet size/ capillary number/ elasticity/ vorticity stretching/ Weissenberg number

The effect of dispersed-phase elasticity on droplet behavior and morphology of immiscible blends in simple shearing flow is investigated for blends of "Boger" fluids and high-molecular-weight polymer melt blends. For blends of "Boger" fluids consisting of polybutadiene (PBd) "Boger" fluids as droplet phase and poly(dimethyl siloxane) (PDMS) as matrix phase, the effect of dispersed-phase elasticity on steadystate deformation and breakup of isolated droplets in simple shearing flow is investigated systematically for values of the dispersed-phase Weissenberg number (Wi_d) ranging up to around 3, where the Weissenberg number is defined as the ratio of the first normal stress difference to twice the shear stress at the imposed shear rate. The dependence on droplet elasticity of steady-state morphology for 10% or 20%dispersed phase blends is also studied. The polybutadiene droplet phase is an elastic "Boger" fluid prepared by dissolving a high-molecular-weight polybutadiene into low-molecular-weight Newtonian polybutadiene. To isolate the contribution of droplet elasticity, all experiments were carried out on a fixed viscosity ratio of around unity, achieved by adjusting the temperature appropriately for each blend. When the droplet elasticity increases, the steady-state deformation of isolated droplets decreases for a given capillary number. The critical capillary number for breakup (Ca_{crit}) increases linearly with the Weissenberg number of the droplet phase (Wi_d) up to a value of Wi_d of around unity. When Wi_d is greater than unity, Ca_{crit} seems to approach an asymptotic value of 0.95 for high values of Wid. For 10% or 20%-dispersed phase blends, the steady-state capillary number (Ca_{ss}) calculated from

a volume-averaged droplet diameter is less than the Ca_{crit} for isolated droplets for the same blend. Cass increases monotonically with the first normal stress difference of the droplet phase (N_{1d}). For high-molecular-weight polymer melt blends consisting of polystyrene (PS) as a dispersed phases, and high density polyethylene (HDPE) as a matrix phase under the condition of both fluids have the same viscosity, the isolated viscoelastic droplets initially deform in the flow direction after startup of steady shear, but then begin reverting to a spherical shape, and, for the more elastic blend, eventually deform in the vorticity direction. With increasing capillary number, the droplet deforms increasingly along the vorticity direction, and above a critical capillary number Cacrit, breakup occurs when two ends of a drop situated on widely separated streamlines with significantly different velocities are displaced from each other under flow. The transition from alignment in the flow direction for Newtonian or slightly elastic droplets to alignment in the vorticity direction for highly elastic droplets can lead to large increases of the critical capillary number for droplet breakup, up to a factor of thirty greater than for Newtonian liquids. For concentrated high-molecular-weight polymer melt blends containing 20%-dispersed phase, the influence of elasticity of the blend constituent components on the steady-state size and size distribution of dispersed-phase droplets is investigated. The role played by the ratio of drop to matrix elasticity at a fixed viscosity ratio was investigated at which the viscosity ratios are roughly equal to three different values: 0.5, 1, and 2. The correlation between Ca_{ss} and the elasticity contrast, defined as the ratio, $N_{1r} \equiv$ N_{1d}/N_{1m} , of the first normal stress difference of dispersed (N_{1d}) to that of matrix (N_{1m}) phase, is proposed. For the blend systems with viscosity ratio 0.5, 1 and 2, the values of Cass were found to monotonically increase with N1r and followed a power law with scaling exponents varying between 1.7 and 1.9.

ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to his family for their unconditional love, understanding, supports, and for being the best source of inspiration.

The author would like to express his appreciation to his advisors, Assoc. Prof. Anuvat Sirivat from The Petroleum and Petrochemical College, Chulalongkorn University, and Prof. Ronald G. Larson from The University of Michigan, who gave him invaluable knowledge, useful advise, kind and constructive criticism, consistent inspiration and encouragement, and for being a good model through the years he has spent for his PhD study. The appreciation is extended to all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for providing the knowledge and assistances.

The author gratefully acknowledges all of his teachers in his life, who not only gave him knowledge, skills but also sincere help and supports.

