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INFLUENCE OF WEAK ELASTICITY OF DISPERSED PHASE ON 
DROPLET BEHAVIOR IN SHEARED 

POLYBUTADIENE/POLY(DIMETHYL SILOXANE) BLENDS

SYNOPSIS

The contribution of weak droplet-phase elasticity is investigated for blends o f 
polybutadiene in poly(dimethyl siloxane) in a simple shearing flow with droplet- 
phase Weissenberg number, Wid, up to around unity. The elasticity o f the 
polybutadiene dispersed phase is varied by adding various amounts o f high- 
molecular-weight polybutadiene into low-molecular-weight polybutadiene 
Newtonian fluid. To isolate the contribution o f elasticity, the experiments are 
conducted at fixed viscosity ratio by varying the experimental temperature to 
counteract the small effect o f high-molecular-weight polymer on droplet viscosity. 
Droplet deformation and relaxation are measured using an optical flow cell mounted 
on an optical microscope. As the droplet-phase elasticity increases, the steady-state 
shape deformation at fixed capillary number, Ca, decreases and the critical capillary 
number for droplet breakup increases. For a 20%-dispersed phase blend, the steady- 
state capillary number calculated from the volume-averaged droplet diameter 
increases with increasing droplet-phase elasticity, but is smaller than for an isolated 
droplet, suggesting that coalescence has little effect on droplet size in these 
experiments. However in startup of shear flow, the elasticity o f the droplet does not 
affect the droplet shape, either during the startup o f shear flow or during the 
relaxation process after the startup of shear flow for ratios o f Wid/Ca up to 0.033.
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INTRODUCTION

Properties o f immiscible polymer blends depend not only upon the properties 
of their constituent components but strongly on their morphology as well. For 
instance, the impact strength o f polymer blends can be drastically improved when the 
rubbery dispersed phase size is below a critical value [พน (1985)]. The final 
morphology o f polymer blends mainly results from the deformation, relaxation, 
breakup, and coalescence o f the dispersed phase induced by the flow field inside the 
processing equipment used to shape the polymer product. Thus, an improved 
understanding o f the effect o f these processes on blend morphology would obviously 
be valuable for better controlling the final properties o f polymer blends.

Two experimental flow histories have been used to study the behavior o f  
isolated droplets under well-defined flow fields. The first approach is to investigate 
the steady-state shapes o f deformed droplets and the critical conditions required for 
breaking droplets under steady shear flow [Taylor (1932,1934), Grace (1982), 
Elmendrop and Maalcke (1985), Elmendrop (1986), Mighri e t  a l. (1997,1998), 
Guido and Villone (1998), Tsakalos e t  al. (1998)]. The other approach is to use step- 
strain experiments, wherein the effects o f material and flow parameters on the 
transient droplet deformation and shape relaxation are studied [Tsakalos e t  al. 
(1998), Yamane e t  al. (1998), Almusallam e t  a l. (2000), Hayashi e t  a l. (2001a, 
2001b)].

The steady-state deformation and breakup of a Newtonian drop immersed in 
another Newtonian fluid were first studied by Taylor (1932,1934). For steady simple 
shearing flow in the small-deformation limit, Taylor noted that droplet deformation 
is controlled by two dimensionless parameters, the capillary number, Ca, and the 
viscosity ratio, ๆๆ r. Ca is defined as the ratio between the matrix viscous stress, T|my, 
and the interfacial stress, r/r0, where Ÿ, r  and To denote applied shear rate, the 
interfacial tension between dispersed and matrix phase, and the radius o f the 
undeformed spherical droplet, respectively. qr is defined as the ratio ๆ d/ฦra between 
the viscosities o f the dispersed (ๆd) and the matrix (r|ra) phase. In the case o f small 
Ca, the droplet is gradually deformed and reaches a steady-state ellipsoidal shape in
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which the major axis o f the ellipsoid orients at a certain angle, 9, with the flow 
direction. At steady-state for small Ca, Taylor found that the orientation angle, 9, is 
equal to 45° and a deformation parameter, Def, depending on Ca and ๆ 1-:

D e f  น  C a ............ (1)a  + b 16 ฦ r +  16
where a  and b  are, respectively, the lengths o f the major and minor axes o f the 
deformed droplet. Guido and Villone (1998) reported that the steady-state three- 
dimensional shape of a droplet under simple shear flow was well described by an 
ellipsoid having three different principal axes, in which the steady-state length o f the 
minor axis o f the ellipsoid in the vorticity direction was larger than that in the shear- 
gradient direction.

When Ca increases, the droplet deformation increases until Ca reaches a 
critical value, Cacrit, where the droplet cannot preserve a steady-state ellipsoidal 
shape. At Cacrit, the ellipsoidal droplet transforms to a sigmoidal shape in which the 
central part o f the sigmoid stretches and simultaneously becomes thinner with 
applied strain. After a critical strain is reached, the droplet breaks into smaller 
droplets. From experimental studies o f isolated Newtonian droplets sheared in 
Newtonian matrices [Grace (1982), De Bruijn (1989)], it is found that the minimum 
Cacrit is obtained when the viscosity ratio is around unity.

The deformation and relaxation of isolated droplets have also been studied in 
step-strain experiments. In these experiments, the deformation and relaxation 
behavior can be separately monitored. Yamane e t  a l. (1998), and Hyashi e t  al. 
(2001a) studied the shape recovery after application o f large step strains applied to 
droplets in immiscible polymer matrices for blends with viscosity ratio less than one. 
A flat ellipsoidal shape was observed just after imposition o f a moderate step strain 
(y =1-5 units). Subsequently, the droplet relaxes back to a spherical droplet through 
a series o f intermediate shapes, i.e. cylindrical, dumbbell, and ellipsoid o f revolution. 
The evolution is driven by the tendency toward reduced interfacial area. The length 
o f the major axis o f the ellipsoid was observed to be slightly larger than that 
predicted by affine deformation; however, the orientation angle data o f this axis with
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respect to the flow-vorticity plane was in good agreement with that predicted by 
affine deformation. Step-strain experiments for Newtonian blends with viscosity 
ratio around one were also investigated by Almusallam e t  a l. (2000). A 
phenomenological constitutive model, modifying the Doi-Ohta theory [Doi and Ohta 
(1991)], was constructed which predicted transient stresses and ellipsoid shapes in 
terms of the droplet anisotropy tensor. The droplet anisotropy tensor during 
relaxation after step strain was quantitatively described by this model for moderate 
strains (y = 1-5). Droplet behavior under application o f reversing step shear strains 
[Guido e t  al. (2000)] and large double-step shear strains [Hayashi e t  a l. (2001b)] has 
also been recently reported.

For a viscoelastic drop immersed in a viscoelastic matrix such as in 
commercial polymer blends, the elastic properties and shear-thinning of the blend 
components, in addition to their viscous properties, may influence droplet behavior 
during shear flow. Elmendorp and Maalcke (1985) studied the contribution of 
elasticity to the breakup of isolated viscoelastic drops in Newtonian matrices and of 
Newtonian drops in viscoelastic matrices in simple shear flow. They found that the 
more elastic droplets (as measured by the first normal stress difference Ni) were the 
more stable against breakup, while the more elastic matrices led to increasingly 
unstable droplets, all else being equal. Levitt e t  al. (1996) observed drop widening in 
the neutral direction of the shear flow when isolated drops o f polypropylene were 
sheared in a high-elasticity polystyrene matrix. They proposed that the width o f the 
flattened drops was dependent upon the difference in storage modulus between the 
matrix and the droplet phase. Mighri and co-workers investigated the influence of 
elasticity contrast, as measured by the ratio 'kd/'km o f the relaxation time o f the droplet 
phase, Xd = Nid/2r|dÿ2, to that o f matrix phase, Xra =  N im/2r|mÿ2, on isolated droplet 
deformation in an elongational flow [Mighri e t  a l. (1997)] and on isolated droplet 
deformation and breakup in a shear flow [Mighri e t  a l. (1998)]. Here, Nid is the first 
normal stress difference of the droplet phase and Nim is that o f the matrix phase. 
They found that the drop deformation diminished as the drop/matrix relaxation-time 
ratio increased in either the elongational or shear flows. In a shear flow, when Xd/Xm 
< 4 , the value o f Cacrit at which droplet breakup occurs drastically increased with
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increasing Xd/lm', but for XdfKn > 4 , it did not change much further. Although most 
experimental data in the literature suggest that droplet-phase elasticity leads to less 
deformed, more stable, droplets relative to comparable Newtonian droplets, studies 
of droplet behavior when droplet elasticity is the sole manipulated valuable are rare, 
since in most previous work both droplet elasticity and viscosity ratio were varied 
simultaneously.

This paper is, therefore, devoted to the investigation o f the influence of 
droplet elasticity on droplet behavior in a shear flow using blend systems at fixed 
viscosity ratio. Specifically, the steady-state deformed shape, Cacrit, and the shape 
deformation and shape relaxation after startup o f shear flow for an isolated droplet in 
a matrix with the same viscosity as the droplet fluid, but different dispersed-phase 
elasticities (as measured by the first normal stress difference, N i) were measured.
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EXPERIMENTAL METHODS

A. Materials

The materials used in this study were polydimethylsiloxane, PDMS (GE 
VISCASIL 100M donated by General Electric) as the matrix phase and 
polybutadiene, PBd (Ricon 150 donated by Ricon Resin Inc.,CO) as the dispersed 
phase. The properties o f the blend components are listed in Table 2.1. High- 
molecular-weight polybutadiene (MW 1.65 X  105, polydispersity 1.05 purchased 
from Polymer Source Inc., Canada) was also used as a dilute high molecular weight 
polymer component added to the Ricon 150 to make a “Boger” fluid [Boger and 
Binnington (1977)] with significant elasticity but not much shear thinning.

B. Components and Blend Preparation and Characterization

- P r e p a r a t io n  a n d  c h a r a c te r iz a t io n  o f  b le n d  c o m p o n e n ts

PDMS was used as received. Since the Ricon 150 contained some 
volatile components as received, fresh Ricon 150 was vacuum dried at 50°c until the 
weight loss ceased and all volatile components were driven off. The “Boger” 
polybutadiene dispersed phase was prepared by completely dissolving a few tenths o f  
a percent o f high molecular weight polybutadiene into methylene chloride. The 
solution was gently mixed with low-molecular-weight Newtonian polybutadiene, 
Ricon 150, at room temperature for at least 5 days to obtain a homogenous solution. 
The mixture was subsequently dried in a vacuum oven at 50 °c  to remove the 
methylene chloride carrier solvent and any other volatile substances until no further 
weight change was observed. The steady-state viscosity and first normal stress 
difference o f each blend component was measured by a cone-and-plate rheometer 
(Rheometrics Scientific, model ARES, NJ) (25-mm plate diameter with cone angle 
0.1 rad.). Figure 2.1 shows the viscosities and first normal stress differences o f all 
PBd solutions at 21.0 °c. Pure PBd shows Newtonian behavior, whereas weak shear 
thinning and weak elasticity, the latter indicated by a small value o f the first normal
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stress difference Ni, were detected in the PDMS at high shear rates (see Fig. 2.2). 
The dependence o f the zero-shear viscosity, 1ๅ0, on the concentration of high- 
molecular-weight PBd in the PBd Boger fluids is also given in Figure 2.1. Due to 
the influence o f the high-molecular-weight polybutadiene, both T|o and Ni o f the 
solution increase with concentration of high-molecular-weight polymer. For the 
solutions containing 0.1% and 0.2% high-molecular-weight polymer, the increment 
in the zero-shear viscosity over that o f pure Ricon 150 is approximately proportional 
to the concentration of high-molecular-weight polymer, indicating that these 
solutions are dilute in high-molecular-weight PBd. An upward curvature o f Tjo with 
increasing percentage of high-molecular-weight PBd, particularly evident for the
0.5% solution, can be attributed to the onset o f the entanglement effects. Since the 
temperature-dependence o f the viscosities o f PDMS and PBd are different, a 
condition o f nearly equal viscosities of the PBd fluids with the PDMS could be 
established for each blend by adjusting the temperature. The constituent 
components, the temperature at the equi-viscosity condition, and the stress ratios (Sri 
= Nij/ (าๅiÿ)) at a shear rate o f 10 ร'1 for the matrix and dispersed fluids for all blends 
studied are tabulated in Table 2.2. Figure 2.2 shows the steady shear viscosity and 
first normal stress difference of each fluid pair at the temperature in which both 
matrix and droplet fluid have the same viscosity. Because o f the modest shear 
thinning o f the 0.5% PBd Boger fluid, perfect matching o f the viscosities at this fluid 
could only achieved at a single shear rate.