He is indebted to Assist. Prof. Michael J. Solomon, Dr. Abdulwahab Almusallam, Ms. Thippaya Cherdhirankorn, Ms.Chatriya Suamsung, Mr. Ong-arj Amornpornvivat, and Dr. Khine Yi Mya for valuable advise, fruitful discussion, and sincere friendship.

Special thanks are due to Dr. Manit Nithitanakul, Dr. Chanchai Thongpin, and Assoc. Prof. Nantaya Yanumet for a useful advise and discussion and, for being his thesis committee.

This work would not be carried out successfully without the fellowship for his Ph.D. study and partial funding of the research work provided by Thailand Research Fund (TRF) in the Royal Golden Jubilee Ph.D. Program, grant no. PHD/00144/2541, and Basic Research Grant, BRG/12/2544.

Finally, the author would like to express his appreciation to Dr. Amnard Sitthatrakul, and Prof. Somchai Osuwan for the opportunity of his PhD study.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	viii
List of Tables	х
List of Figures	xi
Abbreviations	xvi
List of Symbols	xvii

CHAPTER

Ι	INTRODUCTION	1
---	--------------	---

П	INFLUENCE OF WEAK ELASTICITY OF	
	DISPERSED PHASE ON DROPLET BEHAVIOR	
	IN SHEARED POLYBUTADIENE/	
	POLY(DIMETHYL SILOXANE) BLENDS	5
	Synopsis	6
	Introduction	7
	Experimental Methods	11
	Results and Discussion	20
	Conclusions	28
	Acknowledgements	28
	References	29

Ш	INFLUENCE OF DISPERSED-PHASED ELASTICITY	
	ON STEADY-STATE DEFORMATION AND BREAKUP	
	OF DROPLETS IN SIMPLE SHEARING FLOW	
	OF IMMISCIBLE POLYMER BLENDS	47
	Abstract	48
	Introduction	49
	Experimental	52
	Results and Discussion	59
	Conclusions	64
	Acknowledgements	64
	References	65
IV	INFLUENCE OF ELASTICITY ON DISPERSED-PHASE	
	DROPLET SIZE IN IMMISCIBLE POLYMER BLENDS	
	IN SIMPLE SHEARING FLOW	81
	Abstract	82
	Introduction	83
	Experimental	88
	Results and Discussion	92
	Conclusions	96
	Acknowledgements	96
	References	97
V	CONCLUSIONS AND RECOMMENDATIONS	109
	REFERENCES	111
	CURRICULUM VITAE	113

LIST OF TABLES

TABLE		PAGE
	CHAPTER II	
2.1	Molecular weight and specific gravity of blend components	34
2.2	The constituent components, testing temperature,	
	viscosity ratio (η_r), interfacial tension (Γ), stress ratio of	
	dispersed phase (S_{Rd}), stress ratio of matrix phase (S_{Rm}) at	
	a shear rate of 10 s ⁻¹ , effective relaxation time of dispersed	
	phase $(\tau_{eff,d})$, and effective relaxation time of high-molecular	
	weight polymer component of dispersed phase $(\tau_{eff,p,d})$	34
2.3	Parameters for droplet relaxation experiments	35
2.4	The matrix-phase viscosity, the blend viscosities predicted	
	by the FA model, and the measured blend viscosity at	
	various shear rates, as well as the steady-state capillary	
	number (Cass) calculated based on each corresponding	
	viscosity for blend A1	35
	CHAPTER III	
3.1	Properties of materials used	69
3.2	Blend systems studied	69
3.3	The rheological data of blend systems in this studied	
	compared with the data taken from literature	70
	CHAPTER IV	
5.1	Properties of polymers used	98
5.2	The polymer blend systems	99
5.3	D_n , D_v , and D_v/D_n for blend systems A1, B1, C1, and C2	
	in a step-up shear-rate experiment and for blend system A2	
	in both a step-up and step-down shear-rate experiments	100