As shown in Figure 2 . 2 ,  the viscosity ratio o f all fluid systems studied 
are comparable ( r | r  ~ 1), but the difference between Ni of the droplet phase and that 
of the matrix phase increases from fluid system A1 to A4. The storage modulus (G ) 
and loss modulus (G”) data in the linear viscoelastic regime of all PBd solutions are 
shown in Figure 2 . 3 .  The effective relaxation times (Teff,d = 'ProÂ T'Io), where 'Pro = 
2r|02G7[G”]2) of all PBd solutions were calculated using G’ and G” data from the 
terminal regime. The relaxation time of the high-MW PBd contribution (xefRp.d = 
' P i p io / ( 2 r | p , o ) ,  where 'P i p ^ o  and ๆ p ,0 are the contribution of high-MW PBd to the zero- 
shear first normal stress coefficient,Tro , and zero-shear viscosity, ๆ 0 , o f PBd 
solutions respectively) of all PBd solutions are also calculated. Both TefRd and Teff,p,d
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P r e p a r a t io n  o f  c o n c e n tr a te d  b le n d

All concentrated blends studied contain 80% by weight PDMS matrix- 
phase fluid and 20% by weight dispersed PBd. Constituent component fluids were 
weighed and then mixed with a spatula for around 20 min. until white-creamy 
samples were obtained. The air bubbles generated during the mixing step were 
removed by leaving the blend at rest at ambient conditions for four hours before 
further use.

are listed in Table 2.2. The first normal stress difference of dispersed phase
estimated from G’ and G” in the terminal regime are presented in Figure 2.2.

c. Optical Microscopy o f an Isolated Droplet

A flow cell (Linkam c s s  450, Linkam Scientific Instruments Ltd., UK) with 
parallel disk geometry attached to an optical microscope (Olympus BX50, Olympus 
America Inc., NY) was used to study the deformation and relaxation of an isolated 
droplet o f PBd under shear. Images were captured in the flow-vorticity plane by 
using a CCD camera (Cohu 4910, Cohu Inc., CA). NIH-image software (บ.ร. 
National Institutes o f Health, available at http://rsb.info.nih.gov/nih-image) was used 
to process the images.

The matrix phase was loaded into the flow cell and various single droplets 
were subsequently immersed into PDMS by using a micro syringe. The upper plate 
o f the flow cell was gradually lowered to the desired gap setting. To maintain the 
equi-viscosity condition throughout the experimental run, the temperature o f the flow 
cell was controlled by a water bath. If the droplet is too close to the wall, the wall 
exacerbates the deformation of the droplet and also causes the droplet to migrate 
away from the wall [Kennedy e t  a l. (1994); Uijttewall and Nijhof (1995)]. To 
minimize this effect, the droplet-wall spacing, i.e. h/rG, where h is the distance o f the 
droplet’s center from the closest wall and r0 is the original droplet radius, should be

http://rsb.info.nih.gov/nih-image
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greater than five. In all our experimental results presented, h/r0 was kept above 
seven by choosing a droplet located at the center o f the gap.

To generate the shearing flow, the lower disk o f the flow cell was rotated by 
using a stepper motor, with the upper disk held fixed. The droplet o f interest thus 
usually moves out o f the viewing window as the lower disk is rotated. To bring the 
droplet into the viewing frame after performing a step strain, the chosen droplet was 
first driven out o f viewing window by applying a relatively small shear rate until the 
desired magnitude o f the subsequent step strain was imposed. Then, the droplet was 
allowed to completely relax into a spherical shape under quiescent conditions. The 
same strain in the opposite direction was then applied at the desired high shear rate, 
thus deforming the droplet and simultaneously bringing it back into view.

Since the images o f the deformed droplet were captured only in the plane 
perpendicular to the shear-gradient direction, the lengths o f all three principal axes o f  
the ellipsoidal droplet could not be determined directly. However, the lengths o f all 
three principal axes can be determined from images in the shear-vorticity plane by 
using the orientation angle (0), which is the angle o f the major axis o f the deformed 
droplet in the flow-flow gradient plane. As verified by previous researchers 
[Yamane e t  a l. (1998); Okamoto e t  al. (1999) and Almusallam e t  a l. (2000)], the 
orientation angle predicted by an affine-deformation model is close to the 
experimental value for step-strain or start-up flow when Ca is at least three times 
higher than Cacrit and if the shearing is o f sufficient duration. In the case o f Ca < 
Cacrit, the orientation angle predicted by affine deformation is not suitable to obtain 
the lengths o f the principal axes o f the droplet. Chaffey and Brenner (1967) derived 
the following relation between the orientation angle at steady state and the applied 
capillary number:

ร  = £ - (1 9 " C » 6 X ^ + 3 ) c ,a  ................... (2)
4 80 (l +  ฦ r )

This relation was verified by Guido and Villone (1998) by comparing it with the 
orientation angles obtained by microscopy for polydimethylsiloxane droplets sheared 
in polyisobutylene at ใๅ1.=  1.4 and 2. Good agreement between the experimental data 
and equation (2) was obtained. Although the above relationship o f Chaffey and
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Brenner was derived for Newtonian liquids, our droplets are only weakly elastic, and 
we will therefore use the orientation angles obtained from Chaffey and Brenner 
relation to obtain the droplet aspect ratios in our experiments. We note that the 
elastic effects become larger at increased capillary number, but the droplet also 
becomes both more extended and more oriented under these conditions, and the 
deformed droplet aspect ratio therefore becomes less sensitive to small variations in 
the orientation angle. Hence, our results are not likely to be greatly affected by 
deviations in the orientation angle from that predicted by Chaffey and Brenner.

Since the orientation angle predicted by affine deformation and Chaffey and 
Brenner relation are derived for Newtonian system, an attempt to infer the orientation 
angle o f an isolated droplet from rheological measurements on a 20%-dispersed 
phase blend was made with our system with the highest degree o f elasticity (blend 
system A4). The average droplet orientation during flow can be determined by using 
the ratio o f the interface contribution of first normal stress difference to that o f shear 
stress (Ni 1e x c e s s / a i2,excess -  2cot(29)) [Jansseune et. a l. (2000), see also Almusallam e l  
al. (2000)]. The 20%-dispersed phase blend o f blend system A4 was subjected to a 
steady-state shear flow at shear rate o f 1.0 ร'1 for a stain o f 20,000 to attain a steady- 
state droplet size. To verify the angle obtained from the affine prediction, a startup 
of shear flow (imposed Ca > 3 Cacrit) was then applied to the blend sample. The 
excess stresses due to the interfacial contribution during the relaxation process were 
used to determine the orientation angle. The results are in good agreement with 
affine prediction as shown in Figure 2.4. For Ca < Cacrit, the steady-state shear stress 
and first normal stress difference at a shear rate o f 0.7 ร'1 for blend system A4 after it 
reached a steady-state morphology were used to determined the droplet orientation 
angle. The angle deduced from this experiment is 20 degrees, which is close to the 
value of 24 degrees predicted from the Chaffey and Brenner relation. Therefore, the 
droplet orientation angles predicted assuming affine deformation for the startup 
experiments at Ca > 3Cacrit and using Chaffey and Brenner relation for steady-state 
shear at Ca < Cacrit are reasonably accurate for all blend systems in our experiment.

By using 9 predicted either from affine deformation or from Chaffey and 
Brenner relation coupled with the condition that the droplet volume remains constant
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during deformation, the lengths o f all three principal axes were determined. The 
method by which the lengths o f the three axes can be extracted from the angle 9 and 
the image in the flow-vorticity plane is given in Almusallam e t  a l. (2000).

D. Optical Microscopy o f Concentrated Blend

The bubble-free 20% dispersed-phase sample was loaded into the flow cell. 
The gap between the parallel disks was gradually reduced to 500 pm. The steady- 
state morphology o f the blend samples was obtained by performing a steady shearing 
flow at the desired shear rate for 20,000 strain units. The blend images were 
obtained using NIH-Image software and then transferred to a Photoshop program 
(Adobe Systems, Inc) to outline the droplets. The images were brought back to the 
NIH-Image software to measure the droplet diameter o f each droplet. From the 
droplet size distributions, the volume-average droplet diameter, Dv, was calculated 
by using the following equation:

|>, X ' 1" ’ ..........................(3)

where <l>i is the volume fraction o f the droplets with diameter Di relative to the total 
volume o f the droplets. Typically, data from 400-600 droplets were used to calculate
Dv.

E. Experiments on an Isolated Droplet

D e te r m in a tio n  o f  in te r fa c ia l  te n s io n  f r o m  th e  l in e a r  sh a p e  
r e la x a tio n  o f  a  s in g le  d r o p le t

The evolution of isolated droplet shape after a step strain was 
recorded. Semi-logarithmic plots of the droplet deformation parameter, Def, 
(equ.(l)) versus relaxation time were constructed. The characteristic relaxation time 
for a single droplet, T, can be derived from the slope, -1/x, o f a straight line fitted to 
the data in the linear relaxation regime [Luciani e t  a l. (1997), Mo e t  a l. (2000), Xing
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e t  a l. (2000)]. The interfacial tension, r , is then calculated from the Palierne model 
[Palierne (1990) and Graebling e t  a l. (1993); see aïs0  Taylor (1932)] in the limit of 
zero volume fraction o f dispersed phase:

T =  ( 3  +  2 ๆ 0 ( 1 6  +  1 9 ๆ 1- ) 1'0 ๆ ท 1.0 .......................................  ( 4 )
t =  40(i + n r) r

where T|r = ๆ d,o/ !ๆท,0 is the ratio o f zero-shear viscosities o f dispersed to matrix 
phase, and r0 is the radius of the spherical drop. This relation can be used to 
determine the interfacial tension o f viscoelastic materials if the relaxation o f the 
continuum elastic stress o f the blend constituents is relatively fast compared with the 
droplet shape relaxation and the droplet retraction rate is sufficiently slow to ensure 
that the materials behave as Newtonian during the droplet shape relaxation [Luciani 
e t  a l. (1997), Xing e t  a l. (2000)]. The single-droplet relaxation data for each fluid 
system were used to determine the interfacial tension. The average values o f the 
interfacial tension for all blends studied are tabulated in Table 2.2.

- D r o p le t  d e fo r m a tio n  a n d  r e la x a tio n  a f te r  a  s ta r tu p  o f  s h e a r  f l o w

Droplet shapes after a startup of shear flow were studied. Strains o f 3, 
6 and 8 were chosen for these experiments. At each strain, an isolated droplet was 
selected and various shear rates were imposed corresponding to different values o f 
the capillary number for that droplet. To ensure that the droplet dimensions after 
cessation o f flow were captured immediately, fast sequential images were taken at a 
rate of 30 frames/s.

Shape recovery o f an isolated droplet after startup of shear flow was 
also investigated. To minimize the influence o f variations in the droplet size, all 
droplets chosen for study were o f comparable initial radius. Strains o f 2.2, 3.0, 4.1 
and 5.0 were applied, with the shear rate chosen to be high enough that minimal 
relaxation o f droplet shape occurred during the startup o f shear flow. Since the 
initial diameter o f the droplet, the matrix viscosity, and the interfacial tension of each 
fluid system are slightly different, these applied shear rates were adjusted slightly
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from system to system to maintain a constant value o f Ca for each applied strain. 
Table 2.3 lists the parameters used in the droplet-relaxation experiments. To ensure 
that all shape relaxation zones were recorded, the image capture was begun before 
the startup o f shear flow was applied. The image capture continued first at rates o f  
15 frames/s and then at rates o f 6 frames/s until the droplet completely returned to a 
spherical shape. The higher rate o f capture was used to resolve the early stage o f 
shape recovery, whereas the slower one was used to record images during the 
remainder o f the relaxation process.