LIST OF FIGURES

FIGURE

CHAPTER II

2.1	The dependence of viscosity and first normal stress	
	difference on shear rate for pure Ricon PBd, and for Boger	
	solutions of Ricon containing 0.1%, 0.2%, and 0.5%	
	high-MW PBd at 21.0 ^o C. Insert: the dependence of	
	zero-shear viscosity on concentration of high-molecular-	
	weight PBd in PBd Boger fluids	36
2.2	The steady shear viscosity and first normal stress difference	
	of the droplet and matrix phases of blends (a) A1, (b) A2,	
	(c) A3, and (d) A4 at the temperatures at which the matrix	
	and droplet fluid have the same viscosity	37
2.3	The dependence of storage modulus (G') and loss modulus	
	(G") on frequency for all dispersed-phase fluids studied	38
2.4	Droplet orientation angle obtained from rheological	
	measurements after startup of steady shear and the angle	
	predicted from affine deformation	39
2.5	The dependences of the steady-state half-lengths of the	
	three principal axes on applied capillary number of all	
	blends studied. The solid lines were drawn to guide the eye	
	through the data points for the pure PBd and the 0.5%	
	High-MW PBd	40
2.6	The dependence of steady-state deformation parameter on	
	applied capillary number of all blends studied. The dashed	
	and dotted lines indicate the critical capillary number for	
	each fluid system. The solid lines were drawn to guide the	
	eye through the data points for the pure PBd and the 0.5%	
	High-MW PBd	41

2.7	The dependence of critical capillary number (Cacrit) with	
	droplet-phase Weissenberg number (Wi_d) estimated from	
	the G' and G" data at terminal regime	42
2.8	The dependence of steady-state capillary number on	
	shear rate calculated from matrix phase viscosity and	
	volume-averaged diameters for 20% dispersed-phase	
	blends, in prolonged shearing for a strain of 20,000 units	
	after a step-up in shear rate from a previous shear rate	43
2.9	The dependences of the half-lengths of the three principle	
	axes normalized by original droplet radius on time	
	normalized by $\Gamma/\eta_m r_0$ for fluid system A1	44
2.10	The dependences of the half-lengths of the three principle	
	axes normalized by original droplet radius on time	
	normalized by $\Gamma/\eta_m r_0$ at applied Ca of (a) 11 and (b) 24	
	for all blends	45
2.11	The dependences of the half-lengths of the three principal	
	axes on applied capillary number at strains of (a) 3, (b) 6,	
	and (c) 8 for blends A1 (O), B1 (●), A3 (△), B3 (▲),	
	A4 (∇), and B4 ($\mathbf{\nabla}$). The open symbols represent blends	
	with viscosity ratio of unity, while the closed symbols	
	represent blends with viscosity ratio of 0.5	46

СНАРТЕК ІП

The dependence on shear rate of steady-state viscosity 3.1 (open symbols) and of the first normal stress difference (closed symbols) for low-molecular-weight PBd and PBd "Boger" fluids at 18.3 ^oC

PAGE

71

3.2	The dependence of zero-shear viscosity on the weight	
	percentage of high-molecular-weight PBd added to low	
	molecular-weight Pbd. The filled symbols are in the range	
	where the viscosity depends linearly on concentration	72
3.3	The shear-rate dependence of the viscosity of PDMS (O)	
	and of low-molecular-weight PBd or PBd "Boger" fluids	
	(\bullet) , as well as the shear-rate dependence of the first normal	
	stress difference of PDMS (□), and of PBd "Boger" fluids	
	(■) for (a) blends A0, (b) A1, and (c) A2 at temperatures	
	chosen such that the PDMS and Pbd fluids have nearly the	
	same viscosity	73
3.4	The shear-rate dependence of the viscosity of PDMS (O),	
	and of PBd "Boger" fluids (\bullet), and the shear-rate	
	dependence of the first normal stress difference of PDMS	
	(\Box) , and of PBd "Boger" fluid (\blacksquare) for blend A5 at a series	
	of temperatures	74
3.5	The same as Figure 4, except for blend A10	75
3.6	The dependence of the deformation parameter on	
	capillary number for blends (a) A0, (b) A1, and (c) A5	
	for various droplet sizes	76
3.7	The dependence of deformation parameter on	
	capillary number for blends A0, A1, A2, A5, and A10	
	for droplet diameters of (a) $180\mu m \pm 10\%$, (b) $100\mu m \pm 10\%$,	
	(c) $50\mu m \pm 10\%$, and (d) $20\mu m \pm 10\%$	77