S te a d y - s ta te  d r o p le t  d e fo r m a tio n  a n d  d e te r m in a tio n  o f  th e c r i t ic a l  
c a p i l la r y  n u m b e r

Steady-state shapes for isolated droplets below the critical capillary 
number for droplet breakup were also investigated. The strain required to reach a 
steady-state droplet shape was first determined. The applied shear rate was then 
gradually increased at a rate slow compared to the inverse o f the time required for the 
droplet shape to come to steady-state at any fixed shear rate. The slow increase in 
shear rate was continued until the critical shear rate required to break the droplet was 
reached. For each blend, this critical shear rate was recorded.

F. Experiments on Concentrated Blends

S te a d y - s ta te  d r o p le t  s iz e  a n d  s iz e  d is tr ib u t io n

Steady shear flow at a rate o f 0.1 ร'1 was applied to each 20% 
dispersed-phase blend for 10 hr at the equi-viscosity condition. At this low shear 
rate, coalescence occurred, resulting in a coarse morphology. The shear rate was 
then stepped up to 0.3 ร'1 and continued to a stain o f 20,000 units to achieve a steady- 
state morphology. Subsequently, the flow was stopped to allow the deformed 
droplets to relax. Due to the high viscosity o f matrix phase and low testing 
temperature o f our system studies, the diffusion coefficient due to the Brownian 
motion is quite low. For a droplet with diameter o f 5 pm at 21 °c, the value o f



diffusion coefficient due to the Brownian motion is around 10'6 |_rm2/ร. The time 
waiting for droplet relaxation is less than 30 ร., thus the coalescence effect during 
this time period should be negligible. The droplet size distribution was then 
measured. The shear rate was increased in small steps, i.e. to 0.5, 0.7, 1.0, and 2.0 ร'1, 
from the previous steady-state shear rate. For each shear rate, a strain o f 20,000 was 
allowed for attain a steady-state morphology.
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RESULTS AND DISCUSSION

A. Steady-State

S te a d y - s ta te  d e fo r m a tio n  o f  a n  i s o la te d  d r o p le t  (C a  <  C a Crit) a n d  
th e  c r i t ic a l  c a p i l la r y  n u m b e r  (C a Crit)

After a small shear rate is imposed, the droplet moves and deforms 
simultaneously until after sufficient straining, a steady-state deformed droplet shape 
is reached. The strain required to attain a steady-state shape increases as the imposed 
shear rate increases. For all shear rates used for all blends studied, the steady-state 
shape was obtained within a strain o f 30 units. Thus, a strain o f 30 was applied 
before capturing the droplet images.

We approximated the steady-state deformed shape o f the droplet by an 
ellipsoid having three different principal axes a, b, and c , in which the steady-state 
length o f the minor axis o f the ellipsoid in the vorticity direction (c axis) was larger 
than that in the shear-gradient direction ( b axis). The deviation o f droplet projection 
taken from the droplet image from the equivalent ellipse was quantitatively verified 
by Guido and Villone (1998) for isolated Newtonian polydimethylsiloxane droplet 
sheared in Newtonian polyisobutylene matrix with viscosity ratio of 1.4. The 
deviation was essentially zero up to Ca around 0.3 and quite small from Ca 0.3 to 
0.4. The deviation was really important only when Ca approached the breakup point. 
Since our droplets are only weakly elastic, an ellipsoid having three different 
principal aces is reasonably used to represent a steady-state deformed droplet shape 
in our experiments. Figure 2.5 depicts the half-lengths o f the three principal axes at 
steady state deformation as functions o f imposed capillary number. Figure 2.6 shows 
the dependence o f deformation parameter on applied capillary number for all fluid 
systems studied at a viscosity ratio = 1 . At small capillary number, all droplets had 
similar deformation, while, at higher capillary number, the more elastic droplets 
deformed less. This result agrees with Mighri e t  a l. (1998); however, our 
experiments with Boger fluid blends at the viscosity ratio o f unity unambiguously 
identify the observed effect as due to the effect o f droplet elasticity, rather than
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viscosity ratio. Mighri e t  a l. (1998) also found that, when the Newtonian droplet was 
sheared in a Newtonian matrix (r|r = 0.50), at low shear rate the shape o f steady-state 
deformed droplet was spheroidal with highly curved ends and changed to an 
elongated cylinder with highly curved ends at shear rates approaching critical value 
for breakup. In contrast, when the elastic drop was sheared in the elastic matrix (ๆr = 
0.28, XJXm =  0.07), a spheroidal shape with slightly shaper edges was obtained at 
low shear rates and a cylindrical shape with highly pointed ends was obtained at high 
shear rates. Unlike Mighri’ร results, no deformed droplet with pointed end was 
observed in our steady-state deformed viscoelastic droplet images. The difference 
may be caused by the following reasons; i) although the matrix phase, PDMS, used 
in our experiments has some elasticity, the elasticity is relatively smaller comparing 
with that used in Mighri’ร experiment, ii) the viscosity ratios o f all blend systems 
studied in our experiments are relatively fixed (ใๅr ~ 1), whereas in Mighri’s 
experiment the viscosity ratios were varied, i.e. 0.50 for the Newtonian system and
0. 28 for the elastic system.

The critical capillary number obtained from our experiments with 
Newtonian blend constituents was 0.47. This result is comparable to 0.5 and 0.46 
which are the values predicted by Taylor's theory [Taylor (1932, 1934)] and De 
Bruijn's semiempirical relation [De Bruijn, (1989)], respectively. As shown in 
Figure 2.5, the critical capillary number increases with the elasticity o f the droplet,
1. e. Cacrit = 0.52 for blend A2, Cacrit = 0.58 for blend A3, and Cacrit = 0.62 for blend 
A4. These results suggest that the elasticity o f the dispersed phase resists the 
deformation and breakup o f the droplet. This result agrees qualitatively with the 
result reported by Mighri e t  a l. (1998), who found that Cacrit increases with 
increasing the elasticity ratio (k = Xd/Xm), which was defined as the ratio o f Maxwell 
relaxation time o f the droplet phase, Xd =  Nid/2ridV2, to that o f the matrix phase, Xm =  
N im/2r|mY2. In the definition o f Mighri e t a l ,  the elasticity ratio is a combination of 
both the viscosity ratio and the ratio o f first normal stress differences. However, the 
viscosity ratios o f our blend systems are all near unity. Thus, in our experiments, the 
increase o f Cacrit for the non-Newtonain components can be attributed to droplet 
elasticity alone.
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The correlation between Cacrit and droplet-phase Weissenberg number 
(พ id = YcTeff.d) is shown in Figure 2.7. The Cacrit increases monotonically with 
increasing Wid. Interestingly, the linear relation between Cacrit and พ id is established 
for the data points o f the blend systems A l, A2, and A3, whereas the deviation from 
linear relation occurs for blend system A4. This result seems to correlate with the 
fact that blend systems A2 and A3 are dilute solutions o f high-MW PBd in 
Newtonian PBd base fluid (blend system A l), while blend system A5 is beyond the 
dilute regime (see Figure 2.1). From the linear relation o f the first three data of 
Figure 2.7, an extrapolation to the value o f Wid of zero gives Cacrit o f 0.45, which 
nearly recovers Grace’s result (Cacrit = 0.46) for the a Newtonian blend system with 
viscosity ratio unity.

S te a d y - s ta te  d r o p le t  s iz e  o f  c o n c e n tr a te d  b le n d s

For a 20% dispersed-phase blend sheared at a given shear rate for a 
prolonged period after a step-up from a previous shearing at a rate o f 0.1 ร'1, a 
dynamic equilibrium between breakup and coalescence is established resulting in 
steady-state morphology. From the steady-state morphology, the volume-averaged 
diameters (Dv) o f each system were determined. Figure 2.8 displays the steady-state 
capillary number (Cass) calculated from steady-state volume-averaged diameter as a 
function of applied shear rate for blends A l, A3, and A4. When the elasticity o f the 
droplet phase increases, Cass increases for all applied shear rates studied. This result 
is consistent with previous reports [Elmendorp and Maalcke (1985), Mighri e t  al. 
(1998)], but the contribution o f elasticity effect is more unambiguously identified in 
our experiment, since the viscosity ratio is held fixed in our experiments.

Comparing Figures 2.6 and 2.8, it is interesting to note that the steady- 
state capillary number o f a 20%-dispersed phase blend is smaller than the critical 
capillary number for an isolated droplet for the same pair o f fluids. Several reasons 
can be used to explain this observation. The viscosity o f an emulsion or an 
immiscible blend lies above the viscosity predicted by a linear mixing rule in the 
viscosities o f the constituent components [Taylor (1932), Frankel and Acrivos
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(1970), Choi and Schowalter (1975)], because o f the contribution of the interfacial 
tension to the emulsion viscosity. Therefore, in a concentrated system, a higher 
viscous stress can be expected to act on the droplet than in the dilute regime at the 
same shear rate, resulting in smaller droplets and therefore smaller Cass. This 
phenomenon was also observed by Jansen e t  a l. for Newtonian blend systems 
[Jansen e t  a l. (2001)]. They found that the critical capillary number for breakup of a 
70% dispersed-phase emulsion is lower than that o f isolated droplet by more than an 
order of magnitude. They proposed the mean-field average model, which uses the 
emulsion viscosity instead of matrix viscosity, to predict the droplet breakup for an 
emulsion or concentrated blend.

Here, we choose the Frankel-Acrivos (FA) Model [Frankel and 
Acrivos (1970)] to predict the viscosity o f our blends. Grizzuti e t  a l. found good 
quantitative agreement between this model and their experimental data [Grizzuti et 
al. (2000)]. The Frankel-Acrivos model is

1 + A2 V m c
r  ๆ m ^ 2 ‘ 2 1 + 5/7, + 2 19 ๆ  r +16

2 ^ + 2 * 2 ( ^ + ^ + 3 ) (

where
A (2^+3X1917+16) 

4 0 (77, + 1)
(5)

Based on the emulsion viscosity predicted from FA model, the Cass 
was recalculated. The detail o f the calculated values for blend A1 is also listed in the 
Table 2.4. A measured value o f the blend viscosity is available only for blend 
system A l, and it is a little higher than predicted by the FA model. Thus, the Cass 
calculated based on these measured values approaches, but remains less than, Cacrit 
for an isolated droplet, as shown in the Table 2.4.

Another possible reason that Cass is less than Cacrit for an isolated 
droplet is that the flow field surrounding a droplet in a concentrated blend is 
somewhat more irregular than for a simple shear flow, and an upward fluctuation in 
velocity gradient could break up droplets to smaller size than would be obtained in a 
locally steady flow. In addition to the higher viscous stress and the fluctuating flow
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field, yet another possible cause for the difference between Cass o f a concentrated 
blend and Cacrit o f an isolated droplet is the existence o f a “dead zone” [Janssen 
(1993), Minale e t  a l. (1997)], i.e. a range of shear rates for which droplets o f a 
certain size range neither breakup nor coalesce. Since the initial morphology was 
prepared by shearing at 0.1 ร'1, the initial droplet diameters are quite large. When 
shear rate is rapidly stepped up and the applied Ca is larger than about two times 
Cacrit for droplet breakup, the droplets could be stretched into long cylinders and 
subsequently break into many smaller droplets due to Rayleigh instabilities 
[Elmendorp (1986), Janssen (1993), Tsakalos e t  a l. (1998)]. Tsakalos e t  a l. (1998) 
showed that the droplet diameter resulting from thread breakup mechanism is 
approximately one half the critical droplet diameter as predicted by Taylor for their 
blends. If the resulting droplets fall into the “dead zone”, then the sub-critical 
droplet sizes formed by this break up will not coalesce into larger droplets. 
Therefore, Cass for 20%-dispersed phase blends calculated from the volume-averaged 
droplet diameter could be lower than Cacrit o f isolated droplets.

It is also puzzling that the steady-state capillary number depends 
weakly on shear rate, even for nearly Newtonian components. In principle, 
dimensional analysis implies that this steady-state capillary number should be 
independent o f shear rate [Doi and Ohta (1991)], unless another variable enters the 
problem. Possible candidates for this “extra variable” include the droplet size during 
the pre-shearing period where the shear rate is 0.1 ร'1, some effect o f the very weak 
elasticity o f the PDMS matrix phase, or perhaps the small but finite critical thickness 
of the lubricating layer between droplets at which coalescence occurs.