PAGE

3.8	The dependence of critical capillary number for droplet	
	breakup (Ca _{crit}) on Weissenberg number of the dispersed	
	phase (Wi_d) (a) linear plot, and (b) semi-log plot. The	
	closed symbols represent the data obtained from the	
	measured N_1 values and the open symbols from	
	extrapolated N_1 values. Data from earlier work	
	(Lerdwijitjarud, et al. 2003) are also included	78
3.9	The shear-rate dependence of steady-state capillary number	
	(Ca _{ss}) for all 10%-dispersed phase blends studied	79
3.10	The dependence of the steady-state capillary number	
	(Cass) on the first normal stress difference of dispersed	
	phase (N_{1d}) for blends A1, A2, A5, and A10	80

CHAPTER IV

4.1	The dependence of (a) viscosity and (b) first normal stress	
	difference ratio on shear rate of high density polyethylenes	
	at various temperatures	101
4.2	The dependence of (a) viscosity and (b) first normal stress	
	difference on shear rate for polystyrenes at various	
	temperatures	102
4.3	The viscosity ratio and the first normal stress difference	
	ratio for all blend systems studied. The horizontal dashed	
	lines and the filled symbols show the ranges of data	
	selected to be sufficiently close to the desired conditions of	
	η_r = 0.5, 1, and 2 for the A, B, and C systems, respectively	103
4.4	The dependence of D_n , D_v , and D_v/D_n on shear strain for	
	blend system A1 at shear rate 30 s ⁻¹ and temperature 220 $^{\circ}C$	104

4.5	Optical micrographs of blend system A1 sheared at 30 s ⁻¹	
	for strain of (a) 500 units, (b) 1,500 units, (c) 2,500 units,	
	and (d) 10,000 units. A bar length shown in each image is	
	8 μm	105
4.6	D_n , D_v , and D_v/D_n as functions of shear rate for a step up of	
	shear rate from 5 s ⁻¹ (filled symbols), a step down of shear	
	rate from 30 s ⁻¹ (open symbols). In many cases, the filled	
	symbols are almost completely covered by the open	
	symbols, showing that results obtained by either increasing	
	or decreasing the shear rate are equivalent	106
4.7	(a) The dependence of the steady-state number-average	
	droplet diameter, D _n , and volume-average droplet diameter,	
	D_{v} , on shear rate for the blend systems A1 and A2.	
	The lines represent power laws with exponents of -0.16,	
	-0.18 for D_n , D_v in blend system A1, and -0.19, -0.22 for	
	D_n , D_v in blend system A2, respectively. (b) The	
	dependence of the steady-state number-average droplet	
	diameter, D_n , and volume-average droplet diameter, D_v , on	
	$\dot{\gamma}$. $\eta_m(\dot{\gamma})/\Gamma$ for the blend systems A1 and A2. The lines	
	represent power laws with exponents of -0.25, -0.26 for D_n ,	
	D_{ν} in blend system A1, and -0.28, -0.31 for D_n,D_{ν} in blend	
	system A2	107
4.8	The dependences of steady-state capillary numbers calculated	
	from D_{ν} on the first normal stress difference ratios for the	
	blend systems A1 (O) and A2 (\Box step down shear rate, \blacksquare	
	step up shear rate) with viscosity ratios $\eta_r \cong 1$, for blend	
	system B1 (\blacklozenge) with $\eta_r \cong 0.5$, and for blend systems C1 (\bigtriangledown)	
	and C2 (\blacktriangle) with $\eta_r \cong 2$. The lines describe power laws with	

PAGE

ABBREVIATION

HDPE	×	high-density polyethylene
PBd	=	polybutadiene
PDMS	=	poly(dimethyl siloxane)
PS	=	polystyrene

LIST OF SYMBOLS

Ca	=	capillary number
D	=	droplet diameter (m)
Nı	=	first normal stress difference (Pa)
r	=	droplet raduis (m)
Т	=	temperature (°C)
Wi	=	Weissenberg number
Γ	=	interfacial tension (mN/m)
α	=	flow-type parameter
η	=	viscosity (Pa.s)
φ	=	volume fraction of dispersed phase
γ	=	shear rate (s ⁻¹)
λ	=	relaxation time (s)

<u>Subscript</u>

0	=	zero-shear rate value, undisturb condition
c, crit	=	critical value
d	=	dispersed phase
i	=	summation index
m	æ	matrix phase
n	Ξ	number average
r	=	ratio
SS	=	steady-state
v	=	volume average