It is interesting to note that for highly elastic, shear-thinning, melts 
sheared in commercial mixers, it has been observed that the droplet size of 
concentrated blends is significantly higher than for isolated droplets, and increases 
with increasing volume fraction of droplet phase [Sundararaj and Macosko (1995)], a 
finding that has been attributed to the effects o f coalescence. Our results, obtained 
under well-controlled conditions o f steady shearing with fixed viscosity ratio and 
minimal shear thinning, show the opposite, i.e., smaller droplets in the blends than 
for isolated droplets. This seems to imply that the larger droplet size obtained in 
these earlier experiments was not produced by coalescence alone, but was also
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influenced by the viscosity ratio, high elasticity, shear thinning, or non-idealities in 
the flow produced by commercial blenders. The different result we have obtained 
reinforces the importance o f performing well-controlled experiments, if one wishes 
to sort out the competing effects of the many factors that control blend morphology.

B. Startup of Shear Flow with Isolated Droplets 

D r o p le t  r e la x a tio n

A flat ellipsoidal shape is initially produced right after an application 
of startup o f shear flow with width in the “c ” or vorticity direction greater than the 
thickness o f the droplet in the “b ” or shear gradient direction. The droplet shape 
during relaxation also depends on the imposed strain. For moderate strains (2 or 3), 
at the early stage o f droplet recovery, the width o f the droplet first decreases until 
both minor axes are comparable in length, whereas the major axis (a axis) is 
relatively constant, so that the droplet shape becomes cylindrical. Subsequently, 
both b and c  axes continually increase in length, while the a  axis simultaneously 
shrinks. The rod-like shape thus transforms into an ellipsoid o f revolution. At the 
final stage o f relaxation, the ellipsoid o f revolution gradually relaxes back to the 
original spherical shape. For a higher strain (4 or 5), a dumbbell shape appears at an 
intermediate stage in time between the rod and the ellipsoid o f revolution. These 
results are similar to those reported earlier [Yamane e t  a l. (1998) and Almusallam e t  
al. (2000)]. The three principal axes, normalized by the original droplet radius (a/ro, 
b/r0, and c/r0), are plotted as functions of time normalized by r/(r|oro) for fluid system 
A1 at various strains in Figure 2.9.

The same experimental procedure was applied to blends A2, A3, and 
A4. At the same Ca and y, the shape relaxations o f the elastic droplets (A2, A3, and 
A4) are almost indistinguishable from those o f the Newtonian droplet, as shown in 
Figure 2.10. Unlike the steady-state deformation experiment, there is no effect of 
dispersed-phase elasticity on the shape relaxation. There are several possible 
explanations for this. The first possible reason is that all dispersed-phase fluids
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investigated have only a Newtonian response during the relaxation process, since the 
characteristic shear rate o f the flow generated during the droplet relaxation is 
relatively low in this period. The second reason is that the time scale for relaxation 
of droplet fluid elasticity is very fast compared to the time scale o f shape recovery 
driven by the interfacial tension, and thus the elasticity of the dispersed phase does 
not affect the droplet-shape relaxation.

D r o p le t  d e fo r m a tio n

As noted earlier, a flat ellipsoidal droplet shape was obtained 
immediately after a startup of shear flow was applied. Figure 2.11 shows the 
measured lengths o f principal axes taken from droplet images immediately after 
stopping the flow. The applied strain was increased from 3 units (Figure 2.1 la), to 6 
units (Figure 2.1 lb), and to 8 units (Figure 2.1 lc). The greater the applied strain, the 
more distorted is the droplet shape. For the same imposed strain, the extent o f 
deformation increases with applied capillary number and tends to reach a constant 
value at high capillary number. As previously reported [Levitt e t  a l. (1996)], the 
drop-widening phenomenon, i.e. that the width o f the deformed droplet (c axis) is 
greater than the original value, was also observed in our experiments for the blends 
(B l, B3, and B4) in which the viscosity ratio is equal 0.5. The widening 
phenomenon in Figure 2.11 is evidenced by a ratio c/ro exceeding unity, which is 
only achieved at high Ca for the closed symbols, which correspond to a viscosity 
ratio of 0.5. It is interesting to observe that for fixed viscosity ratio, the curves for all 
elastic droplets cannot be discerned from those o f Newtonian droplets. Thus the 
viscosity ratio affects the shape o f the deformed droplet, but the elasticity does not, at 
least for the range o f elasticities and strains considered here. Two possible reasons 
can be involved to explain this phenomenon. One is that the viscous force exerted on 
the droplet is very high, since we impose a high Ca in these experiments, and the 
effect o f elasticity o f the dispersed phase could be swamped by the higher viscous 
forces. Note that since both the capillary number, Ca, and dispersed-phases 
Weissenberg number, Wid, are proportional to shear rate, the ratio o f the two, 
Wid/Ca, is constant for all blends, and its value is small, Wid/Ca = 0.033, even for the
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most elastic droplet fluid used here. Another possible reason for the absence o f an 
elastic effect in the startup experiments (despite its influence on steady-state droplet 
size) is that the elastic response o f viscoselastic materials after startup of shearing 
flow is normally slow compared to the viscous response. บทlike the steady-state 
experiments, the strains used in these step-strain experiments are modest, i.e. 3, 6, 
and 8. Thus, the elasticity does not have time to attain its maximum effect. 
Consequently, for the testing conditions studied here, only the applied capillary 
number and the viscosity ratio affect the shape o f the deformed droplet after a step 
strain.
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CONCLUSIONS

The contribution of weak elasticity o f the droplet-phase on droplet behavior 
after steady-state and startup o f shear flow has been investigated for isolated droplets 
o f polybutadiene “Boger fluid” in a Newtonian poly(dimethyl siloxane) matrix and 
for 20% blends o f polybutadiene “Boger fluid” in poly(dimethyl siloxane) under 
conditions o f equal viscosities o f droplet and matrix fluids. At the same capillary 
number, the steady-state shape deformation for elastic droplets is less than for 
Newtonian droplets. The droplet fluid with the higher degree o f droplet elasticity, as 
measured by the higher value o f Ni at high shear rates, deforms less. 
Correspondingly, the critical capillary number for droplet breakup increases with 
increasing elasticity o f the droplet phase. The steady-state capillary number 
calculated from the volume-averaged droplet diameter o f 20%-dispersed phase 
blends also increases when the droplet elasticity increases. However, the droplet size 
at steady state in the 20% blend is smaller than for an isolated droplet o f the same 
dispersed phase and same matrix under identical shearing conditions. This result 
suggests that local increases in shear stress present in concentrated blends are more 
important than coalescence in influencing steady-state droplet size. Although weak 
elasticity o f the droplet phase affects the steady-state droplet deformation, in startup 
o f shear flow, the elasticity o f the droplet does not affect the droplet shape, either 
during the startup of shear flow or during the relaxation process after the startup of 
shear flow.
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TABLES

TABLE 2.1. Molecular weight and specific gravity o f blend components

Component Mn Specific gravity
(g/mol) At 25°c

PDMS 139 000 0.97
Riconl50 3900 0.89

(polybutadiene)

Table 2.2. The constituent components, testing temperature, viscosity ratio (ๆr), 
interfacial tension (T), stress ratio o f dispersed phase (SRd), stress ratio o f matrix 
phase (Sr™) at a shear rate o f 10 ร'1, effective relaxation time o f dispersed phase 
(teff.d), and effective relaxation time of high-molecular weight polymer component of 
dispersed phase (Teff,p,d).

Blend Constituent Components 
(Matrix Phase : Dispersed Phase)

Testing
Temp.

(°C)

b r r
(mN/m)

Srhi
at

10 S'1

SRd
At

10 ร-1

teff.d
(ร)

êff,p,d
(ร)

A1 PDMS : Pure Ricon 21.0 1 3.17 0.12 0 0.002 -
A2 PDMS : 0.1% high MW PBd solution 21.5 1 3.20 0.13 0.15 0.02 0.51
A3 PDMS : 0.2% high MW PBd solution 21.8 1 3.23 0.12 0.29 0.04 0.48
A4 PDMS : 0.5% high MW PBd solution 23.5 1 2.92 0.10 0.66 0.12 0.41
B1 PDMS : Pure PBd 29.5 0.5 2.95 0.08 0
B3 PDMS : 0.2% high MW PBd solution 30.5 0.5 2.81 0.07 0.21
B4 PDMS : 0.5% high MW PBd solution 33.0 0.5 2.87 0.07 0.47
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TABLE 2.3. Parameters for droplet relaxation experiments.

Blend Gap (pm) r0 (pm) Ca Yapplied (ร ) Yapplied
A1 1700 99 11, 15,20,24 3.5,4.8,6.4,7.8 2.2, 3.0, 4.1, 5.0

A2 1800 106 11 , 15, 20,24 3.3,4.6,6.1,7.4 2.2, 3.0, 4.1, 5.0
A3 1800 100 11, 15,20,24 3.5,4.8,6.5,7.8 2.2, 3.0, 4.1, 5.0
A4 1800 115 11, 15,20,24 2.9,3.9,5.3,6.4 2.2, 3.0, 4.1, 5.0

TABLE 2.4. The matrix-phase viscosity, the blend viscosities predicted by the FA 
model, and the measured blend viscosity at various shear rates, as well as the steady- 
state capillary number (Cass) calculated based on each corresponding viscosity for 
blend A1.

Shear rate (ร'1)
0.3 0.5 0.7 1.0 2.0

Dv (pm) 55.0 34.0 25.6 19.2 10.9
Matrix viscosity (Pa.s) 102.2 102.0 101.7 101.6 101.3
Blend viscosity predicted by FA model (Pa.s) 117.4 116.6 115.6 114.3 112.0
Measured blend viscosity (Pa.s) 138.9 136.7 134.9 133.6 129.0
Cass calculated from matrix viscosity 0.266 0.274 0.287 0.307 0.349
Cass calculated from blend viscosity predicted by FA 
model

0.306 0.313 0.326 0.345 0.386

Cass calculated from measured value of blend 
viscosity

0.361 0.367 0.381 0.404 0.444
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Figure 2.1 The dependence o f viscosity and first normal stress difference on shear 
rate for pure Ricon PBd, and for Boger solutions o f Ricon containing 0.1%, 0.2%, 
and 0.5% high-MW PBd at 21.0 °c. Insert: the dependence o f zero-shear viscosity 
on concentration of high-molecular-weight PBd in PBd Boger fluids
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Figure 2.2 The steady shear viscosity and first normal stress difference o f the droplet 
and matrix phases o f blends (a) A l, (b) A2, (c) A3r and (d) A4 at the temperatures at 
which the matrix and droplet fluid have the same viscosity
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Figure 2.3 The dependence of storage modulus (G’) and loss modulus (G”) 
frequency for all dispersed-phase fluids studied
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Figure 2.4 Droplet orientation angle obtained from rheological measurements after 
startup of steady shear and the angle predicted from affine deformation
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Capillary Number

Figure 2.5 The dependences of the steady-state half-lengths of the three principal
axes on applied capillary number of all blends studied. The solid lines were drawn to
guide the eye through the data points for the pure PBd and the 0.5% High-MW PBd
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Capillary Number

Figure 2.6 The dependence o f steady-state deformation parameter on applied 
capillary number o f all blends studied. The dashed and dotted lines indicate the 
critical capillary number for each fluid system. The solid lines were drawn to guide 
the eye through the data points for the pure PBd and the 0.5% High-MW PBd
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Figure 2.7 The dependence o f critical capillary number (Cacrit) with droplet-phase 
Weissenberg number (พ id) estimated from the G’ and G” data at terminal regime
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Figure 2.8 The dependence of steady-state capillary number on shear rate calculated 
from matrix phase viscosity and volume-averaged diameters for 20% dispersed- 
phase blends, in prolonged shearing for a strain o f 20,000 units after a step-up in 
shear rate from a previous shear rate
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Figure 2.9 The dependences o f the half-lengths o f the three principle axes normalized 
by original droplet radius on time normalized by r/r|mro for fluid system A1
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Figure 2.10 The dependences o f the half-lengths o f the three principle axes 
normalized by original droplet radius on time normalized by r /ๆmr0 at applied Ca of 
(a) 11 and (b) 24 for all blends
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Figure 2.11 The dependences o f the half-lengths o f the three principal axes on 
applied capillary number at strains o f (a) 3, (b) 6, and (c) 8 for blends A l (O), B1 
( • ) ,  A3 (À), B3 (A ), A4 (V), and B4 (▼ ). The open symbols represent blends with 
viscosity ratio o f unity, while the closed symbols represent blends with viscosity 
ratio of 0.5
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